File: GLM.pm

package info (click to toggle)
libpdl-stats-perl 0.855-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 468 kB
  • sloc: perl: 1,459; makefile: 3
file content (2494 lines) | stat: -rw-r--r-- 70,276 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
#
# GENERATED WITH PDL::PP from lib/PDL/Stats/GLM.pd! Don't modify!
#
package PDL::Stats::GLM;

our @EXPORT_OK = qw(ols_t ols ols_rptd anova anova_rptd anova_design_matrix dummy_code effect_code effect_code_w interaction_code r2_change logistic pca pca_sorti plot_means plot_residuals plot_screes fill_m fill_rand dev_m stddz sse mse rmse pred_logistic d0 dm dvrs );
our %EXPORT_TAGS = (Func=>\@EXPORT_OK);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;


   
   our @ISA = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::Stats::GLM ;








#line 14 "lib/PDL/Stats/GLM.pd"

use strict;
use warnings;

use Carp;
use PDL::LiteF;
use PDL::MatrixOps;
use PDL::Stats::Basic;
use PDL::Stats::Kmeans;

eval { require PDL::Core; require PDL::GSL::CDF; };
my $CDF = 1 if !$@;

=encoding utf8

=head1 NAME

PDL::Stats::GLM -- general and generalized linear modelling methods such as ANOVA, linear regression, PCA, and logistic regression.

=head1 SYNOPSIS

    use PDL::LiteF;
    use PDL::Stats::GLM;

    # do a multiple linear regression and plot the residuals
    my $y = pdl( 8, 7, 7, 0, 2, 5, 0 );
    my $x = pdl( [ 0, 1, 2, 3, 4, 5, 6 ],        # linear component
                 [ 0, 1, 4, 9, 16, 25, 36 ] );   # quadratic component
    my %m  = $y->ols( $x, {plot=>1} );
    print "$_\t$m{$_}\n" for sort keys %m;

=head1 DESCRIPTION

For more about general linear modelling, see
L<Wikipedia|https://en.wikipedia.org/wiki/General_linear_model>.
For an unbelievably thorough text on experimental design
and analysis, including linear modelling, see L<A First
Course in Design and Analysis of Experiments, Gary
W. Oehlert|http://users.stat.umn.edu/~gary/book/fcdae.pdf>.

The terms FUNCTIONS and METHODS are arbitrarily used to refer to
methods that are broadcastable and methods that are NOT broadcastable,
respectively. FUNCTIONS support bad values.

P-values, where appropriate, are provided if PDL::GSL::CDF is installed.

=cut
#line 75 "lib/PDL/Stats/GLM.pm"


=head1 FUNCTIONS

=cut






=head2 fill_m

=for sig

 Signature: (a(n); [o]b(n))
 Types: (float double)

=for ref

Replaces bad values with sample mean. Mean is set to 0 if all obs are
bad.

=for usage

     pdl> p $data
     [
      [  5 BAD   2 BAD]
      [  7   3   7 BAD]
     ]

     pdl> p $data->fill_m
     [
      [      5     3.5       2     3.5]
      [      7       3       7 5.66667]
     ]
  

=pod

Broadcasts over its inputs.

=for bad

The output pdl badflag is cleared.

=cut




*fill_m = \&PDL::fill_m;






=head2 fill_rand

=for sig

 Signature: (a(n); [o]b(n))
 Types: (sbyte byte short ushort long ulong indx ulonglong longlong
   float double ldouble)

=for ref

Replaces bad values with random sample (with replacement) of good
observations from the same variable.

=for usage

    pdl> p $data
    [
     [  5 BAD   2 BAD]
     [  7   3   7 BAD]
    ]

    pdl> p $data->fill_rand

    [
     [5 2 2 5]
     [7 3 7 7]
    ]

=pod

Broadcasts over its inputs.

=for bad

The output pdl badflag is cleared.

=cut




*fill_rand = \&PDL::fill_rand;






=head2 dev_m

=for sig

 Signature: (a(n); [o]b(n))
 Types: (float double)

=for usage

 $b = dev_m($a);
 dev_m($a, $b);      # all arguments given
 $b = $a->dev_m;     # method call
 $a->dev_m($b);
 $a->inplace->dev_m; # can be used inplace
 dev_m($a->inplace);

=for ref

Replaces values with deviations from the mean.

=pod

Broadcasts over its inputs.

=for bad

C<dev_m> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*dev_m = \&PDL::dev_m;






=head2 stddz

=for sig

 Signature: (a(n); [o]b(n))
 Types: (float double)

=for usage

 $b = stddz($a);
 stddz($a, $b);      # all arguments given
 $b = $a->stddz;     # method call
 $a->stddz($b);
 $a->inplace->stddz; # can be used inplace
 stddz($a->inplace);

=for ref

Standardize ie replace values with z_scores based on sample standard deviation from the mean (replace with 0s if stdv==0).

=pod

Broadcasts over its inputs.

=for bad

C<stddz> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*stddz = \&PDL::stddz;






=head2 sse

=for sig

 Signature: (a(n); b(n); [o]c())
 Types: (float double)

=for usage

 $c = sse($a, $b);
 sse($a, $b, $c);  # all arguments given
 $c = $a->sse($b); # method call
 $a->sse($b, $c);

=for ref

Sum of squared errors between actual and predicted values.

=pod

Broadcasts over its inputs.

=for bad

C<sse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*sse = \&PDL::sse;






=head2 mse

=for sig

 Signature: (a(n); b(n); [o]c())
 Types: (float double)

=for usage

 $c = mse($a, $b);
 mse($a, $b, $c);  # all arguments given
 $c = $a->mse($b); # method call
 $a->mse($b, $c);

=for ref

Mean of squared errors between actual and predicted values, ie variance around predicted value.

=pod

Broadcasts over its inputs.

=for bad

C<mse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*mse = \&PDL::mse;






=head2 rmse

=for sig

 Signature: (a(n); b(n); [o]c())
 Types: (float double)

=for usage

 $c = rmse($a, $b);
 rmse($a, $b, $c);  # all arguments given
 $c = $a->rmse($b); # method call
 $a->rmse($b, $c);

=for ref

Root mean squared error, ie stdv around predicted value.

