1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
|
#
# GENERATED WITH PDL::PP from lib/PDL/Stats/GLM.pd! Don't modify!
#
package PDL::Stats::GLM;
our @EXPORT_OK = qw(ols_t ols ols_rptd anova anova_rptd anova_design_matrix dummy_code effect_code effect_code_w interaction_code r2_change logistic pca pca_sorti plot_means plot_residuals plot_screes fill_m fill_rand dev_m stddz sse mse rmse pred_logistic d0 dm dvrs );
our %EXPORT_TAGS = (Func=>\@EXPORT_OK);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
our @ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Stats::GLM ;
#line 14 "lib/PDL/Stats/GLM.pd"
use strict;
use warnings;
use Carp;
use PDL::LiteF;
use PDL::MatrixOps;
use PDL::Stats::Basic;
use PDL::Stats::Kmeans;
eval { require PDL::Core; require PDL::GSL::CDF; };
my $CDF = 1 if !$@;
=encoding utf8
=head1 NAME
PDL::Stats::GLM -- general and generalized linear modelling methods such as ANOVA, linear regression, PCA, and logistic regression.
=head1 SYNOPSIS
use PDL::LiteF;
use PDL::Stats::GLM;
# do a multiple linear regression and plot the residuals
my $y = pdl( 8, 7, 7, 0, 2, 5, 0 );
my $x = pdl( [ 0, 1, 2, 3, 4, 5, 6 ], # linear component
[ 0, 1, 4, 9, 16, 25, 36 ] ); # quadratic component
my %m = $y->ols( $x, {plot=>1} );
print "$_\t$m{$_}\n" for sort keys %m;
=head1 DESCRIPTION
For more about general linear modelling, see
L<Wikipedia|https://en.wikipedia.org/wiki/General_linear_model>.
For an unbelievably thorough text on experimental design
and analysis, including linear modelling, see L<A First
Course in Design and Analysis of Experiments, Gary
W. Oehlert|http://users.stat.umn.edu/~gary/book/fcdae.pdf>.
The terms FUNCTIONS and METHODS are arbitrarily used to refer to
methods that are broadcastable and methods that are NOT broadcastable,
respectively. FUNCTIONS support bad values.
P-values, where appropriate, are provided if PDL::GSL::CDF is installed.
=cut
#line 75 "lib/PDL/Stats/GLM.pm"
=head1 FUNCTIONS
=cut
=head2 fill_m
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for ref
Replaces bad values with sample mean. Mean is set to 0 if all obs are
bad.
=for usage
pdl> p $data
[
[ 5 BAD 2 BAD]
[ 7 3 7 BAD]
]
pdl> p $data->fill_m
[
[ 5 3.5 2 3.5]
[ 7 3 7 5.66667]
]
=pod
Broadcasts over its inputs.
=for bad
The output pdl badflag is cleared.
=cut
*fill_m = \&PDL::fill_m;
=head2 fill_rand
=for sig
Signature: (a(n); [o]b(n))
Types: (sbyte byte short ushort long ulong indx ulonglong longlong
float double ldouble)
=for ref
Replaces bad values with random sample (with replacement) of good
observations from the same variable.
=for usage
pdl> p $data
[
[ 5 BAD 2 BAD]
[ 7 3 7 BAD]
]
pdl> p $data->fill_rand
[
[5 2 2 5]
[7 3 7 7]
]
=pod
Broadcasts over its inputs.
=for bad
The output pdl badflag is cleared.
=cut
*fill_rand = \&PDL::fill_rand;
=head2 dev_m
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for usage
$b = dev_m($a);
dev_m($a, $b); # all arguments given
$b = $a->dev_m; # method call
$a->dev_m($b);
$a->inplace->dev_m; # can be used inplace
dev_m($a->inplace);
=for ref
Replaces values with deviations from the mean.
=pod
Broadcasts over its inputs.
=for bad
C<dev_m> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dev_m = \&PDL::dev_m;
=head2 stddz
=for sig
Signature: (a(n); [o]b(n))
Types: (float double)
=for usage
$b = stddz($a);
stddz($a, $b); # all arguments given
$b = $a->stddz; # method call
$a->stddz($b);
$a->inplace->stddz; # can be used inplace
stddz($a->inplace);
=for ref
Standardize ie replace values with z_scores based on sample standard deviation from the mean (replace with 0s if stdv==0).
=pod
Broadcasts over its inputs.
=for bad
C<stddz> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*stddz = \&PDL::stddz;
=head2 sse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = sse($a, $b);
sse($a, $b, $c); # all arguments given
$c = $a->sse($b); # method call
$a->sse($b, $c);
=for ref
Sum of squared errors between actual and predicted values.
=pod
Broadcasts over its inputs.
=for bad
C<sse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*sse = \&PDL::sse;
=head2 mse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = mse($a, $b);
mse($a, $b, $c); # all arguments given
$c = $a->mse($b); # method call
$a->mse($b, $c);
=for ref
Mean of squared errors between actual and predicted values, ie variance around predicted value.
=pod
Broadcasts over its inputs.
=for bad
C<mse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*mse = \&PDL::mse;
=head2 rmse
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for usage
$c = rmse($a, $b);
rmse($a, $b, $c); # all arguments given
$c = $a->rmse($b); # method call
$a->rmse($b, $c);
=for ref
Root mean squared error, ie stdv around predicted value.
=pod
Broadcasts over its inputs.
=for bad
C<rmse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*rmse = \&PDL::rmse;
=head2 pred_logistic
=for sig
Signature: (a(n,m); b(m); [o]c(n))
Types: (float double)
=for ref
Calculates predicted prob value for logistic regression.
=for usage
# glue constant then apply coeff returned by the logistic method
$pred = $x->glue(1,ones($x->dim(0)))->pred_logistic( $m{b} );
=pod
Broadcasts over its inputs.
=for bad
C<pred_logistic> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*pred_logistic = \&PDL::pred_logistic;
=head2 d0
=for sig
Signature: (a(n); [o]c())
Types: (float double)
=for usage
$c = d0($a);
d0($a, $c); # all arguments given
$c = $a->d0; # method call
$a->d0($c);
=for ref
Null deviance for logistic regression.
=pod
Broadcasts over its inputs.
=for bad
C<d0> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*d0 = \&PDL::d0;
=head2 dm
=for sig
Signature: (a(n); b(n); [o]c())
Types: (float double)
=for ref
Model deviance for logistic regression.
=for usage
my $dm = $y->dm( $y_pred );
# null deviance
my $d0 = $y->dm( ones($y->nelem) * $y->avg );
=pod
Broadcasts over its inputs.
=for bad
C<dm> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dm = \&PDL::dm;
=head2 dvrs
=for sig
Signature: (a(); b(); [o]c())
Types: (float double)
=for usage
$c = dvrs($a, $b);
dvrs($a, $b, $c); # all arguments given
$c = $a->dvrs($b); # method call
$a->dvrs($b, $c);
=for ref
Deviance residual for logistic regression.
=pod
Broadcasts over its inputs.
=for bad
C<dvrs> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
=cut
*dvrs = \&PDL::dvrs;
#line 359 "lib/PDL/Stats/GLM.pd"
#line 360 "lib/PDL/Stats/GLM.pd"
=head2 ols_t
=for ref
Broadcasted version of ordinary least squares regression (B<ols>). The
price of broadcasting was losing significance tests for coefficients
(but see B<r2_change>). The fitting function was shamelessly copied then
modified from PDL::Fit::Linfit. Intercept is FIRST of coeff if CONST => 1.
ols_t does not handle bad values. consider B<fill_m> or B<fill_rand>
if there are bad values.
=for options
Default options (case insensitive):
CONST => 1,
=for usage
Usage:
# DV, 2 person's ratings for top-10 box office movies
# ascending sorted by box office numbers
pdl> p $y = pdl '1 1 2 4 4 4 4 5 5 5; 1 2 2 2 3 3 3 3 5 5'
# model with 2 IVs, a linear and a quadratic trend component
pdl> $x = cat sequence(10), sequence(10)**2
# suppose our novice modeler thinks this creates 3 different models
# for predicting movie ratings
pdl> p $x = cat $x, $x * 2, $x * 3
[
[
[ 0 1 2 3 4 5 6 7 8 9]
[ 0 1 4 9 16 25 36 49 64 81]
]
[
[ 0 2 4 6 8 10 12 14 16 18]
[ 0 2 8 18 32 50 72 98 128 162]
]
[
[ 0 3 6 9 12 15 18 21 24 27]
[ 0 3 12 27 48 75 108 147 192 243]
]
]
pdl> p $x->info
PDL: Double D [10,2,3]
# insert a dummy dim between IV and the dim (model) to be broadcasted
pdl> %m = $y->ols_t( $x->dummy(2) )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
# 2 persons' ratings, each fitted with 3 "different" models
F [
[ 38.314159 25.087209]
[ 38.314159 25.087209]
[ 38.314159 25.087209]
]
# df is the same across dv and iv models
F_df [2 7]
F_p [
[0.00016967051 0.00064215074]
[0.00016967051 0.00064215074]
[0.00016967051 0.00064215074]
]
R2 [
[ 0.9162963 0.87756762]
[ 0.9162963 0.87756762]
[ 0.9162963 0.87756762]
]
b [ # constant linear quadratic
[
[ 0.66363636 0.99015152 -0.056818182] # person 1
[ 1.4 0.18939394 0.022727273] # person 2
]
[
[ 0.66363636 0.49507576 -0.028409091]
[ 1.4 0.09469697 0.011363636]
]
[
[ 0.66363636 0.33005051 -0.018939394]
[ 1.4 0.063131313 0.0075757576]
]
]
# our novice modeler realizes at this point that
# the 3 models only differ in the scaling of the IV coefficients
ss_model [
[ 20.616667 13.075758]
[ 20.616667 13.075758]
[ 20.616667 13.075758]
]
ss_residual [
[ 1.8833333 1.8242424]
[ 1.8833333 1.8242424]
[ 1.8833333 1.8242424]
]
ss_total [22.5 14.9]
y_pred [
[
[0.66363636 1.5969697 2.4166667 3.1227273 ... 4.9727273]
...
