1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
package PDL::Opt::Simplex;
use strict;
use warnings;
use PDL;
use PDL::Exporter;
our @ISA = qw/PDL::Exporter/;
our @EXPORT_OK = qw/simplex make_simplex/;
our %EXPORT_TAGS = ( Func => [@EXPORT_OK] );
our $VERSION = '2.097';
*simplex = \&PDL::simplex;
sub make_simplex {
my ($init, $initsize) = @_;
my ( $nd, $nd2, @otherdims ) = ( $init->dims, 1 );
pop @otherdims if @otherdims; # drop the spurious "1"
return unless $nd2 == $nd + 1 or $nd2 == 1;
return $init if $nd2 == $nd + 1;
my $simp = PDL->zeroes( $nd, $nd + 1, @otherdims );
# Constructing a tetrahedron:
# At step n (starting from zero)
# take vertices 0..n and move them 1/(n+1) to negative dir on axis n.
# Take vertex n+1 and move it n/(n+1) to positive dir on axis n
my $uppertri = $simp->copy;
ones($nd * ($nd+1) / 2)->tritosquare($uppertri->slice(",:-2")->t);
my $iseq = sequence($nd);
my $pjseq = $iseq / ( $iseq + 1 );
$simp .= $init - $initsize * $pjseq * $uppertri;
$simp->slice(",1:")->diagonal(0,1) += $initsize * (1-$pjseq);
$simp;
}
sub PDL::simplex {
my ( $init, $initsize, $minsize, $maxiter, $sub, $logsub, $t ) = @_;
my $simp = make_simplex($init, $initsize) // return;
my $nd = $simp->dim(0);
my $vals = $sub->($simp);
my $ssize;
while ($maxiter--) {
$ssize = ( $simp - $simp->slice(":,0") )->magnover->maxover;
$logsub->( $simp, $vals, $ssize ) if $logsub;
last unless $ssize > $minsize;
my $valsn = !$t ? $vals : $vals - $t * log( $vals->random + 0.00001 );
my $minind = $valsn->minimum_ind;
my $maxind = $valsn->maxover_n_ind(2);
my $maxind0 = $maxind->at(0);
my @worstvals = $valsn->index($maxind)->list;
my $bestval = $valsn->at($minind);
my $ssum = ($simp->t->sumover - (my $worst = $simp->slice(":,($maxind0)"))) / $nd;
my $new = 2 * $ssum - $worst;
my $val = $sub->($new)->at(0);
$val += $t * log( rand() + 0.00001 ) if $t;
my $removetop = 0;
if ( $val < $bestval ) {
my $newnew = $new + $ssum - $worst;
my $val2 = $sub->($newnew);
if ( $val2->at(0) < $val ) { # CASE1 Reflection and Expansion
$new = $newnew;
$val = $val2;
} # else CASE2 Reflection
$removetop = 1;
} elsif ( $val < $worstvals[1] ) { # CASE3 Reflection
$removetop = 1;
} else {
my $newnew = 0.5 * ($ssum + $worst);
my $val2 = $sub->($newnew);
if ( $val2->at(0) < $worstvals[0] ) { # CASE4 Contraction
$new = $newnew;
$val = $val2;
$removetop = 1;
}
}
if ($removetop) {
$worst .= $new;
$vals->slice( "($maxind0)" ) .= $val;
} else { # CASE5 Multiple Contraction
$simp .= 0.5 * ($simp->slice(":,$minind") + $simp);
my $idx = which( sequence($nd+1) != $minind );
$vals->index($idx) .= $sub->($simp->dice_axis(1,$idx));
}
}
my $mmind = $vals->minimum_ind;
return ( $simp->slice(":,$mmind"), $ssize, $vals->index($mmind) );
}
1;
__END__
=head1 NAME
PDL::Opt::Simplex -- Simplex optimization routines
=head1 SYNOPSIS
use PDL::Opt::Simplex;
($optimum,$ssize,$optval) = simplex($init,$initsize,$minsize,
$maxiter,
sub {evaluate_func_at($_[0])},
sub {display_simplex($_[0])}
);
# more involved:
use PDL;
use PDL::Opt::Simplex;
my $count = 0;
# find value of $x that returns a minimum
sub f {
my ($vec) = @_;
$count++;
my $x = $vec->slice('(0)');
# The parabola (x+3)^2 - 5 has a minimum at x=-3:
return (($x+3)**2 - 5);
}
sub log {
my ($vec, $vals, $ssize) = @_;
# $vec is the array of values being optimized
# $vals is f($vec)
# $ssize is the simplex size, or roughly, how close to being converged.
my $x = $vec->slice('(0)');