=pod

Broadcasts over its inputs.

=for bad

C<rmse> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*rmse = \&PDL::rmse;






=head2 pred_logistic

=for sig

 Signature: (a(n,m); b(m); [o]c(n))
 Types: (float double)

=for ref

Calculates predicted prob value for logistic regression.

=for usage

    # glue constant then apply coeff returned by the logistic method
    $pred = $x->glue(1,ones($x->dim(0)))->pred_logistic( $m{b} );

=pod

Broadcasts over its inputs.

=for bad

C<pred_logistic> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*pred_logistic = \&PDL::pred_logistic;






=head2 d0

=for sig

 Signature: (a(n); [o]c())
 Types: (float double)

=for usage

 $c = d0($a);
 d0($a, $c);  # all arguments given
 $c = $a->d0; # method call
 $a->d0($c);

=for ref

Null deviance for logistic regression.

=pod

Broadcasts over its inputs.

=for bad

C<d0> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*d0 = \&PDL::d0;






=head2 dm

=for sig

 Signature: (a(n); b(n); [o]c())
 Types: (float double)

=for ref

Model deviance for logistic regression.

=for usage

    my $dm = $y->dm( $y_pred );
      # null deviance
    my $d0 = $y->dm( ones($y->nelem) * $y->avg );

=pod

Broadcasts over its inputs.

=for bad

C<dm> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*dm = \&PDL::dm;






=head2 dvrs

=for sig

 Signature: (a(); b(); [o]c())
 Types: (float double)

=for usage

 $c = dvrs($a, $b);
 dvrs($a, $b, $c);  # all arguments given
 $c = $a->dvrs($b); # method call
 $a->dvrs($b, $c);

=for ref

Deviance residual for logistic regression.

=pod

Broadcasts over its inputs.

=for bad

C<dvrs> processes bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*dvrs = \&PDL::dvrs;





#line 359 "lib/PDL/Stats/GLM.pd"

#line 360 "lib/PDL/Stats/GLM.pd"

=head2 ols_t

=for ref

Broadcasted version of ordinary least squares regression (B<ols>). The
price of broadcasting was losing significance tests for coefficients
(but see B<r2_change>). The fitting function was shamelessly copied then
modified from PDL::Fit::Linfit. Intercept is FIRST of coeff if CONST => 1.

ols_t does not handle bad values. consider B<fill_m> or B<fill_rand>
if there are bad values.

=for options

Default options (case insensitive):

    CONST   => 1,

=for usage

Usage:

    # DV, 2 person's ratings for top-10 box office movies
    # ascending sorted by box office numbers

    pdl> p $y = pdl '1 1 2 4 4 4 4 5 5 5; 1 2 2 2 3 3 3 3 5 5'

    # model with 2 IVs, a linear and a quadratic trend component

    pdl> $x = cat sequence(10), sequence(10)**2

    # suppose our novice modeler thinks this creates 3 different models
    # for predicting movie ratings

    pdl> p $x = cat $x, $x * 2, $x * 3
    [
     [
      [ 0  1  2  3  4  5  6  7  8  9]
      [ 0  1  4  9 16 25 36 49 64 81]
     ]
     [
      [  0   2   4   6   8  10  12  14  16  18]
      [  0   2   8  18  32  50  72  98 128 162]
     ]
     [
      [  0   3   6   9  12  15  18  21  24  27]
      [  0   3  12  27  48  75 108 147 192 243]
     ]
    ]

    pdl> p $x->info
    PDL: Double D [10,2,3]

    # insert a dummy dim between IV and the dim (model) to be broadcasted

    pdl> %m = $y->ols_t( $x->dummy(2) )

    pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m

    # 2 persons' ratings, each fitted with 3 "different" models
    F   [
     [ 38.314159  25.087209]
     [ 38.314159  25.087209]
     [ 38.314159  25.087209]
    ]

    # df is the same across dv and iv models
    F_df    [2 7]
    F_p [
     [0.00016967051 0.00064215074]
     [0.00016967051 0.00064215074]
     [0.00016967051 0.00064215074]
    ]

    R2  [
     [ 0.9162963 0.87756762]
     [ 0.9162963 0.87756762]
     [ 0.9162963 0.87756762]
    ]

    b   [ # constant     linear      quadratic
     [
      [ 0.66363636    0.99015152   -0.056818182] # person 1
      [        1.4    0.18939394    0.022727273] # person 2
     ]
     [
      [ 0.66363636    0.49507576   -0.028409091]
      [        1.4    0.09469697    0.011363636]
     ]
     [
      [ 0.66363636    0.33005051   -0.018939394]
      [        1.4   0.063131313   0.0075757576]
     ]
    ]

    # our novice modeler realizes at this point that
    # the 3 models only differ in the scaling of the IV coefficients
    ss_model    [
     [ 20.616667  13.075758]
     [ 20.616667  13.075758]
     [ 20.616667  13.075758]
    ]

    ss_residual [
     [ 1.8833333  1.8242424]
     [ 1.8833333  1.8242424]
     [ 1.8833333  1.8242424]
    ]

    ss_total    [22.5 14.9]
    y_pred      [
     [
      [0.66363636  1.5969697  2.4166667  3.1227273  ...  4.9727273]
    ...

=cut

*ols_t = \&PDL::ols_t;
sub PDL::ols_t {
  _ols_common(1, @_);
}

sub _ols_common {
  my ($broadcasted, $y, $ivs, $opt) = @_;
  ($y, $ivs) = _ols_prep_inputs(@_);
  _ols_main($broadcasted, $y, $ivs, $opt);
}

sub _ols_prep_inputs {
    # y [n], ivs [n x attr] pdl
  my ($broadcasted, $y, $ivs, $opt) = @_;
  my %opt = (
    CONST => 1,
    PLOT  => 0,
    WIN    => undef,      # for plotting
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  if (!$broadcasted) {
    $y = $y->squeeze;
    $y->getndims > 1 and
      croak "use ols_t for broadcasted version";
  }
  $ivs = $ivs->dummy(1) if $ivs->getndims == 1;
  ($y, $ivs) = _rm_bad_value( $y, $ivs ) if !$broadcasted;
    # set up ivs and const as ivs
  $opt{CONST} and
    $ivs = ones($ivs->dim(0))->glue( 1, $ivs );
  ($y, $ivs);
}