=cut
*ols_t = \&PDL::ols_t;
sub PDL::ols_t {
_ols_common(1, @_);
}
sub _ols_common {
my ($broadcasted, $y, $ivs, $opt) = @_;
($y, $ivs) = _ols_prep_inputs(@_);
_ols_main($broadcasted, $y, $ivs, $opt);
}
sub _ols_prep_inputs {
# y [n], ivs [n x attr] pdl
my ($broadcasted, $y, $ivs, $opt) = @_;
my %opt = (
CONST => 1,
PLOT => 0,
WIN => undef, # for plotting
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
if (!$broadcasted) {
$y = $y->squeeze;
$y->getndims > 1 and
croak "use ols_t for broadcasted version";
}
$ivs = $ivs->dummy(1) if $ivs->getndims == 1;
($y, $ivs) = _rm_bad_value( $y, $ivs ) if !$broadcasted;
# set up ivs and const as ivs
$opt{CONST} and
$ivs = ones($ivs->dim(0))->glue( 1, $ivs );
($y, $ivs);
}
sub _ols_main {
my ($broadcasted, $y, $ivs, $opt) = @_;
my %opt = (
CONST => 1,
PLOT => 0,
WIN => undef, # for plotting
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
my $C = inv( $ivs x $ivs->t );
# Internally normalise data
# (double) it or ushort y and sequence iv won't work right
my $ymean = $y->abs->avgover->double;
$ymean->where( $ymean==0 ) .= 1;
my $divisor = $broadcasted ? $ymean->dummy(0) : $ymean;
my $y2 = $y / $divisor;
my $Y = $ivs x $y2->dummy(0);
# Do the fit
# Fitted coefficients vector
my $coeff = PDL::squeeze( $C x $Y );
$coeff = $coeff->dummy(0)
if $broadcasted and $coeff->getndims == 1 and $y->getndims > 1;
$coeff *= $divisor; # Un-normalise
# ***$coeff x $ivs looks nice but produces nan on successive tries***
my $y_pred = sumover( ($broadcasted ? $coeff->dummy(1) : $coeff) * $ivs->transpose );
$opt{PLOT} and $y->plot_residuals( $y_pred, \%opt );
return $coeff unless wantarray;
my %ret = (y_pred => $y_pred);
$ret{ss_total} = $opt{CONST} ? $y->ss : sumover( $y ** 2 );
$ret{ss_residual} = $y->sse( $ret{y_pred} );
$ret{ss_model} = $ret{ss_total} - $ret{ss_residual};
$ret{R2} = $ret{ss_model} / $ret{ss_total};
my $n_var = $opt{CONST} ? $ivs->dim(1) - 1 : $ivs->dim(1);
$ret{F_df} = pdl( $n_var, my $df1 = $y->dim(0) - $ivs->dim(1) );
$ret{F} = $ret{ss_model} / $n_var
/ ($ret{ss_residual} / $df1);
$ret{F_p} = 1 - $ret{F}->gsl_cdf_fdist_P( $n_var, $df1 )
if $CDF;
if (!$broadcasted) {
my $se_b = ones( $coeff->dims? $coeff->dims : 1 );
$opt{CONST} and
$se_b->slice(0) .= sqrt( $ret{ss_residual} / $df1 * $C->slice(0,0) );
# get the se for bs by successively regressing each iv by the rest ivs
if ($ivs->dim(1) > 1) {
my @coords = $opt{CONST} ? 1..$n_var : 0..$n_var-1;
my $ones = !$opt{CONST} ? undef : ones($ivs->dim(0));
for my $k (@coords) {
my $G = $ivs->dice_axis(1, [grep $_ != $k, @coords]);
$G = $ones->glue( 1, $G ) if $opt{CONST};
my $b_G = $ivs->slice(':',$k)->ols( $G, {CONST=>0,PLOT=>0} );
my $ss_res_k = $ivs->slice(':',$k)->squeeze->sse( sumover($b_G * $G->transpose) );
$se_b->slice($k) .= sqrt( $ret{ss_residual} / $df1 / $ss_res_k );
}
}
else {
$se_b->slice(0)
.= sqrt( $ret{ss_residual} / $df1 / sum( $ivs->slice(':',0)**2 ) );
}
$ret{b_se} = $se_b;
$ret{b_t} = $coeff / $ret{b_se};
$ret{b_p} = 2 * ( 1 - $ret{b_t}->abs->gsl_cdf_tdist_P( $df1 ) )
if $CDF;
}
for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };
$ret{b} = $coeff;
return %ret;
}
=head2 r2_change
=for ref
Significance test for the incremental change in R2 when new variable(s)
are added to an ols regression model.
Returns the change stats as well as stats for both models. Based on
L</ols_t>. (One way to make up for the lack of significance tests for
coeffs in ols_t).
=for options
Default options (case insensitive):
CONST => 1,
=for usage
Usage:
# suppose these are two persons' ratings for top 10 box office movies
# ascending sorted by box office
pdl> p $y = qsort ceil(random(10, 2) * 5)
[
[1 1 2 2 2 3 4 4 4 4]
[1 2 2 3 3 3 4 4 5 5]
]
# first IV is a simple linear trend
pdl> p $x1 = sequence 10
[0 1 2 3 4 5 6 7 8 9]
# the modeler wonders if adding a quadratic trend improves the fit
pdl> p $x2 = sequence(10) ** 2
[0 1 4 9 16 25 36 49 64 81]
# two difference models are given in two pdls
# each as would be pass on to ols_t
# the 1st model includes only linear trend
# the 2nd model includes linear and quadratic trends
# when necessary use dummy dim so both models have the same ndims
pdl> %c = $y->r2_change( $x1->dummy(1), cat($x1, $x2) )
pdl> p "$_\t$c{$_}\n" for sort keys %c
# person 1 person 2
F_change [0.72164948 0.071283096]
# df same for both persons
F_df [1 7]
F_p [0.42370145 0.79717232]
R2_change [0.0085966043 0.00048562549]
model0 HASH(0x8c10828)
model1 HASH(0x8c135c8)
# the answer here is no.
=cut
*r2_change = \&PDL::r2_change;
sub PDL::r2_change {
my ($self, $ivs0, $ivs1, $opt) = @_;
$ivs0->getndims == 1 and $ivs0 = $ivs0->dummy(1);
my %ret;
$ret{model0} = { $self->ols_t( $ivs0, $opt ) };
$ret{model1} = { $self->ols_t( $ivs1, $opt ) };
$ret{R2_change} = $ret{model1}->{R2} - $ret{model0}->{R2};
$ret{F_df}
= pdl(my $df0 = $ivs1->dim(1) - $ivs0->dim(1),
my $df1 = $ret{model1}->{F_df}->slice('(1)') );
$ret{F_change}
= $ret{R2_change} * $df1
/ ( (1-$ret{model1}->{R2}) * $df0 );
$ret{F_p} = 1 - $ret{F_change}->gsl_cdf_fdist_P( $df0, $df1 )
if $CDF;
for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };
%ret;
}
=head1 METHODS
=head2 anova
=for ref
Analysis of variance. Uses type III sum of squares for unbalanced data.
Dependent variable should be a 1D pdl. Independent variables can be
passed as 1D perl array ref or 1D pdl.
Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.
Supports bad value (by ignoring missing or BAD values in dependent and
independent variables list-wise).
For more on ANOVA, see L<https://en.wikipedia.org/wiki/Analysis_of_variance>.
=for options
Default options (case insensitive):
V => 1, # carps if bad value in variables
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
PLOT => 0, # plots highest order effect
# can set plot_means options here
WIN => undef, # for plotting
=for usage
Usage:
# suppose this is ratings for 12 apples
pdl> p $y = qsort ceil( random(12)*5 )
[1 1 2 2 2 3 3 4 4 4 5 5]
# IV for types of apple
pdl> p $a = sequence(12) % 3 + 1
[1 2 3 1 2 3 1 2 3 1 2 3]
# IV for whether we baked the apple
pdl> @b = qw( y y y y y y n n n n n n )
pdl> %m = $y->anova( $a, \@b, { IVNM=>['apple', 'bake'] } )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
F 2.46666666666667
F_df [5 6]
F_p 0.151168719948632
ms_model 3.08333333333333
ms_residual 1.25
ss_model 15.4166666666667
ss_residual 7.5
ss_total 22.9166666666667
| apple | F 0.466666666666667
| apple | F_p 0.648078345471096
| apple | df 2
| apple | m [2.75 3 3.5]
| apple | ms 0.583333333333334
| apple | se [0.85391256 0.81649658 0.64549722]
| apple | ss 1.16666666666667
| apple || err df 6
| apple ~ bake | F 0.0666666666666671
| apple ~ bake | F_p 0.936190104380701
| apple ~ bake | df 2
| apple ~ bake | m [
[1.5 2 2.5]
[ 4 4 4.5]
]
| apple ~ bake | ms 0.0833333333333339
| apple ~ bake | se [
[0.5 1 0.5]
[ 1 1 0.5]
]
| apple ~ bake | ss 0.166666666666668
| apple ~ bake || err df 6
| bake | F 11.2666666666667
| bake | F_p 0.015294126084452
| bake | df 1
| bake | m [2 4.1666667]
| bake | ms 14.0833333333333
| bake | se [0.36514837 0.40138649]
| bake | ss 14.0833333333333
| bake || err df 6
This is implemented as a call to L</anova_rptd>, with an C<undef>
subjects vector.