# each vector element passed to log() has a min and max value.
# ie: x=[6 0] -> vals=[76 4]
# so, from above: f(6) == 76 and f(0) == 4
print "$count [$ssize]: $x -> $vals\n";
}
my ($optimum, $ssize, $optval) = simplex(pdl(30), 3, 1e-6, 100, \&f, \&log);
print "ssize=$ssize opt=$optimum -> minimum=$optval\n";
=head1 DESCRIPTION
This package implements the commonly used simplex optimization
algorithm. The basic idea of the algorithm is to move
a "simplex" of N+1 points in the N-dimensional search space
according to certain rules. The main
benefit of the algorithm is that you do not need to calculate
the derivatives of your function.
C<$init> is a 1D vector holding the initial values of the N fitted
parameters, C<$optimum> is a vector holding the final values.
C<$optval> is the evaluation of the final values.
C<$initsize> is the size of C<$init>. It is only used if your supplied
C<$init> is a single point in your search space, to construct the simplex
("cloud") of N+1 points the algorithm uses, being the distance away from
your single C<$init> point along each dimension. This is done by the
exportable function C<make_simplex($init, $initsize)>, e.g.:
pdl> use PDL::Opt::Simplex
pdl> p $t = make_simplex(pdl(0,0,0), pdl(0.12,0.12,0.12))
[
[ 0 -0.06 -0.08]
[ 0.12 -0.06 -0.08]
[ 0 0.06 -0.08]
[ 0 0 0.04]
]
pdl> use PDL::Graphics::TriD
pdl> spheres3d $t # spheres not points so can easily see
C<$minsize> is the convergence criterion, e.g. C<$minsize> = 1e-6;
the algorithm will terminate when all the values of C<$ssize> are less
than C<$minsize>.
The sub is assumed to understand more than 1 dimensions and broadcasting.
Its signature is C<inp(nparams); [ret]out()>. An example would be
sub evaluate_func_at {
my($xv) = @_;
my ($x1, $x2) = $xv->using(0,1);
return $x1**4 + ($x2-5)**4 + $x1*$x2;
}
Here C<$xv> is a vector holding the current values of the parameters
being fitted which are then sliced out explicitly as C<$x1> and C<$x2>.
C<$ssize> gives a very very approximate estimate of how close we might
be - it might be miles wrong. It is the largest Euclidean distance between
the first vertex and any other. If it is not very small, the algorithm
has not converged.
=head1 FUNCTIONS
=head2 simplex
=for ref
Simplex optimization routine
Mutates its C<$init> input if given as a full simplex (dims C<n,n+1>).
=for usage
($optimum,$ssize,$optval) = simplex($init,$initsize,$minsize,
$maxiter,
sub {evaluate_func_at($_[0])},
sub {display_simplex($_[0])}
);
See module C<PDL::Opt::Simplex> for more information.
=head1 CAVEATS
Do not use the simplex method if your function has local minima.
It will not work. Use genetic algorithms or simulated annealing
or conjugate gradient or momentum gradient descent.
They will not really work either but they are not guaranteed not to work ;)
(if you have infinite time, simulated annealing is guaranteed to work
but only after it has visited every point in your space).
=head1 SEE ALSO
=over
=item L<PDL::Opt::Simplex::Simple> - Use names for Simplex-optimized values
=item L<PDL::Opt::ParticleSwarm> - A PDL implementation of Particle Swarm
=item L<PDL::Opt::ParticleSwarm::Simple> - Use names for Particle Swarm-optimized values
=item L<https://web.archive.org/web/19981206200518/http://chem1.nrl.navy.mil/~shaffer/chemoweb.html> - Ron Shaffer's chemometrics web page and references therein (archive from 1998)
=back
The demonstration (Examples/Simplex/tsimp.pl and tsimp2.pl).
=head1 AUTHOR
Copyright(C) 1997 Tuomas J. Lukka.
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.
=cut
|