sub _ols_main {
  my ($broadcasted, $y, $ivs, $opt) = @_;
  my %opt = (
    CONST => 1,
    PLOT  => 0,
    WIN    => undef,      # for plotting
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  my $C = inv( $ivs x $ivs->t );
  # Internally normalise data
  # (double) it or ushort y and sequence iv won't work right
  my $ymean = $y->abs->avgover->double;
  $ymean->where( $ymean==0 ) .= 1;
  my $divisor = $broadcasted ? $ymean->dummy(0) : $ymean;
  my $y2 = $y / $divisor;
  my $Y = $ivs x $y2->dummy(0);
  # Do the fit
    # Fitted coefficients vector
  my $coeff = PDL::squeeze( $C x $Y );
  $coeff = $coeff->dummy(0)
    if $broadcasted and $coeff->getndims == 1 and $y->getndims > 1;
  $coeff *= $divisor; # Un-normalise
    # ***$coeff x $ivs looks nice but produces nan on successive tries***
  my $y_pred = sumover( ($broadcasted ? $coeff->dummy(1) : $coeff) * $ivs->transpose );
  $opt{PLOT} and $y->plot_residuals( $y_pred, \%opt );
  return $coeff unless wantarray;
  my %ret = (y_pred => $y_pred);
  $ret{ss_total} = $opt{CONST} ? $y->ss : sumover( $y ** 2 );
  $ret{ss_residual} = $y->sse( $ret{y_pred} );
  $ret{ss_model} = $ret{ss_total} - $ret{ss_residual};
  $ret{R2} = $ret{ss_model} / $ret{ss_total};
  my $n_var = $opt{CONST} ? $ivs->dim(1) - 1 : $ivs->dim(1);
  $ret{F_df} = pdl( $n_var, my $df1 = $y->dim(0) - $ivs->dim(1) );
  $ret{F} = $ret{ss_model} / $n_var
    / ($ret{ss_residual} / $df1);
  $ret{F_p} = 1 - $ret{F}->gsl_cdf_fdist_P( $n_var, $df1 )
    if $CDF;
  if (!$broadcasted) {
    my $se_b = ones( $coeff->dims? $coeff->dims : 1 );
    $opt{CONST} and
      $se_b->slice(0) .= sqrt( $ret{ss_residual} / $df1 * $C->slice(0,0) );
      # get the se for bs by successively regressing each iv by the rest ivs
    if ($ivs->dim(1) > 1) {
      my @coords = $opt{CONST} ? 1..$n_var : 0..$n_var-1;
      my $ones = !$opt{CONST} ? undef : ones($ivs->dim(0));
      for my $k (@coords) {
        my $G = $ivs->dice_axis(1, [grep $_ != $k, @coords]);
        $G = $ones->glue( 1, $G ) if $opt{CONST};
        my $b_G = $ivs->slice(':',$k)->ols( $G, {CONST=>0,PLOT=>0} );
        my $ss_res_k = $ivs->slice(':',$k)->squeeze->sse( sumover($b_G * $G->transpose) );
        $se_b->slice($k) .= sqrt( $ret{ss_residual} / $df1 / $ss_res_k );
      }
    }
    else {
      $se_b->slice(0)
        .= sqrt( $ret{ss_residual} / $df1 / sum( $ivs->slice(':',0)**2 ) );
    }
    $ret{b_se} = $se_b;
    $ret{b_t} = $coeff / $ret{b_se};
    $ret{b_p} = 2 * ( 1 - $ret{b_t}->abs->gsl_cdf_tdist_P( $df1 ) )
      if $CDF;
  }
  for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };
  $ret{b} = $coeff;
  return %ret;
}

=head2 r2_change

=for ref

Significance test for the incremental change in R2 when new variable(s)
are added to an ols regression model.

Returns the change stats as well as stats for both models. Based on
L</ols_t>. (One way to make up for the lack of significance tests for
coeffs in ols_t).

=for options

Default options (case insensitive):

    CONST   => 1,

=for usage

Usage:

    # suppose these are two persons' ratings for top 10 box office movies
    # ascending sorted by box office

    pdl> p $y = qsort ceil(random(10, 2) * 5)
    [
     [1 1 2 2 2 3 4 4 4 4]
     [1 2 2 3 3 3 4 4 5 5]
    ]

    # first IV is a simple linear trend

    pdl> p $x1 = sequence 10
    [0 1 2 3 4 5 6 7 8 9]

    # the modeler wonders if adding a quadratic trend improves the fit

    pdl> p $x2 = sequence(10) ** 2
    [0 1 4 9 16 25 36 49 64 81]

    # two difference models are given in two pdls
    # each as would be pass on to ols_t
    # the 1st model includes only linear trend
    # the 2nd model includes linear and quadratic trends
    # when necessary use dummy dim so both models have the same ndims

    pdl> %c = $y->r2_change( $x1->dummy(1), cat($x1, $x2) )

    pdl> p "$_\t$c{$_}\n" for sort keys %c
      #              person 1   person 2
    F_change        [0.72164948 0.071283096]
      # df same for both persons
    F_df    [1 7]
    F_p     [0.42370145 0.79717232]
    R2_change       [0.0085966043 0.00048562549]
    model0  HASH(0x8c10828)
    model1  HASH(0x8c135c8)

    # the answer here is no.

=cut

*r2_change = \&PDL::r2_change;
sub PDL::r2_change {
  my ($self, $ivs0, $ivs1, $opt) = @_;
  $ivs0->getndims == 1 and $ivs0 = $ivs0->dummy(1);

  my %ret;

  $ret{model0} = { $self->ols_t( $ivs0, $opt ) };
  $ret{model1} = { $self->ols_t( $ivs1, $opt ) };

  $ret{R2_change} = $ret{model1}->{R2} - $ret{model0}->{R2};
  $ret{F_df}
    = pdl(my $df0 = $ivs1->dim(1) - $ivs0->dim(1),
          my $df1 = $ret{model1}->{F_df}->slice('(1)') );
  $ret{F_change}
    = $ret{R2_change} * $df1
    / ( (1-$ret{model1}->{R2}) * $df0 );
  $ret{F_p} = 1 - $ret{F_change}->gsl_cdf_fdist_P( $df0, $df1 )
    if $CDF;

  for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };

  %ret;
}

=head1 METHODS

=head2 anova

=for ref

Analysis of variance. Uses type III sum of squares for unbalanced data.