=cut
*anova = \&PDL::anova;
sub PDL::anova {
my ($y, @args) = @_;
anova_rptd($y, undef, @args);
}
sub _interactions {
my ($ivs_ref, $idv) = @_;
my (@inter, @idv_inter);
for my $nway ( 2 .. @$ivs_ref ) {
my $iter_idv = _combinations( $nway, [0..$#$ivs_ref] );
while ( my @v = &$iter_idv() ) {
push @inter, interaction_code(@$ivs_ref[@v]);
push @idv_inter, join ' ~ ', @$idv[@v];
}
}
(\@inter, \@idv_inter);
}
# now prepare for cell mean
sub _interactions_cm {
my ($ivs_ref, $pdl_ivs_raw) = @_;
my ($dim0, @inter_cm, @inter_cmo) = $ivs_ref->[0]->dim(0);
for my $nway ( 2 .. @$ivs_ref ) {
my $iter_idv = _combinations( $nway, [0..$#$ivs_ref] );
while ( my @v = &$iter_idv() ) {
my @i_cm;
for my $o ( 0 .. $dim0 - 1 ) {
push @i_cm, join '', map $_->slice("($o)"), @$pdl_ivs_raw[@v];
}
my ($inter, $map) = effect_code( \@i_cm );
push @inter_cm, $inter;
# get the order to put means in correct multi dim pdl pos
# this is order in var_e dim(1)
my @levels = sort { $map->{$a} <=> $map->{$b} } keys %$map;
# this is order needed for cell mean
my @i_cmo = sort { reverse($levels[$a]) cmp reverse($levels[$b]) }
0 .. $#levels;
push @inter_cmo, pdl @i_cmo;
}
}
(\@inter_cmo, \@inter_cm);
}
sub _cell_means {
my ($data, $ivs_cm_ref, $i_cmo_ref, $idv, $pdl_ivs_raw) = @_;
my %ind_id;
@ind_id{ @$idv } = 0..$#$idv;
my %cm;
my $i = 0;
for (@$ivs_cm_ref) {
confess "_cell_means passed empty ivs_cm_ref ndarray at pos $i" if $_->isempty;
my $last = zeroes $_->dim(0);
my $i_neg = which $_->slice(':',0) == -1;
$last->slice($i_neg) .= 1;
$_->where($_ == -1) .= 0;
$_ = $_->glue(1, $last);
my @v = split ' ~ ', $idv->[$i];
my @shape = map $pdl_ivs_raw->[$_]->uniq->nelem, @ind_id{@v};
my ($m, $ss) = $data->centroid( $_ );
$m = $m->slice($i_cmo_ref->[$i])->sever;
$ss = $ss->slice($i_cmo_ref->[$i])->sever;
$m = $m->reshape(@shape);
my $se = sqrt( ($ss/($_->sumover - 1)) / $_->sumover )->reshape(@shape);
$cm{ "| $idv->[$i] | m" } = $m;
$cm{ "| $idv->[$i] | se" } = $se;
$i++;
}
\%cm;
}
# http://www.perlmonks.org/?node_id=371228
sub _combinations {
my ($num, $arr) = @_;
return sub { return }
if $num == 0 or $num > @$arr;
my @pick;
return sub {
return @$arr[ @pick = ( 0 .. $num - 1 ) ]
unless @pick;
my $i = $#pick;
$i-- until $i < 0 or $pick[$i]++ < @$arr - $num + $i;
return if $i < 0;
@pick[$i .. $#pick] = $pick[$i] .. $#$arr;
return @$arr[@pick];
};
}
=head2 anova_rptd
=for ref
Repeated measures and mixed model anova. Uses type III sum of squares.
The standard error (se) for the means are based on the relevant mean
squared error from the anova, ie it is pooled across levels of the effect.
Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.
Uses L</anova_design_matrix>, so supports bad values.
For more on repeated measures ANOVA, see
L<https://en.wikipedia.org/wiki/Repeated_measures_design>,
and for mixed models, see
L<https://en.wikipedia.org/wiki/Mixed-design_analysis_of_variance>.
=for options
Default options (case insensitive):
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
PLOT => 0, # plots highest order effect
# see plot_means() for more options
WIN => undef, # for plotting
=for usage
Usage:
Some fictional data: recall_w_beer_and_wings.txt
Subject Beer Wings Recall
Alex 1 1 8
Alex 1 2 9
Alex 1 3 12
Alex 2 1 7
Alex 2 2 9
Alex 2 3 12
Brian 1 1 12
Brian 1 2 13
Brian 1 3 14
Brian 2 1 9
Brian 2 2 8
Brian 2 3 14
...
# rtable allows text only in 1st row and col
my ($data, $idv, $subj) = rtable 'recall_w_beer_and_wings.txt';
my ($b, $w, $dv) = $data->dog;
# subj and IVs can be 1d pdl or @ ref
# subj must be the first argument
my %m = $dv->anova_rptd( $subj, $b, $w, {ivnm=>['Beer', 'Wings']} );
print "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
ss_residual 19.0833333333333
ss_subject 24.8333333333333
ss_total 133.833333333333
| Beer | F 9.39130434782609
| Beer | F_p 0.0547977008378944
| Beer | df 1
| Beer | m [10.916667 8.9166667]
| Beer | ms 24
| Beer | se [0.4614791 0.4614791]
| Beer | ss 24
| Beer || err df 3
| Beer || err ms 2.55555555555556
| Beer || err ss 7.66666666666667
| Beer ~ Wings | F 0.510917030567687
| Beer ~ Wings | F_p 0.623881438624431
| Beer ~ Wings | df 2
| Beer ~ Wings | m [
[ 10 7]
[ 10.5 9.25]
[12.25 10.5]
]
| Beer ~ Wings | ms 1.625
| Beer ~ Wings | se [
[0.89170561 0.89170561]
[0.89170561 0.89170561]
[0.89170561 0.89170561]
]
| Beer ~ Wings | ss 3.25000000000001
| Beer ~ Wings || err df 6
| Beer ~ Wings || err ms 3.18055555555555
| Beer ~ Wings || err ss 19.0833333333333
| Wings | F 4.52851711026616
| Wings | F_p 0.0632754786153548
| Wings | df 2
| Wings | m [8.5 9.875 11.375]
| Wings | ms 16.5416666666667
| Wings | se [0.67571978 0.67571978 0.67571978]
| Wings | ss 33.0833333333333
| Wings || err df 6
| Wings || err ms 3.65277777777778
| Wings || err ss 21.9166666666667
For mixed model anova, ie when there are between-subject IVs
involved, feed the IVs as above, but specify in BTWN which IVs are
between-subject. For example, if we had added age as a between-subject
IV in the above example, we would do
my %m = $dv->anova_rptd( $subj, $age, $b, $w,
{ ivnm=>['Age', 'Beer', 'Wings'], btwn=>[0] });
=cut
*anova_rptd = \&PDL::anova_rptd;
sub PDL::anova_rptd {
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($y, $subj, @ivs_raw) = @_;
confess "Expected 1-D data, instead: ", $y->info if $y->ndims != 1;
croak "Mismatched number of elements in DV and IV. Are you passing IVs the old-and-abandoned way?"
