1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
Description: fix a spelling mistake
Origin: vendor
Author: gregor herrmann <gregoa@debian.org>
Last-Update: 2015-08-31
Forwarded: https://rt.cpan.org/Ticket/Display.html?id=106790
Bug: https://rt.cpan.org/Ticket/Display.html?id=106790
--- a/GENERATED/PDL/LinearAlgebra/Trans.pm
+++ b/GENERATED/PDL/LinearAlgebra/Trans.pm
@@ -89,7 +89,7 @@
Computes exp(t*A), the matrix exponential of a general matrix,
using the irreducible rational Pade approximation to the
exponential function exp(x) = r(x) = (+/-)( I + 2*(q(x)/p(x)) ),
-combined with scaling-and-squaring and optionaly normalization of the trace.
+combined with scaling-and-squaring and optionally normalization of the trace.
The algorithm is described in Roger B. Sidje (rbs.uq.edu.au)
"EXPOKIT: Software Package for Computing Matrix Exponentials".
ACM - Transactions On Mathematical Software, 24(1):130-156, 1998
--- a/Trans/trans.pd
+++ b/Trans/trans.pd
@@ -403,7 +403,7 @@
Computes exp(t*A), the matrix exponential of a general matrix,
using the irreducible rational Pade approximation to the
exponential function exp(x) = r(x) = (+/-)( I + 2*(q(x)/p(x)) ),
-combined with scaling-and-squaring and optionaly normalization of the trace.
+combined with scaling-and-squaring and optionally normalization of the trace.
The algorithm is described in Roger B. Sidje (rbs@maths.uq.edu.au)
"EXPOKIT: Software Package for Computing Matrix Exponentials".
ACM - Transactions On Mathematical Software, 24(1):130-156, 1998
|