Dependent variable should be a 1D pdl. Independent variables can be
passed as 1D perl array ref or 1D pdl.

Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.

Supports bad value (by ignoring missing or BAD values in dependent and
independent variables list-wise).

For more on ANOVA, see L<https://en.wikipedia.org/wiki/Analysis_of_variance>.

=for options

Default options (case insensitive):

    V      => 1,          # carps if bad value in variables
    IVNM   => [],         # auto filled as ['IV_0', 'IV_1', ... ]
    PLOT   => 0,          # plots highest order effect
                          # can set plot_means options here
    WIN    => undef,      # for plotting

=for usage

Usage:

    # suppose this is ratings for 12 apples

    pdl> p $y = qsort ceil( random(12)*5 )
    [1 1 2 2 2 3 3 4 4 4 5 5]

    # IV for types of apple

    pdl> p $a = sequence(12) % 3 + 1
    [1 2 3 1 2 3 1 2 3 1 2 3]

    # IV for whether we baked the apple

    pdl> @b = qw( y y y y y y n n n n n n )

    pdl> %m = $y->anova( $a, \@b, { IVNM=>['apple', 'bake'] } )

    pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
    F	2.46666666666667
    F_df	[5 6]
    F_p	0.151168719948632
    ms_model	3.08333333333333
    ms_residual	1.25
    ss_model	15.4166666666667
    ss_residual	7.5
    ss_total	22.9166666666667
    | apple | F	0.466666666666667
    | apple | F_p	0.648078345471096
    | apple | df	2
    | apple | m	[2.75    3  3.5]
    | apple | ms	0.583333333333334
    | apple | se	[0.85391256 0.81649658 0.64549722]
    | apple | ss	1.16666666666667
    | apple || err df	6
    | apple ~ bake | F	0.0666666666666671
    | apple ~ bake | F_p	0.936190104380701
    | apple ~ bake | df	2
    | apple ~ bake | m	[
     [1.5   2 2.5]
     [  4   4 4.5]
    ]
    | apple ~ bake | ms	0.0833333333333339
    | apple ~ bake | se	[
     [0.5   1 0.5]
     [  1   1 0.5]
    ]
    | apple ~ bake | ss	0.166666666666668
    | apple ~ bake || err df	6
    | bake | F	11.2666666666667
    | bake | F_p	0.015294126084452
    | bake | df	1
    | bake | m	[2 4.1666667]
    | bake | ms	14.0833333333333
    | bake | se	[0.36514837 0.40138649]
    | bake | ss	14.0833333333333
    | bake || err df	6

This is implemented as a call to L</anova_rptd>, with an C<undef>
subjects vector.

=cut

*anova = \&PDL::anova;
sub PDL::anova {
  my ($y, @args) = @_;
  anova_rptd($y, undef, @args);
}

sub _interactions {
  my ($ivs_ref, $idv) = @_;
  my (@inter, @idv_inter);
  for my $nway ( 2 .. @$ivs_ref ) {
    my $iter_idv = _combinations( $nway, [0..$#$ivs_ref] );
    while ( my @v = &$iter_idv() ) {
      push @inter, interaction_code(@$ivs_ref[@v]);
      push @idv_inter, join ' ~ ', @$idv[@v];
    }
  }
  (\@inter, \@idv_inter);
}

# now prepare for cell mean
sub _interactions_cm {
  my ($ivs_ref, $pdl_ivs_raw) = @_;
  my ($dim0, @inter_cm, @inter_cmo) = $ivs_ref->[0]->dim(0);
  for my $nway ( 2 .. @$ivs_ref ) {
    my $iter_idv = _combinations( $nway, [0..$#$ivs_ref] );
    while ( my @v = &$iter_idv() ) {
      my @i_cm;
      for my $o ( 0 .. $dim0 - 1 ) {
        push @i_cm, join '', map $_->slice("($o)"), @$pdl_ivs_raw[@v];
      }
      my ($inter, $map) = effect_code( \@i_cm );
      push @inter_cm, $inter;
        # get the order to put means in correct multi dim pdl pos
        # this is order in var_e dim(1)
      my @levels = sort { $map->{$a} <=> $map->{$b} } keys %$map;
        # this is order needed for cell mean
      my @i_cmo  = sort { reverse($levels[$a]) cmp reverse($levels[$b]) }
                        0 .. $#levels;
      push @inter_cmo, pdl @i_cmo;
    }
  }
  (\@inter_cmo, \@inter_cm);
}

sub _cell_means {
  my ($data, $ivs_cm_ref, $i_cmo_ref, $idv, $pdl_ivs_raw) = @_;
  my %ind_id;
  @ind_id{ @$idv } = 0..$#$idv;
  my %cm;
  my $i = 0;
  for (@$ivs_cm_ref) {
    confess "_cell_means passed empty ivs_cm_ref ndarray at pos $i" if $_->isempty;
    my $last = zeroes $_->dim(0);
    my $i_neg = which $_->slice(':',0) == -1;
    $last->slice($i_neg) .= 1;
    $_->where($_ == -1) .= 0;
    $_ = $_->glue(1, $last);
    my @v = split ' ~ ', $idv->[$i];
    my @shape = map $pdl_ivs_raw->[$_]->uniq->nelem, @ind_id{@v};
    my ($m, $ss) = $data->centroid( $_ );
    $m  = $m->slice($i_cmo_ref->[$i])->sever;
    $ss = $ss->slice($i_cmo_ref->[$i])->sever;
    $m = $m->reshape(@shape);
    my $se = sqrt( ($ss/($_->sumover - 1)) / $_->sumover )->reshape(@shape);
    $cm{ "| $idv->[$i] | m" }  = $m;
    $cm{ "| $idv->[$i] | se" } = $se;
    $i++;
  }
  \%cm;
}

  # http://www.perlmonks.org/?node_id=371228
sub _combinations {
  my ($num, $arr) = @_;
  return sub { return }
    if $num == 0 or $num > @$arr;
  my @pick;
  return sub {
    return @$arr[ @pick = ( 0 .. $num - 1 ) ]
      unless @pick;
    my $i = $#pick;
    $i-- until $i < 0 or $pick[$i]++ < @$arr - $num + $i;
    return if $i < 0;
    @pick[$i .. $#pick] = $pick[$i] .. $#$arr;
    return @$arr[@pick];
  };
}

=head2 anova_rptd

=for ref

Repeated measures and mixed model anova. Uses type III sum of squares.