if (ref $ivs_raw[0] eq 'ARRAY') and (@{ $ivs_raw[0] } != $y->nelem);
for (@ivs_raw) {
croak "too many dims in IV!" if ref $_ eq 'PDL' and $_->squeeze->ndims > 1
}
my %opt = (
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
( !defined($subj) ? () : (
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
)),
PLOT => 0, # plots highest order effect
WIN => undef, # for plotting
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
$opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
if !$opt{IVNM} or !@{ $opt{IVNM} };
(my ($dsgn, $idv), $y, my ($sj, $ivs_ref_filtrd, $pdl_ivs_raw, $ivs_ref, $err_ref)) = $y->anova_design_matrix($subj, @ivs_raw, \%opt);
confess "anova_rptd: got singular matrix for X' x X"
if any +($dsgn->t x $dsgn)->det == 0;
my $b_full = _ols_main(1, $y, $dsgn->t, {CONST=>0});
my %ret = (ss_total => $y->ss,
ss_residual => $y->sse( sumover( $b_full * $dsgn ) ));
if (defined $subj) {
my @full = (@$ivs_ref, @$err_ref);
my $has_btwn = @{ $opt{BTWN} };
my @is_btwn; $is_btwn[$_] = 1 for @{ $opt{BTWN} };
my @within_inds = 0 .. $#ivs_raw;
@within_inds = grep !$is_btwn[$_], @within_inds if $has_btwn;
my $within_df = pdl(map $_->dim(1), @full[@within_inds])->prodover->sclr;
EFFECT: for my $k (0 .. $#full) {
my $e = ($k > $#$ivs_ref)? '| err' : '';
my $i = ($k > $#$ivs_ref)? $k - @$ivs_ref : $k;
my $i_pref = $k == $#full ? undef : "| $idv->[$i] |";
if (!defined $full[$k]) { # ss_residual as error
$ret{ "$i_pref$e ss" } = $ret{ss_residual};
# highest ord inter for purely within design, (p-1)*(q-1)*(n-1)
my $factor = (ref $full[-1] ? $full[-1] : $err_ref->[$full[-1]])->dim(1);
my $df = $ret{ "$i_pref$e df" } = $factor * $within_df;
die "${i_pref}residual df = 0" if $df <= 0;
$ret{ "$i_pref$e ms" } = $ret{ "$i_pref$e ss" } / $df;
} elsif (ref $full[$k]) { # unique error term
next EFFECT
unless my @G = grep $_ != $k && defined $full[$_], 0 .. $#full;
my $G = ones($y->dim(0))->glue(1, grep ref $_, @full[@G]);
my $b_G = $y->ols_t( $G, {CONST=>0} );
my $ss = $ret{$k == $#full ? 'ss_subject' : "$i_pref$e ss"}
= $y->sse(sumover($b_G * $G->transpose)) - $ret{ss_residual};
if ($k != $#full) {
my $df = $ret{"$i_pref$e df"} = $full[$k]->dim(1);
die "residual df = 0" if $df <= 0;
$ret{"$i_pref$e ms"} = $ss / $df;
}
} else { # repeating error term
my $ss = $ret{$k == $#full ? 'ss_subject' : "$i_pref$e ss"}
= $ret{"| $idv->[$full[$k]] |$e ss"};
if ($k != $#full) {
my $df = $ret{"$i_pref$e df"} = $ret{"| $idv->[$full[$k]] |$e df"};
die "residual df = 0" if $df <= 0;
$ret{"$i_pref$e ms"} = $ss / $df;
}
}
}
} else {
$ret{ss_model} = $ret{ss_total} - $ret{ss_residual};
$ret{F_df} = pdl(my $F_df0 = $dsgn->dim(0) - 1, my $df1 = $y->nelem - $dsgn->dim(0));
$ret{ms_model} = $ret{ss_model} / $F_df0;
$ret{ms_residual} = $ret{ss_residual} / $df1;
$ret{F} = $ret{ms_model} / $ret{ms_residual};
$ret{F_p} = 1 - $ret{F}->gsl_cdf_fdist_P( $F_df0, $df1 )
if $CDF and $df1 > 0;
# get IV ss from $ivs_ref instead of $dsgn pdl
my $ones = ones($y->dim(0));
for my $k (0 .. $#$ivs_ref) {
my $G = $ones->glue(1, @$ivs_ref[grep $_ != $k, 0 .. $#$ivs_ref]);
my $b_G = $y->ols_t( $G, {CONST=>0} );
$ret{ "| $idv->[$k] | ss" }
= $y->sse( sumover($b_G * $G->transpose) ) - $ret{ss_residual};
my $df0 = $ret{ "| $idv->[$k] | df" } = $ivs_ref->[$k]->dim(1);
$ret{ "| $idv->[$k] || err df" } = $df1;
die "residual df = 0" if $df1 <= 0;
$ret{ "| $idv->[$k] | ms" } = $ret{ "| $idv->[$k] | ss" } / $df0;
}
}
# have all iv, inter, and error effects. get F and F_p
for (0 .. $#$ivs_ref) {
my $ms_residual = defined $subj ? $ret{ "| $idv->[$_] || err ms" } : $ret{ms_residual};
my ($df0, $df1) = @ret{"| $idv->[$_] | df" , "| $idv->[$_] || err df"};
my $F = $ret{ "| $idv->[$_] | F" } = $ret{ "| $idv->[$_] | ms" } / $ms_residual;
$ret{ "| $idv->[$_] | F_p" } = 1 - $F->gsl_cdf_fdist_P($df0, $df1)
if $CDF and $df1 > 0;
}
for (keys %ret) {ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze};
my ($inter_cmo_ref, $inter_cm_ref)
= _interactions_cm($ivs_ref_filtrd, $pdl_ivs_raw);
# append inter info to cell means effects
my $ivs_cm_ref = [@$ivs_ref_filtrd, @$inter_cm_ref];
my @i_cmo_ref = map pdl(values %{ (effect_code($_))[1] })->qsort, @$pdl_ivs_raw;
#line 1068 "lib/PDL/Stats/GLM.pd"
push @i_cmo_ref, @$inter_cmo_ref;
my $cm_ref
= _cell_means( $y, $ivs_cm_ref, \@i_cmo_ref, $idv, $pdl_ivs_raw );
if (defined $subj) {
my @ls = map { $_->uniq->nelem } @$pdl_ivs_raw;
$cm_ref
= _fix_rptd_se( $cm_ref, \%ret, $opt{IVNM}, \@ls, $sj->uniq->nelem );
}
# integrate mean and se into %ret
@ret{ keys %$cm_ref } = values %$cm_ref;
my $highest = join(' ~ ', @{ $opt{IVNM} });
$cm_ref->{"| $highest | m"}->plot_means( $cm_ref->{"| $highest | se"},
{ %opt, IVNM=>$idv } )
if $opt{PLOT};
%ret;
}
=head2 anova_design_matrix
=for ref
Effect-coded design matrix for anova, including repeated-measures and
mixed-model. The C<X> for use in linear regression i.e. C<Y = X β + ε>.
Added in 0.854. See L<https://en.wikipedia.org/wiki/Design_matrix> for more.
Supports bad value in the dependent and independent variables. It
automatically removes bad data listwise, i.e. remove a subject's data if
there is any cell missing for the subject.
=for options
Default options (case insensitive):
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
=for usage
$matrix = $dv->anova_design_matrix(undef, $b, $w, {ivnm=>[qw(b w)]});
$matrix = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)]}); # repeated-measures
$matrix = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # mixed-model
($matrix, $ivnm_ref) = $dv->anova_design_matrix(
$subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # list context also names
=cut
*anova_design_matrix = \&PDL::anova_design_matrix;
sub PDL::anova_design_matrix {
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($y, $subj, @ivs_raw) = @_;
confess "No IVs: did you omit 'undef' for anova?" if !@ivs_raw;
confess "Expected 1-D data, instead: ", $y->info if $y->ndims != 1;
for (@ivs_raw) {
croak "too many dims in IV!" if ref $_ eq 'PDL' and $_->squeeze->ndims > 1;
}
my %opt = (
V => 1, # carps if bad value in dv
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
( !defined($subj) ? () : (
BTWN => [], # indices of between-subject IVs (matches IVNM indices)
)),
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
$opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
if !$opt{IVNM} or !@{ $opt{IVNM} };
my @idv_orig = @{ $opt{IVNM} };
my @pdl_ivs_raw = map scalar PDL::Stats::Basic::code_ivs($_), @ivs_raw;
my $pdl_ivs = pdl(\@pdl_ivs_raw);
# explicit set badflag because pdl() removes badflag
$pdl_ivs->badflag( scalar grep $_->badflag, @pdl_ivs_raw );
my $sj;
if (defined($subj)) {
# delete bad data listwise ie remove subj if any cell missing
$sj = PDL::Stats::Basic::code_ivs($subj);
my $ibad = which( $y->isbad | nbadover($pdl_ivs->transpose) );
my $sj_bad = $sj->slice($ibad)->uniq;
if ($sj_bad->nelem) {
warn $sj_bad->nelem . " subjects with missing data removed\n"
if $opt{V};
$sj = $sj->setvaltobad($_)
for (list $sj_bad);
my $igood = which $sj->isgood;
for ($y, $sj, @pdl_ivs_raw) {
$_ = $_->slice( $igood )->sever;
$_->badflag(0);
}
}
} else {
($y, $pdl_ivs) = _rm_bad_value( $y, $pdl_ivs );
if ($opt{V} and $y->nelem < $pdl_ivs_raw[0]->nelem) {
warn sprintf "%d subjects with missing data removed\n", $pdl_ivs_raw[0]->nelem - $y->nelem;
}
@pdl_ivs_raw = $pdl_ivs->dog;
}
my @ivs_ref_fltrd = map scalar effect_code($_), @pdl_ivs_raw;
my ($ivs_inter_ref, $idv_inter) = _interactions(\@ivs_ref_fltrd, \@idv_orig);
# append inter info to main effects
my $ivs_ref = [@ivs_ref_fltrd, @$ivs_inter_ref];
my @idv = (@idv_orig, @$idv_inter);
# matches $ivs_ref, with an extra last pdl for subj effect
my $err_ref = !defined($subj) ? [] :
_add_errors( $sj, $ivs_ref, \@idv, \@pdl_ivs_raw, $opt{BTWN} );
for (grep ref $err_ref->[$_], 0..$#$err_ref) {
my ($null_row_ids, $non_null_row_ids) = $err_ref->[$_]->zcover->which_both;
confess "got null columns $null_row_ids in error entry #$_ ($idv[$_])"
if !$null_row_ids->isempty;
}
my $dsgn = PDL::glue(1, ones($y->dim(0)), @$ivs_ref, (grep ref($_), @$err_ref))->t;
!wantarray ? $dsgn : ($dsgn, \@idv, $y, $sj, \@ivs_ref_fltrd, \@pdl_ivs_raw, $ivs_ref, $err_ref);
}
# code (btwn group) subjects. Rutherford (2011) pp 208-209
sub _code_btwn {
my ($subj, $btwn) = @_;
my (@grp, %grp_s);
for my $n (0 .. $subj->nelem - 1) {
# construct string to code group membership
# something not treated as BAD by code_ivs to start off marking group membership
# if no $btwn, everyone ends up in the same grp
my $s = '_' . join '', map $_->slice($n), @$btwn;
push @grp, $s; # group membership
$s .= $subj->slice($n); # keep track of total uniq subj
$grp_s{$s} = 1;
}
my $grp = PDL::Stats::Kmeans::iv_cluster \@grp;
my $spdl = zeroes $subj->dim(0), keys(%grp_s) - $grp->dim(1);
my $d1 = 0;
for my $g (0 .. $grp->dim(1)-1) {
my $col_inds = which $grp->slice(':',$g);
my $gsub = $subj->slice( $col_inds )->effect_code;
my ($nobs, $nsub) = $gsub->dims;
$spdl->slice($col_inds, [$d1,$d1+$nsub-1]) .= $gsub;
$d1 += $nsub;
}
$spdl;
}
sub _add_errors {
my ($subj, $ivs_ref, $idv, $raw_ivs, $btwn) = @_;
my $spdl = _code_btwn($subj, [@$raw_ivs[@$btwn]]);
# if btwn factor involved, or highest order inter for within factors
# elem is undef, so that
# @errors ind matches @$ivs_ref, with an extra elem at the end for subj
# mark btwn factors for error terms
# same error term for B(wn) and A(btwn) x B(wn) (Rutherford, p205)
my %is_btwn = map +($_=>1), @$idv[ @$btwn ];
my $has_btwn = keys %is_btwn;
my %idv2indx = map +($idv->[$_]=>$_), 0..$#$idv;
my $ie_subj;
my @errors = map {
my @fs = split ' ~ ', $idv->[$_];
# separate bw and wn factors
# if only bw, error is bw x subj
# if only wn or wn and bw, error is wn x subj
my @bw = !$has_btwn ? () : grep $is_btwn{$_}, @fs;
my @wn = !$has_btwn ? @fs : grep !$is_btwn{$_}, @fs;
$ie_subj = $_ if !defined($ie_subj) and !@wn;
my $err = join ' ~ ', @wn ? @wn : @bw;
# highest order inter of within factors, use ss_residual as error
if ( @wn == @$raw_ivs - @$btwn ) { undef }
# repeating btwn factors use ss_subject as error
elsif (!@wn and $_ > $ie_subj) { $ie_subj }
# repeating error term
elsif ($_ > $idv2indx{$err}) { $idv2indx{$err} }
elsif (@wn) { interaction_code($ivs_ref->[$_], $spdl) }
else { $spdl }
} 0 .. $#$ivs_ref;
push @errors, $has_btwn ? $ie_subj : $spdl;
\@errors;
}
sub _fix_rptd_se {
# if ivnm lvls_ref for within ss only this can work for mixed design
my ($cm_ref, $ret, $ivnm, $lvls_ref, $n) = @_;
my @se = map /^\| (.+?) \| se$/ ? $1 : (), keys %$cm_ref;
my @n_obs = map {
my @ivs = split / ~ /, $_;
my $i_ivs = which_id $ivnm, \@ivs;
my $icollapsed = setops pdl(0 .. $#$ivnm), 'XOR', $i_ivs;
my $collapsed = $icollapsed->nelem?
pdl( @$lvls_ref[(list $icollapsed)] )->prodover
: 1
;
$n * $collapsed;
} @se;
for my $i (0 .. $#se) {
$cm_ref->{"| $se[$i] | se"}
.= sqrt( $ret->{"| $se[$i] || err ms"} / $n_obs[$i] );
}
$cm_ref;
}
=head2 dummy_code
=for ref
Dummy coding of nominal variable (perl @ ref or 1d pdl) for use in regression.
Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).
=for usage
pdl> @a = qw(a a a b b b c c c)
pdl> p $a = dummy_code(\@a)
[
[1 1 1 0 0 0 0 0 0]
[0 0 0 1 1 1 0 0 0]
]
=cut
*dummy_code = \&PDL::dummy_code;
sub PDL::dummy_code {
my ($var_ref) = @_;
my $var_e = effect_code( $var_ref );
$var_e->where( $var_e == -1 ) .= 0;
$var_e;
}
=head2 effect_code
=for ref
Unweighted effect coding of nominal variable (perl @ ref or 1d pdl) for
use in regression. returns in @ context coded pdl and % ref to level -
pdl->dim(1) index.
Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).
=for usage
my @var = qw( a a a b b b c c c );
my ($var_e, $map) = effect_code( \@var );
print $var_e . $var_e->info . "\n";
[
[ 1 1 1 0 0 0 -1 -1 -1]
[ 0 0 0 1 1 1 -1 -1 -1]
]
PDL: Double D [9,2]
print "$_\t$map->{$_}\n" for sort keys %$map
a 0
b 1
c 2
=cut
*effect_code = \&PDL::effect_code;
sub PDL::effect_code {
my ($var_ref) = @_;
my ($var, $map_ref) = PDL::Stats::Basic::code_ivs( $var_ref );
my $var_max = $var->max;
confess "effect_code called with only one unique value" if $var_max < 1;
my $var_e = yvals( float, $var->nelem, $var_max ) == $var;
$var_e->slice(which( $var == $var_max ), ) .= -1;
$var_e = $var_e->setbadif( $var->isbad ) if $var->badflag;
wantarray ? ($var_e, $map_ref) : $var_e;
}
=head2 effect_code_w
=for ref
Weighted effect code for nominal variable. returns in @ context coded pdl and % ref to level - pdl->dim(1) index.
Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).
=for usage
pdl> @a = qw( a a b b b c c )
pdl> p $a = effect_code_w(\@a)
[
[ 1 1 0 0 0 -1 -1]
[ 0 0 1 1 1 -1.5 -1.5]
]
=cut
*effect_code_w = \&PDL::effect_code_w;
sub PDL::effect_code_w {
my ($var_ref) = @_;
my ($var_e, $map_ref) = effect_code( $var_ref );
return wantarray ? ($var_e, $map_ref) : $var_e if $var_e->sum == 0;
my $pos = $var_e == 1;
my $neg = $var_e == -1;
my $w = $pos->sumover / $neg->sumover;
my $neg_ind = $neg->whichND;
$var_e->indexND($neg_ind) *= $w->slice($neg_ind->slice('(1)'));
wantarray ? ($var_e, $map_ref) : $var_e;
}
=head2 interaction_code
Returns the coded interaction term for effect-coded variables.
Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).
=for usage
pdl> $a = sequence(6) > 2
pdl> p $a = $a->effect_code
[
[ 1 1 1 -1 -1 -1]
]
pdl> $b = pdl( qw( 0 1 2 0 1 2 ) )
pdl> p $b = $b->effect_code
[
[ 1 0 -1 1 0 -1]
[ 0 1 -1 0 1 -1]
]
pdl> p $ab = interaction_code( $a, $b )
[
[ 1 0 -1 -1 -0 1]
[ 0 1 -1 -0 -1 1]
]
=cut
*interaction_code = \&PDL::interaction_code;
sub PDL::interaction_code {
my $i = ones( $_[0]->dim(0), 1 );
$i = ($i * $_->dummy(1))->clump(1,2) for @_;
$i;
}
=head2 ols
=for ref
Ordinary least squares regression, aka linear regression.
Unlike B<ols_t>, ols is not broadcastable, but it can handle bad value (by
ignoring observations with bad value in dependent or independent variables
list-wise) and returns the full model in list context with various stats.
IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. Intercept is automatically added and returned
as FIRST of the coeffs if CONST=>1. Returns full model in list context
and coeff in scalar context.
For more on multiple linear regression see
L<https://en.wikipedia.org/wiki/Multiple_linear_regression>.
=for options
Default options (case insensitive):
CONST => 1,
PLOT => 0, # see plot_residuals() for plot options
WIN => undef, # for plotting
=for usage
Usage:
# suppose this is a person's ratings for top 10 box office movies
# ascending sorted by box office
pdl> $y = pdl '[1 1 2 2 2 2 4 4 5 5]'
# construct IV with linear and quadratic component
pdl> p $x = cat sequence(10), sequence(10)**2
[
[ 0 1 2 3 4 5 6 7 8 9]
[ 0 1 4 9 16 25 36 49 64 81]
]
pdl> %m = $y->ols( $x )
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
F 40.4225352112676
F_df [2 7]
F_p 0.000142834216344756
R2 0.920314253647587
# coeff constant linear quadratic
b [0.981818 0.212121 0.030303]
b_p [0.039910 0.328001 0.203034]
b_se [0.389875 0.201746 0.021579]
b_t [2.518284 1.051422 1.404218]
ss_model 19.8787878787879
ss_residual 1.72121212121212
ss_total 21.6
y_pred [0.98181818 1.2242424 1.5272727 ... 4.6181818 5.3454545]
=cut
*ols = \&PDL::ols;
sub PDL::ols {
_ols_common(0, @_);
}
# ivs = [nobs x nivs] so can `dog` retval
sub _rm_bad_value {
my ($y, $ivs) = @_;
return ($y, $ivs, undef) if !$y->check_badflag and !$ivs->check_badflag;
my $idx = which($y->isgood & (nbadover ($ivs->transpose)==0));
$_ = $_->slice($idx)->sever for $y, $ivs;
$_->badflag(0) for $y, $ivs;
($y, $ivs, $idx);
}
=head2 ols_rptd
=for ref
Repeated measures linear regression.
Handles purely within-subject design for now.
(Lorch & Myers, 1990; Van den Noortgate & Onghena, 2006).
See F<t/glm.t> for an example using the Lorch and Myers data.