The standard error (se) for the means are based on the relevant mean
squared error from the anova, ie it is pooled across levels of the effect.
Will only calculate p-value (C<F_p>) if there are more samples than the
product of categories of all the IVs.

Uses L</anova_design_matrix>, so supports bad values.

For more on repeated measures ANOVA, see
L<https://en.wikipedia.org/wiki/Repeated_measures_design>,
and for mixed models, see
L<https://en.wikipedia.org/wiki/Mixed-design_analysis_of_variance>.

=for options

Default options (case insensitive):

    V      => 1,    # carps if bad value in dv
    IVNM   => [],   # auto filled as ['IV_0', 'IV_1', ... ]
    BTWN   => [],   # indices of between-subject IVs (matches IVNM indices)
    PLOT   => 0,    # plots highest order effect
                    # see plot_means() for more options
    WIN    => undef,      # for plotting

=for usage

Usage:

    Some fictional data: recall_w_beer_and_wings.txt

    Subject Beer    Wings   Recall
    Alex    1       1       8
    Alex    1       2       9
    Alex    1       3       12
    Alex    2       1       7
    Alex    2       2       9
    Alex    2       3       12
    Brian   1       1       12
    Brian   1       2       13
    Brian   1       3       14
    Brian   2       1       9
    Brian   2       2       8
    Brian   2       3       14
    ...

      # rtable allows text only in 1st row and col
    my ($data, $idv, $subj) = rtable 'recall_w_beer_and_wings.txt';

    my ($b, $w, $dv) = $data->dog;
      # subj and IVs can be 1d pdl or @ ref
      # subj must be the first argument
    my %m = $dv->anova_rptd( $subj, $b, $w, {ivnm=>['Beer', 'Wings']} );

    print "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m

    ss_residual	19.0833333333333
    ss_subject	24.8333333333333
    ss_total	133.833333333333
    | Beer | F	9.39130434782609
    | Beer | F_p	0.0547977008378944
    | Beer | df	1
    | Beer | m [10.916667  8.9166667]
    | Beer | ms	24
    | Beer | se [0.4614791  0.4614791]
    | Beer | ss	24
    | Beer || err df	3
    | Beer || err ms	2.55555555555556
    | Beer || err ss	7.66666666666667
    | Beer ~ Wings | F	0.510917030567687
    | Beer ~ Wings | F_p	0.623881438624431
    | Beer ~ Wings | df	2
    | Beer ~ Wings | m [
     [   10     7]
     [ 10.5  9.25]
     [12.25  10.5]
    ]
    | Beer ~ Wings | ms	1.625
    | Beer ~ Wings | se [
     [0.89170561 0.89170561]
     [0.89170561 0.89170561]
     [0.89170561 0.89170561]
    ]
    | Beer ~ Wings | ss	3.25000000000001
    | Beer ~ Wings || err df	6
    | Beer ~ Wings || err ms	3.18055555555555
    | Beer ~ Wings || err ss	19.0833333333333
    | Wings | F	4.52851711026616
    | Wings | F_p	0.0632754786153548
    | Wings | df	2
    | Wings | m [8.5 9.875 11.375]
    | Wings | ms	16.5416666666667
    | Wings | se [0.67571978 0.67571978 0.67571978]
    | Wings | ss	33.0833333333333
    | Wings || err df	6
    | Wings || err ms	3.65277777777778
    | Wings || err ss	21.9166666666667

For mixed model anova, ie when there are between-subject IVs
involved, feed the IVs as above, but specify in BTWN which IVs are
between-subject. For example, if we had added age as a between-subject
IV in the above example, we would do

    my %m = $dv->anova_rptd( $subj, $age, $b, $w,
                           { ivnm=>['Age', 'Beer', 'Wings'], btwn=>[0] });

=cut

*anova_rptd = \&PDL::anova_rptd;
sub PDL::anova_rptd {
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($y, $subj, @ivs_raw) = @_;
  confess "Expected 1-D data, instead: ", $y->info if $y->ndims != 1;
  croak "Mismatched number of elements in DV and IV. Are you passing IVs the old-and-abandoned way?"
    if (ref $ivs_raw[0] eq 'ARRAY') and (@{ $ivs_raw[0] } != $y->nelem);
  for (@ivs_raw) {
    croak "too many dims in IV!" if ref $_ eq 'PDL' and $_->squeeze->ndims > 1
  }
  my %opt = (
    V      => 1,    # carps if bad value in dv
    IVNM   => [],   # auto filled as ['IV_0', 'IV_1', ... ]
    ( !defined($subj) ? () : (
    BTWN   => [],   # indices of between-subject IVs (matches IVNM indices)
    )),
    PLOT   => 0,    # plots highest order effect
    WIN    => undef,      # for plotting
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  $opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
    if !$opt{IVNM} or !@{ $opt{IVNM} };
  (my ($dsgn, $idv), $y, my ($sj, $ivs_ref_filtrd, $pdl_ivs_raw, $ivs_ref, $err_ref)) = $y->anova_design_matrix($subj, @ivs_raw, \%opt);
  confess "anova_rptd: got singular matrix for X' x X"
    if any +($dsgn->t x $dsgn)->det == 0;
  my $b_full = _ols_main(1, $y, $dsgn->t, {CONST=>0});

  my %ret = (ss_total => $y->ss,
    ss_residual => $y->sse( sumover( $b_full * $dsgn ) ));