=for usage
Usage:
# This is the example from Lorch and Myers (1990),
# a study on how characteristics of sentences affected reading time
# Three within-subject IVs:
# SP -- serial position of sentence
# WORDS -- number of words in sentence
# NEW -- number of new arguments in sentence
# $subj can be 1D pdl or @ ref and must be the first argument
# IV can be 1D @ ref or pdl
# 1D @ ref is effect coded internally into pdl
# pdl is left as is
my %r = $rt->ols_rptd( $subj, $sp, $words, $new );
print "$_\t$r{$_}\n" for sort keys %r;
ss_residual 58.3754646504336
ss_subject 51.8590337714286
ss_total 405.188241771429
# SP WORDS NEW
F [ 7.208473 61.354153 1.0243311]
F_p [0.025006181 2.619081e-05 0.33792837]
coeff [0.33337285 0.45858933 0.15162986]
df [1 1 1]
df_err [9 9 9]
ms [ 18.450705 73.813294 0.57026483]
ms_err [ 2.5595857 1.2030692 0.55671923]
ss [ 18.450705 73.813294 0.57026483]
ss_err [ 23.036272 10.827623 5.0104731]
=cut
*ols_rptd = \&PDL::ols_rptd;
sub PDL::ols_rptd {
my ($y, $subj, @ivs_raw) = @_;
$y = $y->squeeze;
$y->getndims > 1 and
croak "ols_rptd does not support broadcasting";
my @ivs = map { (ref $_ eq 'PDL' and $_->ndims > 1)? $_
: ref $_ eq 'PDL' ? $_->dummy(1)
: scalar effect_code($_)
;
} @ivs_raw;
my %r;
$r{ss_total} = $y->ss;
# STEP 1: subj
my $s = effect_code $subj;
my $b_s = $y->ols_t($s);
my $pred = sumover($b_s->slice('1:-1') * $s->transpose) + $b_s->slice(0);
$r{ss_subject} = $r{ss_total} - $y->sse( $pred );
# STEP 2: add predictor variables
my $iv_p = $s->glue(1, @ivs);
my $b_p = $y->ols_t($iv_p);
# only care about coeff for predictor vars. no subj or const coeff
$r{coeff} = $b_p->slice([-@ivs,-1])->sever;
# get total sse for this step
$pred = sumover($b_p->slice('1:-1') * $iv_p->transpose) + $b_p->slice(0);
my $ss_pe = $y->sse( $pred );
# get predictor ss by successively reducing the model
$r{ss} = zeroes scalar(@ivs);
for my $i (0 .. $#ivs) {
my $iv = $s->glue(1, @ivs[ grep $_ != $i, 0..$#ivs ]);
my $b = $y->ols_t($iv);
$pred = sumover($b->slice('1:-1') * $iv->transpose) + $b->slice(0);
$r{ss}->slice($i) .= $y->sse($pred) - $ss_pe;
}
# STEP 3: get predictor x subj interaction as error term
my $iv_e = PDL::glue 1, map interaction_code( $s, $_ ), @ivs;
# get total sse for this step. full model now.
my $b_f = $y->ols_t( $iv_p->glue(1,$iv_e) );
$pred = sumover($b_f->slice('1:-1') * $iv_p->glue(1,$iv_e)->transpose) + $b_f->slice(0);
$r{ss_residual} = $y->sse( $pred );
# get predictor x subj ss by successively reducing the error term
$r{ss_err} = zeroes scalar(@ivs);
for my $i (0 .. $#ivs) {
my $iv = $iv_p->glue(1, map interaction_code($s, $_),
@ivs[grep $_ != $i, 0..$#ivs]);
my $b = $y->ols_t($iv);
my $pred = sumover($b->slice('1:-1') * $iv->transpose) + $b->slice(0);
$r{ss_err}->slice($i) .= $y->sse($pred) - $r{ss_residual};
}
# Finally, get MS, F, etc
$r{df} = pdl( map $_->squeeze->ndims, @ivs );
$r{ms} = $r{ss} / $r{df};
$r{df_err} = $s->dim(1) * $r{df};
$r{ms_err} = $r{ss_err} / $r{df_err};
$r{F} = $r{ms} / $r{ms_err};
$r{F_p} = 1 - $r{F}->gsl_cdf_fdist_P( $r{df}, $r{df_err} )
if $CDF;
%r;
}
=head2 logistic
=for ref
Logistic regression with maximum likelihood estimation using L<PDL::Fit::LM>.
IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. It is included in the model and returned as
LAST of coeff. Returns full model in list context and coeff in scalar
context.
The significance tests are likelihood ratio tests (-2LL deviance)
tests. IV significance is tested by comparing deviances between the
reduced model (ie with the IV in question removed) and the full model.
***NOTE: the results here are qualitatively similar to but not identical
with results from R, because different algorithms are used for the
nonlinear parameter fit. Use with discretion***
=for options
Default options (case insensitive):
INITP => zeroes( $x->dim(1) + 1 ), # n_iv + 1
MAXIT => 1000,
EPS => 1e-7,
=for usage
Usage:
# suppose this is whether a person had rented 10 movies
pdl> p $y = ushort( random(10)*2 )
[0 0 0 1 1 0 0 1 1 1]
# IV 1 is box office ranking
pdl> p $x1 = sequence(10)
[0 1 2 3 4 5 6 7 8 9]
# IV 2 is whether the movie is action- or chick-flick
pdl> p $x2 = sequence(10) % 2
[0 1 0 1 0 1 0 1 0 1]
# concatenate the IVs together
pdl> p $x = cat $x1, $x2
[
[0 1 2 3 4 5 6 7 8 9]
[0 1 0 1 0 1 0 1 0 1]
]
pdl> %m = $y->logistic( $x )
pdl> p "$_\t$m{$_}\n" for sort keys %m
D0 13.8629436111989
Dm 9.8627829791575
Dm_chisq 4.00016063204141
Dm_df 2
Dm_p 0.135324414081692
# ranking genre constant
b [0.41127706 0.53876358 -2.1201285]
b_chisq [ 3.5974504 0.16835559 2.8577151]
b_p [0.057868258 0.6815774 0.090936587]
iter 12
y_pred [0.10715577 0.23683909 ... 0.76316091 0.89284423]
# to get the covariance out, supply a true value for the COV option:
pdl> %m = $y->logistic( $x, {COV=>1} )
pdl> p $m{cov};
=cut
*logistic = \&PDL::logistic;
sub PDL::logistic {
require PDL::Fit::LM;
my ( $self, $ivs, $opt ) = @_;
$self = $self->squeeze;
# make compatible w multiple var cases
$ivs->getndims == 1 and $ivs = $ivs->dummy(1);
$self->dim(0) != $ivs->dim(0) and
carp "mismatched n btwn DV and IV!";
my %opt = (
INITP => zeroes( $ivs->dim(1) + 1 ), # n_ivs + 1
MAXIT => 1000,
EPS => 1e-7,
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
# not using it atm
$opt{WT} = 1;
# Use lmfit. Fourth input argument is reference to user-defined
# copy INITP so we have the original value when needed
my ($yfit,$coeff,$cov,$iter)
= PDL::Fit::LM::lmfit($ivs, $self, $opt{WT}, \&_logistic, $opt{INITP}->copy,
{ Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
# apparently at least coeff is child of some pdl
# which is changed in later lmfit calls
$yfit = $yfit->copy;
$coeff = $coeff->copy;
return $coeff unless wantarray;
my %ret;
my $n0 = $self->where($self == 0)->nelem;
my $n1 = $self->nelem - $n0;
$ret{cov} = $cov if $opt{COV};
$ret{D0} = -2*($n0 * log($n0 / $self->nelem) + $n1 * log($n1 / $self->nelem));
$ret{Dm} = sum( $self->dvrs( $yfit ) ** 2 );
$ret{Dm_chisq} = $ret{D0} - $ret{Dm};
$ret{Dm_df} = $ivs->dim(1);
$ret{Dm_p}
= 1 - PDL::GSL::CDF::gsl_cdf_chisq_P( $ret{Dm_chisq}, $ret{Dm_df} )
if $CDF;
my $coeff_chisq = zeroes $opt{INITP}->nelem;
if ( $ivs->dim(1) > 1 ) {
for my $k (0 .. $ivs->dim(1)-1) {
my @G = grep { $_ != $k } (0 .. $ivs->dim(1)-1);
my $G = $ivs->dice_axis(1, \@G);
my $init = $opt{INITP}->dice([ @G, $opt{INITP}->dim(0)-1 ])->copy;
my $y_G
= PDL::Fit::LM::lmfit( $G, $self, $opt{WT}, \&_logistic, $init,
{ Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
$coeff_chisq->slice($k) .= $self->dm( $y_G ) - $ret{Dm};
}
}
else {
# d0 is, by definition, the deviance with only intercept
$coeff_chisq->slice(0) .= $ret{D0} - $ret{Dm};
}
my $y_c
= PDL::Fit::LM::lmfit( $ivs, $self, $opt{WT}, \&_logistic_no_intercept, $opt{INITP}->slice('0:-2')->sever,
{ Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
$coeff_chisq->slice(-1) .= $self->dm( $y_c ) - $ret{Dm};
$ret{b} = $coeff;
$ret{b_chisq} = $coeff_chisq;
$ret{b_p} = 1 - $ret{b_chisq}->gsl_cdf_chisq_P( 1 )
if $CDF;
$ret{y_pred} = $yfit;
$ret{iter} = $iter;
for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };
%ret;
}
sub _logistic {
my ($x,$par,$ym,$dyda) = @_;
# $b and $c are fit parameters slope and intercept
my $b = $par->slice([0,$x->dim(1) - 1])->sever;
my $c = $par->slice(-1)->sever;
# Write function with dependent variable $ym,
# independent variable $x, and fit parameters as specified above.
# Use the .= (dot equals) assignment operator to express the equality
# (not just a plain equals)
$ym .= 1 / ( 1 + exp( -1 * (sumover($b * $x->transpose) + $c) ) );
my @dy = map $dyda->slice(",($_)"), 0 .. $par->dim(0)-1;
# Partial derivative of the function with respect to each slope
# fit parameter ($b in this case). Again, note .= assignment
# operator (not just "equals")
$dy[$_] .= $x->slice(':',$_) * $ym * (1 - $ym)
for (0 .. $b->dim(0)-1);
# Partial derivative of the function re intercept par
$dy[-1] .= $ym * (1 - $ym);
}
sub _logistic_no_intercept {
my ($x,$par,$ym,$dyda) = @_;
my $b = $par->slice([0,$x->dim(1) - 1])->sever;
# Write function with dependent variable $ym,
# independent variable $x, and fit parameters as specified above.
# Use the .= (dot equals) assignment operator to express the equality
# (not just a plain equals)
$ym .= 1 / ( 1 + exp( -1 * sumover($b * $x->transpose) ) );
my (@dy) = map {$dyda -> slice(",($_)") } (0 .. $par->dim(0)-1);
# Partial derivative of the function with respect to each slope
# fit parameter ($b in this case). Again, note .= assignment
# operator (not just "equals")
$dy[$_] .= $x->slice(':',$_) * $ym * (1 - $ym)
for 0 .. $b->dim(0)-1;
}
=head2 pca
=for ref
Principal component analysis. Based on corr instead of cov.
Bad values are ignored pair-wise. OK when bad values are few but otherwise
probably should fill_m etc before pca). Uses L<PDL::MatrixOps/eigens_sym>.
=for options
Default options (case insensitive):
CORR => 1, # boolean. use correlation or covariance
PLOT => 0, # calls plot_screes by default
# can set plot_screes options here
WIN => undef, # for plotting
=for usage
Usage:
my $d = qsort random 10, 5; # 10 obs on 5 variables
my %r = $d->pca( \%opt );
print "$_\t$r{$_}\n" for (keys %r);
eigenvalue # variance accounted for by each component
[4.70192 0.199604 0.0471421 0.0372981 0.0140346]
eigenvector # dim var x comp. weights for mapping variables to component
[
[ -0.451251 -0.440696 -0.457628 -0.451491 -0.434618]
[ -0.274551 0.582455 0.131494 0.255261 -0.709168]
[ 0.43282 0.500662 -0.139209 -0.735144 -0.0467834]
[ 0.693634 -0.428171 0.125114 0.128145 -0.550879]
[ 0.229202 0.180393 -0.859217 0.4173 0.0503155]
]
loadings # dim var x comp. correlation between variable and component
[
[ -0.978489 -0.955601 -0.992316 -0.97901 -0.942421]
[ -0.122661 0.260224 0.0587476 0.114043 -0.316836]
[ 0.0939749 0.108705 -0.0302253 -0.159616 -0.0101577]
[ 0.13396 -0.0826915 0.0241629 0.0247483 -0.10639]
[ 0.027153 0.0213708 -0.101789 0.0494365 0.00596076]
]
pct_var # percent variance accounted for by each component
[0.940384 0.0399209 0.00942842 0.00745963 0.00280691]
Plot scores along the first two components,
$d->plot_scores( $r{eigenvector} );
=cut
*pca = \&PDL::pca;
sub PDL::pca {
my ($self, $opt) = @_;
my %opt = (
CORR => 1,
PLOT => 0,
WIN => undef, # for plotting
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
my $var_var = $opt{CORR}? $self->corr_table : $self->cov_table;
# value is axis pdl and score is var x axis
my ($eigvec, $eigval) = $var_var->eigens_sym;
$eigvec = $eigvec->transpose; # compatibility with PDL::Slatec::eigsys
# ind is sticky point for broadcasting
my $ind_sorted = $eigval->qsorti->slice('-1:0');
$eigvec = $eigvec->slice(':',$ind_sorted)->sever;
$eigval = $eigval->slice($ind_sorted)->sever;
# var x axis
my $var = $eigval / $eigval->sum->sclr;
my $loadings;
if ($opt{CORR}) {
$loadings = $eigvec * sqrt( $eigval->transpose );
}
else {
my $scores = $eigvec x $self->dev_m;
$loadings = $self->corr( $scores->dummy(1) );
}
$var->plot_screes(\%opt)
if $opt{PLOT};
( eigenvalue=>$eigval, eigenvector=>$eigvec,
pct_var=>$var, loadings=>$loadings );
}
=head2 pca_sorti
Determine by which vars a component is best represented. Descending sort
vars by size of association with that component. Returns sorted var and
relevant component indices.
=for options
Default options (case insensitive):
NCOMP => 10, # maximum number of components to consider
=for usage
Usage:
# let's see if we replicated the Osgood et al. (1957) study
pdl> ($data, $idv, $ido) = rtable 'osgood_exp.csv', {v=>0}
# select a subset of var to do pca
pdl> $ind = which_id $idv, [qw( ACTIVE BASS BRIGHT CALM FAST GOOD HAPPY HARD LARGE HEAVY )]
pdl> $data = $data( ,$ind)->sever
pdl> @$idv = @$idv[list $ind]
pdl> %m = $data->pca
pdl> ($iv, $ic) = $m{loadings}->pca_sorti()
pdl> p "$idv->[$_]\t" . $m{loadings}->($_,$ic)->flat . "\n" for (list $iv)
# COMP0 COMP1 COMP2 COMP3
HAPPY [0.860191 0.364911 0.174372 -0.10484]
GOOD [0.848694 0.303652 0.198378 -0.115177]
CALM [0.821177 -0.130542 0.396215 -0.125368]
BRIGHT [0.78303 0.232808 -0.0534081 -0.0528796]
HEAVY [-0.623036 0.454826 0.50447 0.073007]
HARD [-0.679179 0.0505568 0.384467 0.165608]
ACTIVE [-0.161098 0.760778 -0.44893 -0.0888592]
FAST [-0.196042 0.71479 -0.471355 0.00460276]
LARGE [-0.241994 0.594644 0.634703 -0.00618055]
BASS [-0.621213 -0.124918 0.0605367 -0.765184]
=cut
*pca_sorti = \&PDL::pca_sorti;
sub PDL::pca_sorti {
# $self is pdl (var x component)
my ($self, $opt) = @_;
my %opt = (
NCOMP => 10, # maximum number of components to consider
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
my $ncomp = pdl($opt{NCOMP}, $self->dim(1))->min;
$self = $self->dice_axis( 1, pdl(0..$ncomp-1) );
my $icomp = $self->transpose->abs->maximum_ind;
# sort between comp
my $ivar_sort = $icomp->qsorti;
$self = $self->slice($ivar_sort)->sever;
# sort within comp
my $ic = $icomp->slice($ivar_sort)->iv_cluster;
for my $comp (0 .. $ic->dim(1)-1) {
my $i = $self->slice(which($ic->slice(':',$comp)), "($comp)")->qsorti->slice('-1:0');
$ivar_sort->slice(which $ic->slice(':',$comp))
.= $ivar_sort->slice(which $ic->slice(':',$comp))->slice($i);
}
wantarray ? ($ivar_sort, pdl(0 .. $ic->dim(1)-1)) : $ivar_sort;
}
=head2 plot_means
Plots means anova style. Can handle up to 4-way interactions (ie 4D pdl).
=for options
Default options (case insensitive):
IVNM => ['IV_0', 'IV_1', 'IV_2', 'IV_3'],
DVNM => 'DV',
AUTO => 1, # auto set dims to be on x-axis, line, panel
# if set 0, dim 0 goes on x-axis, dim 1 as lines
# dim 2+ as panels
# see PDL::Graphics::Simple for next option
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # individual square panel size in pixels
=for usage
Usage:
# see anova for mean / se pdl structure
$mean->plot_means( $se, {IVNM=>['apple', 'bake']} );
Or like this:
$m{'| apple ~ bake | m'}->plot_means;
=cut
*plot_means = \&PDL::plot_means;
sub PDL::plot_means {
require PDL::Graphics::Simple;
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($self, $se) = @_;
$self = $self->squeeze;
if ($self->ndims > 4) {
carp "Data is > 4D. No plot here.";
return;
}
my %opt = (
IVNM => ['IV_0', 'IV_1', 'IV_2', 'IV_3'],
DVNM => 'DV',
AUTO => 1, # auto set vars to be on X axis, line, panel
WIN => undef, # PDL::Graphics::Simple object
SIZE => 640, # individual square panel size in pixels
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt }
# decide which vars to plot as x axis, lines, panels
# put var w most levels on x axis
# put var w least levels on diff panels
my @iD = 0..3;
my @dims = (1, 1, 1, 1);
# splice ARRAY,OFFSET,LENGTH,LIST
splice @dims, 0, $self->ndims, $self->dims;
$self = $self->reshape(@dims)->sever;
$se = $se->reshape(@dims)->sever
if defined $se;
@iD = reverse list qsorti pdl @dims
if $opt{AUTO};
# $iD[0] on x axis
# $iD[1] as separate lines
my $nx = $self->dim($iD[2]); # n xpanels
my $ny = $self->dim($iD[3]); # n ypanels
my $w = $opt{WIN} || PDL::Graphics::Simple::pgswin(
size=>[$opt{SIZE}*$nx, $opt{SIZE}*$ny,'px']);
my $seq0 = sequence(my $dim0 = $self->dim($iD[0]));
my ($pcount, @plots) = 0;
for my $y (0..$ny-1) {
for my $x (0..$nx-1) {
my $key_prefix = "$opt{IVNM}[$iD[0]]|";
$key_prefix .= $opt{IVNM}[$iD[2]] . "=$x|" if $nx > 1;
$key_prefix .= $opt{IVNM}[$iD[3]] . "=$y|" if $ny > 1;
for (0 .. $self->dim($iD[1]) - 1) {
my $ke = "$key_prefix$opt{IVNM}[$iD[1]]=$_";
my $ydiced = $self->dice_axis($iD[3],$y)->dice_axis($iD[2],$x)->dice_axis($iD[1],$_)->squeeze;
push @plots, with=>'lines', ke=>"$ke mean", style=>$pcount,
$seq0+$pcount*0.05, $ydiced;
push @plots, with=>'errorbars', ke=>"$ke error", style=>$pcount,
$seq0+$pcount*0.05, $ydiced,
$se->dice_axis($iD[3],$y)->dice_axis($iD[2],$x)
->dice_axis($iD[1],$_)->squeeze
if defined($se);
$pcount++;
}
}
}
my ($ymin, $ymax) = pdl($self, !defined $se ? () : ($self+$se, $self-$se))->minmax;
$w->plot(@plots,
{ xlabel=>$opt{IVNM}[$iD[0]], ylabel=>$opt{DVNM},
xrange=>[-0.05,$dim0-1+$pcount*0.05], yrange=>[$ymin-0.05,$ymax+0.05] }
);
$w;
}
=head2 plot_residuals
Plots residuals against predicted values.