  if (defined $subj) {
    my @full = (@$ivs_ref, @$err_ref);
    my $has_btwn = @{ $opt{BTWN} };
    my @is_btwn; $is_btwn[$_] = 1 for @{ $opt{BTWN} };
    my @within_inds = 0 .. $#ivs_raw;
    @within_inds = grep !$is_btwn[$_], @within_inds if $has_btwn;
    my $within_df = pdl(map $_->dim(1), @full[@within_inds])->prodover->sclr;
    EFFECT: for my $k (0 .. $#full) {
      my $e = ($k > $#$ivs_ref)?  '| err' : '';
      my $i = ($k > $#$ivs_ref)?  $k - @$ivs_ref : $k;
      my $i_pref = $k == $#full ? undef : "| $idv->[$i] |";

      if (!defined $full[$k]) {     # ss_residual as error
        $ret{ "$i_pref$e ss" } = $ret{ss_residual};
          # highest ord inter for purely within design, (p-1)*(q-1)*(n-1)
        my $factor = (ref $full[-1] ? $full[-1] : $err_ref->[$full[-1]])->dim(1);
        my $df = $ret{ "$i_pref$e df" } = $factor * $within_df;
        die "${i_pref}residual df = 0" if $df <= 0;
        $ret{ "$i_pref$e ms" } = $ret{ "$i_pref$e ss" } / $df;
      } elsif (ref $full[$k]) {       # unique error term
        next EFFECT
          unless my @G = grep $_ != $k && defined $full[$_], 0 .. $#full;
        my $G = ones($y->dim(0))->glue(1, grep ref $_, @full[@G]);
        my $b_G = $y->ols_t( $G, {CONST=>0} );
        my $ss = $ret{$k == $#full ? 'ss_subject' : "$i_pref$e ss"}
          = $y->sse(sumover($b_G * $G->transpose)) - $ret{ss_residual};
        if ($k != $#full) {
          my $df = $ret{"$i_pref$e df"} = $full[$k]->dim(1);
          die "residual df = 0" if $df <= 0;
          $ret{"$i_pref$e ms"} = $ss / $df;
        }
      } else {                        # repeating error term
        my $ss = $ret{$k == $#full ? 'ss_subject' : "$i_pref$e ss"}
          = $ret{"| $idv->[$full[$k]] |$e ss"};
        if ($k != $#full) {
          my $df = $ret{"$i_pref$e df"} = $ret{"| $idv->[$full[$k]] |$e df"};
          die "residual df = 0" if $df <= 0;
          $ret{"$i_pref$e ms"} = $ss / $df;
        }
      }
    }
  } else {
    $ret{ss_model} = $ret{ss_total} - $ret{ss_residual};
    $ret{F_df} = pdl(my $F_df0 = $dsgn->dim(0) - 1, my $df1 = $y->nelem - $dsgn->dim(0));
    $ret{ms_model} = $ret{ss_model} / $F_df0;
    $ret{ms_residual} = $ret{ss_residual} / $df1;
    $ret{F} = $ret{ms_model} / $ret{ms_residual};
    $ret{F_p} = 1 - $ret{F}->gsl_cdf_fdist_P( $F_df0, $df1 )
      if $CDF and $df1 > 0;

    # get IV ss from $ivs_ref instead of $dsgn pdl
    my $ones = ones($y->dim(0));
    for my $k (0 .. $#$ivs_ref) {
      my $G = $ones->glue(1, @$ivs_ref[grep $_ != $k, 0 .. $#$ivs_ref]);
      my $b_G = $y->ols_t( $G, {CONST=>0} );
      $ret{ "| $idv->[$k] | ss" }
        = $y->sse( sumover($b_G * $G->transpose) ) - $ret{ss_residual};
      my $df0 = $ret{ "| $idv->[$k] | df" } = $ivs_ref->[$k]->dim(1);
      $ret{ "| $idv->[$k] || err df" } = $df1;
      die "residual df = 0" if $df1 <= 0;
      $ret{ "| $idv->[$k] | ms" } = $ret{ "| $idv->[$k] | ss" } / $df0;
    }
  }
    # have all iv, inter, and error effects. get F and F_p
  for (0 .. $#$ivs_ref) {
    my $ms_residual = defined $subj ? $ret{ "| $idv->[$_] || err ms" } : $ret{ms_residual};
    my ($df0, $df1) = @ret{"| $idv->[$_] | df" , "| $idv->[$_] || err df"};
    my $F = $ret{ "| $idv->[$_] | F" } = $ret{ "| $idv->[$_] | ms" } / $ms_residual;
    $ret{ "| $idv->[$_] | F_p" } = 1 - $F->gsl_cdf_fdist_P($df0, $df1)
      if $CDF and $df1 > 0;
  }

  for (keys %ret) {ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze};

  my ($inter_cmo_ref, $inter_cm_ref)
    = _interactions_cm($ivs_ref_filtrd, $pdl_ivs_raw);
  # append inter info to cell means effects
  my $ivs_cm_ref = [@$ivs_ref_filtrd, @$inter_cm_ref];
  my @i_cmo_ref = map pdl(values %{ (effect_code($_))[1] })->qsort, @$pdl_ivs_raw;
#line 1068 "lib/PDL/Stats/GLM.pd"
  push @i_cmo_ref, @$inter_cmo_ref;

  my $cm_ref
    = _cell_means( $y, $ivs_cm_ref, \@i_cmo_ref, $idv, $pdl_ivs_raw );
  if (defined $subj) {
    my @ls = map { $_->uniq->nelem } @$pdl_ivs_raw;
    $cm_ref
      = _fix_rptd_se( $cm_ref, \%ret, $opt{IVNM}, \@ls, $sj->uniq->nelem );
  }
    # integrate mean and se into %ret
  @ret{ keys %$cm_ref } = values %$cm_ref;

  my $highest = join(' ~ ', @{ $opt{IVNM} });
  $cm_ref->{"| $highest | m"}->plot_means( $cm_ref->{"| $highest | se"},
                                           { %opt, IVNM=>$idv } )
    if $opt{PLOT};

  %ret;
}

=head2 anova_design_matrix

=for ref

Effect-coded design matrix for anova, including repeated-measures and
mixed-model. The C<X> for use in linear regression i.e. C<Y = X β + ε>.