=for usage
Usage:
use PDL::Graphics::Simple;
$w = pgswin();
$y->plot_residuals( $y_pred, { win=>$w } );
=for options
Default options (case insensitive):
# see PDL::Graphics::Simple for more info
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => 1,
=cut
*plot_residuals = \&PDL::plot_residuals;
sub PDL::plot_residuals {
require PDL::Graphics::Simple;
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($y, $y_pred) = @_;
my %opt = (
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => 1,
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
my $residuals = $y - $y_pred;
my $win = $opt{WIN} || PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
$win->plot(
with=>'points', style=>$opt{COLOR}, $y_pred, $residuals,
with=>'lines', style=>$opt{COLOR}, pdl($y_pred->minmax), pdl(0,0), # 0-line
{xlabel=>'predicted value', ylabel=>'residuals'},
);
}
=head2 plot_scores
Plots standardized original and PCA transformed scores against two components. (Thank you, Bob MacCallum, for the documentation suggestion that led to this function.)
=for options
Default options (case insensitive):
CORR => 1, # boolean. PCA was based on correlation or covariance
COMP => [0,1], # indices to components to plot
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => [1,2], # color for original and rotated scores
=for usage
Usage:
my %p = $data->pca();
$data->plot_scores( $p{eigenvector}, \%opt );
=cut
*plot_scores = \&PDL::plot_scores;
sub PDL::plot_scores {
require PDL::Graphics::Simple;
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($self, $eigvec) = @_;
my %opt = (
CORR => 1, # boolean. PCA was based on correlation or covariance
COMP => [0,1], # indices to components to plot
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
COLOR => [1,2], # color for original and transformed scoress
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt }
my $i = pdl $opt{COMP};
my $z = $opt{CORR} ? $self->stddz : $self->dev_m;
# transformed normed values
my $scores = sumover($eigvec->slice(':',$i) * $z->transpose->dummy(1))->transpose;
$z = $z->slice(':',$i)->sever;
my $win = $opt{WIN} || PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
$win->plot(
with=>'points', style=>$opt{COLOR}[0], ke=>'original', $z->slice(',(0)'), $z->slice(',(1)'),
with=>'points', style=>$opt{COLOR}[1], ke=>'transformed', $scores->slice(',(0)'), $scores->slice(',(1)'),
{xlabel=>"Component $opt{COMP}[0]", ylabel=>"Component $opt{COMP}[1]"},
);
}
=head2 plot_screes
Scree plot. Plots proportion of variance accounted for by PCA components.
=for options
Default options (case insensitive):
NCOMP => 20, # max number of components to plot
CUT => 0, # set to plot cutoff line after this many components
# undef to plot suggested cutoff line for NCOMP comps
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
=for usage
Usage:
# variance should be in descending order
$d = qsort random 10, 5; # 10 obs on 5 variables
%pca = $d->pca( \%opt );
$pca{pct_var}->plot_screes( {ncomp=>16, win=>$win=PDL::Graphics::Simple::pgswin()} );
Or, because NCOMP is used so often, it is allowed a shortcut,
$pca{pct_var}->plot_screes( 16 );
=cut
*plot_scree = \&PDL::plot_screes; # here for now for compatibility
*plot_screes = \&PDL::plot_screes;
sub PDL::plot_screes {
require PDL::Graphics::Simple;
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($self, $ncomp) = @_;
my %opt = (
NCOMP => 20, # max number of components to plot
CUT => 0, # set to plot cutoff line after this many components
# undef to plot suggested cutoff line for NCOMP comps
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
# allows comparing multiple lines in same plot
SIZE => 640, # plot size in pixels
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
$opt{NCOMP} = $ncomp
if $ncomp;
# re-use $ncomp below
$ncomp = ($self->dim(0) < $opt{NCOMP})? $self->dim(0) : $opt{NCOMP};
my $self_comp = $self->slice([0,$ncomp-1]);
$opt{CUT} = PDL::Stats::Kmeans::_scree_ind $self_comp
if !defined $opt{CUT};
my $win = $opt{WIN} ||
PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
$win->plot(
with=>'lines', ke=>'scree', sequence($ncomp), $self_comp,
!$opt{CUT} ? () : (with=>'lines', ke=>'cut', pdl($opt{CUT}-.5, $opt{CUT}-.5), pdl(-.05, $self->max->sclr+.05)),
{xlabel=>'Component', ylabel=>'Proportion of Variance Accounted for',
xrange=>[-0.05,$ncomp-0.95], yrange=>[0,1], le=>'tr'},
);
}
=head2 plot_stripchart
Stripchart plot. Plots ANOVA-style data, categorised against given IVs.
=for options
Default options (case insensitive):
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
DVNM => 'DV',
# see PDL::Graphics::Simple for next options
WIN => undef, # pgswin object. not closed here if passed
=for usage
Usage:
%m = $y->plot_stripchart( $a, \@b, { IVNM=>[qw(apple bake)] } );
=cut
my $CHART_GAP = 0.1;
*plot_stripchart = \&PDL::plot_stripchart;
sub PDL::plot_stripchart {
require PDL::Graphics::Simple;
my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
my ($y, @ivs_raw) = @_;
my %opt = (
IVNM => [], # auto filled as ['IV_0', 'IV_1', ... ]
DVNM => 'DV',
WIN => undef, # pgswin object. not closed here if passed
);
if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
$opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
if !$opt{IVNM} or !@{ $opt{IVNM} };
my $w = $opt{WIN} || PDL::Graphics::Simple::pgswin();
my @codes = map [code_ivs($_)], @ivs_raw;
my @levels = map {
my $map = $_->[1];
[sort {$map->{$a} <=> $map->{$b}} keys %$map];
} @codes;
my $xjitter = $y->random * $CHART_GAP;
my ($pcount, @plots) = 0;
push @plots, with=>'points', ke=>"all data", $xjitter+$pcount, $y;
$pcount++;
for my $i (0..$#ivs_raw) {
my $levs = $levels[$i];
my $name = $opt{IVNM}[$i];
my $coded = $codes[$i][0];
for my $j (0..$#$levs) {
my $inds = which($coded == $j);
push @plots, with=>'points', ke=>"$name=$levs->[$j]",
$xjitter->slice($inds)+$pcount+$j*$CHART_GAP, $y->slice($inds);
}
$pcount++;
}
my ($ymin, $ymax) = $y->minmax;
my $xmax = $pcount-1 + $CHART_GAP*($#{$levels[-1]} + 2);
$w->plot(@plots,
{ xlabel=>'IV', ylabel=>$opt{DVNM},
xrange=>[-1,$xmax], yrange=>[$ymin-$CHART_GAP,$ymax+$CHART_GAP] }
);
$w;
}
=head1 SEE ALSO
L<PDL::Fit::Linfit>
L<PDL::Fit::LM>
=head1 REFERENCES
Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied
Multiple Regression/correlation Analysis for the Behavioral Sciences
(3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
Hosmer, D.W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd
ed.). New York, NY: Wiley-Interscience.
Lorch, R.F., & Myers, J.L. (1990). Regression analyses of repeated
measures data in cognitive research. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 16, 149-157.
Osgood C.E., Suci, G.J., & Tannenbaum, P.H. (1957). The Measurement of
Meaning. Champaign, IL: University of Illinois Press.
Rutherford, A. (2011). ANOVA and ANCOVA: A GLM Approach (2nd ed.). Wiley.
Shlens, J. (2009). A Tutorial on Principal Component Analysis. Retrieved
April 10, 2011 from http://citeseerx.ist.psu.edu/
The GLM procedure: unbalanced ANOVA for two-way design with
interaction. (2008). SAS/STAT(R) 9.2 User's Guide. Retrieved June 18,
2009 from http://support.sas.com/
Van den Noortgate, W., & Onghena, P. (2006). Analysing repeated
measures data in cognitive research: A comment on regression coefficient
analyses. European Journal of Cognitive Psychology, 18, 937-952.
=head1 AUTHOR
Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>
All rights reserved. There is no warranty. You are allowed to redistribute
this software / documentation as described in the file COPYING in the
PDL distribution.
=cut
#line 2491 "lib/PDL/Stats/GLM.pm"
# Exit with OK status
1;
|