Added in 0.854. See L<https://en.wikipedia.org/wiki/Design_matrix> for more.

Supports bad value in the dependent and independent variables. It
automatically removes bad data listwise, i.e. remove a subject's data if
there is any cell missing for the subject.

=for options

Default options (case insensitive):

    V      => 1,    # carps if bad value in dv
    IVNM   => [],   # auto filled as ['IV_0', 'IV_1', ... ]
    BTWN   => [],   # indices of between-subject IVs (matches IVNM indices)

=for usage

  $matrix = $dv->anova_design_matrix(undef, $b, $w, {ivnm=>[qw(b w)]});
  $matrix = $dv->anova_design_matrix(
    $subj, $b, $w, {ivnm=>[qw(b w)]}); # repeated-measures
  $matrix = $dv->anova_design_matrix(
    $subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # mixed-model
  ($matrix, $ivnm_ref) = $dv->anova_design_matrix(
    $subj, $b, $w, {ivnm=>[qw(b w)], btwn=>['b']}); # list context also names

=cut

*anova_design_matrix = \&PDL::anova_design_matrix;
sub PDL::anova_design_matrix {
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($y, $subj, @ivs_raw) = @_;
  confess "No IVs: did you omit 'undef' for anova?" if !@ivs_raw;
  confess "Expected 1-D data, instead: ", $y->info if $y->ndims != 1;
  for (@ivs_raw) {
    croak "too many dims in IV!" if ref $_ eq 'PDL' and $_->squeeze->ndims > 1;
  }
  my %opt = (
    V      => 1,    # carps if bad value in dv
    IVNM   => [],   # auto filled as ['IV_0', 'IV_1', ... ]
    ( !defined($subj) ? () : (
    BTWN   => [],   # indices of between-subject IVs (matches IVNM indices)
    )),
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  $opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
    if !$opt{IVNM} or !@{ $opt{IVNM} };
  my @idv_orig = @{ $opt{IVNM} };
  my @pdl_ivs_raw = map scalar PDL::Stats::Basic::code_ivs($_), @ivs_raw;
  my $pdl_ivs = pdl(\@pdl_ivs_raw);
    # explicit set badflag because pdl() removes badflag
  $pdl_ivs->badflag( scalar grep $_->badflag, @pdl_ivs_raw );
  my $sj;
  if (defined($subj)) {
    # delete bad data listwise ie remove subj if any cell missing
    $sj = PDL::Stats::Basic::code_ivs($subj);
    my $ibad = which( $y->isbad | nbadover($pdl_ivs->transpose) );
    my $sj_bad = $sj->slice($ibad)->uniq;
    if ($sj_bad->nelem) {
      warn $sj_bad->nelem . " subjects with missing data removed\n"
        if $opt{V};
      $sj = $sj->setvaltobad($_)
        for (list $sj_bad);
      my $igood = which $sj->isgood;
      for ($y, $sj, @pdl_ivs_raw) {
        $_ = $_->slice( $igood )->sever;
        $_->badflag(0);
      }
    }
  } else {
    ($y, $pdl_ivs) = _rm_bad_value( $y, $pdl_ivs );
    if ($opt{V} and $y->nelem < $pdl_ivs_raw[0]->nelem) {
      warn sprintf "%d subjects with missing data removed\n", $pdl_ivs_raw[0]->nelem - $y->nelem;
    }
    @pdl_ivs_raw = $pdl_ivs->dog;
  }
  my @ivs_ref_fltrd = map scalar effect_code($_), @pdl_ivs_raw;
  my ($ivs_inter_ref, $idv_inter) = _interactions(\@ivs_ref_fltrd, \@idv_orig);
  # append inter info to main effects
  my $ivs_ref = [@ivs_ref_fltrd, @$ivs_inter_ref];
  my @idv = (@idv_orig, @$idv_inter);
    # matches $ivs_ref, with an extra last pdl for subj effect
  my $err_ref = !defined($subj) ? [] :
    _add_errors( $sj, $ivs_ref, \@idv, \@pdl_ivs_raw, $opt{BTWN} );
  for (grep ref $err_ref->[$_], 0..$#$err_ref) {
    my ($null_row_ids, $non_null_row_ids) = $err_ref->[$_]->zcover->which_both;
    confess "got null columns $null_row_ids in error entry #$_ ($idv[$_])"
      if !$null_row_ids->isempty;
  }
  my $dsgn = PDL::glue(1, ones($y->dim(0)), @$ivs_ref, (grep ref($_), @$err_ref))->t;
  !wantarray ? $dsgn : ($dsgn, \@idv, $y, $sj, \@ivs_ref_fltrd, \@pdl_ivs_raw, $ivs_ref, $err_ref);
}

# code (btwn group) subjects. Rutherford (2011) pp 208-209
sub _code_btwn {
  my ($subj, $btwn) = @_;
  my (@grp, %grp_s);
  for my $n (0 .. $subj->nelem - 1) {
      # construct string to code group membership
      # something not treated as BAD by code_ivs to start off marking group membership
      # if no $btwn, everyone ends up in the same grp
    my $s = '_' . join '', map $_->slice($n), @$btwn;
    push @grp, $s;                 # group membership
    $s .= $subj->slice($n);        # keep track of total uniq subj
    $grp_s{$s} = 1;
  }
  my $grp = PDL::Stats::Kmeans::iv_cluster \@grp;
  my $spdl = zeroes $subj->dim(0), keys(%grp_s) - $grp->dim(1);
  my $d1 = 0;
  for my $g (0 .. $grp->dim(1)-1) {
    my $col_inds = which $grp->slice(':',$g);
    my $gsub = $subj->slice( $col_inds )->effect_code;
    my ($nobs, $nsub) = $gsub->dims;
    $spdl->slice($col_inds, [$d1,$d1+$nsub-1]) .= $gsub;
    $d1 += $nsub;
  }
  $spdl;
}

sub _add_errors {
  my ($subj, $ivs_ref, $idv, $raw_ivs, $btwn) = @_;
  my $spdl = _code_btwn($subj, [@$raw_ivs[@$btwn]]);
  # if btwn factor involved, or highest order inter for within factors
  # elem is undef, so that
  # @errors ind matches @$ivs_ref, with an extra elem at the end for subj
    # mark btwn factors for error terms
    # same error term for B(wn) and A(btwn) x B(wn) (Rutherford, p205)
  my %is_btwn = map +($_=>1), @$idv[ @$btwn ];
  my $has_btwn = keys %is_btwn;
  my %idv2indx = map +($idv->[$_]=>$_), 0..$#$idv;
  my $ie_subj;
  my @errors = map {
    my @fs = split ' ~ ', $idv->[$_];
      # separate bw and wn factors
      # if only bw, error is bw x subj
      # if only wn or wn and bw, error is wn x subj
    my @bw = !$has_btwn ? ()  : grep  $is_btwn{$_}, @fs;
    my @wn = !$has_btwn ? @fs : grep !$is_btwn{$_}, @fs;
    $ie_subj = $_ if !defined($ie_subj) and !@wn;
    my $err = join ' ~ ', @wn ? @wn : @bw;
      # highest order inter of within factors, use ss_residual as error
    if ( @wn == @$raw_ivs - @$btwn )                            { undef }
      # repeating btwn factors use ss_subject as error
    elsif (!@wn and $_ > $ie_subj)                           { $ie_subj }
      # repeating error term
    elsif ($_ > $idv2indx{$err})                      { $idv2indx{$err} }
    elsif (@wn)               { interaction_code($ivs_ref->[$_], $spdl) }
    else                                                        { $spdl }
  } 0 .. $#$ivs_ref;
  push @errors, $has_btwn ? $ie_subj : $spdl;
  \@errors;
}

sub _fix_rptd_se {
    # if ivnm lvls_ref for within ss only this can work for mixed design
  my ($cm_ref, $ret, $ivnm, $lvls_ref, $n) = @_;
  my @se = map /^\| (.+?) \| se$/ ? $1 : (), keys %$cm_ref;
  my @n_obs = map {
    my @ivs = split / ~ /, $_;
    my $i_ivs = which_id $ivnm, \@ivs;
    my $icollapsed = setops pdl(0 .. $#$ivnm), 'XOR', $i_ivs;
    my $collapsed = $icollapsed->nelem?
                      pdl( @$lvls_ref[(list $icollapsed)] )->prodover
                  :   1
                  ;
    $n * $collapsed;
  } @se;
  for my $i (0 .. $#se) {
    $cm_ref->{"| $se[$i] | se"}
      .= sqrt( $ret->{"| $se[$i] || err ms"} / $n_obs[$i] );
  }
  $cm_ref;
}

=head2 dummy_code

=for ref

Dummy coding of nominal variable (perl @ ref or 1d pdl) for use in regression.

Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).

=for usage

    pdl> @a = qw(a a a b b b c c c)
    pdl> p $a = dummy_code(\@a)
    [
     [1 1 1 0 0 0 0 0 0]
     [0 0 0 1 1 1 0 0 0]
    ]

=cut

*dummy_code = \&PDL::dummy_code;
sub PDL::dummy_code {
  my ($var_ref) = @_;
  my $var_e = effect_code( $var_ref );
  $var_e->where( $var_e == -1 ) .= 0;
  $var_e;
}

=head2 effect_code

=for ref

Unweighted effect coding of nominal variable (perl @ ref or 1d pdl) for
use in regression. returns in @ context coded pdl and % ref to level -
pdl->dim(1) index.

Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).

=for usage

    my @var = qw( a a a b b b c c c );
    my ($var_e, $map) = effect_code( \@var );

    print $var_e . $var_e->info . "\n";

    [
     [ 1  1  1  0  0  0 -1 -1 -1]
     [ 0  0  0  1  1  1 -1 -1 -1]
    ]
    PDL: Double D [9,2]

    print "$_\t$map->{$_}\n" for sort keys %$map
    a       0
    b       1
    c       2

=cut

*effect_code = \&PDL::effect_code;
sub PDL::effect_code {
  my ($var_ref) = @_;
  my ($var, $map_ref) = PDL::Stats::Basic::code_ivs( $var_ref );
  my $var_max = $var->max;
  confess "effect_code called with only one unique value" if $var_max < 1;
  my $var_e = yvals( float, $var->nelem, $var_max ) == $var;
  $var_e->slice(which( $var == $var_max ), ) .= -1;
  $var_e = $var_e->setbadif( $var->isbad ) if $var->badflag;
  wantarray ? ($var_e, $map_ref) : $var_e;
}

=head2 effect_code_w

=for ref

Weighted effect code for nominal variable. returns in @ context coded pdl and % ref to level - pdl->dim(1) index.

Supports BAD value (missing or 'BAD' values result in the corresponding pdl elements being marked as BAD).

=for usage

    pdl> @a = qw( a a b b b c c )
    pdl> p $a = effect_code_w(\@a)
    [
     [   1    1    0    0    0   -1   -1]
     [   0    0    1    1    1 -1.5 -1.5]
    ]

=cut

*effect_code_w = \&PDL::effect_code_w;
sub PDL::effect_code_w {
  my ($var_ref) = @_;
  my ($var_e, $map_ref) = effect_code( $var_ref );
  return wantarray ? ($var_e, $map_ref) : $var_e if $var_e->sum == 0;
  my $pos = $var_e == 1;
  my $neg = $var_e == -1;
  my $w = $pos->sumover / $neg->sumover;
  my $neg_ind = $neg->whichND;
  $var_e->indexND($neg_ind) *= $w->slice($neg_ind->slice('(1)'));
  wantarray ? ($var_e, $map_ref) : $var_e;
}

=head2 interaction_code

Returns the coded interaction term for effect-coded variables.

Supports BAD value (missing or 'BAD' values result in the corresponding
pdl elements being marked as BAD).

=for usage

    pdl> $a = sequence(6) > 2
    pdl> p $a = $a->effect_code
    [
     [ 1  1  1 -1 -1 -1]
    ]

    pdl> $b = pdl( qw( 0 1 2 0 1 2 ) )
    pdl> p $b = $b->effect_code
    [
     [ 1  0 -1  1  0 -1]
     [ 0  1 -1  0  1 -1]
    ]

    pdl> p $ab = interaction_code( $a, $b )
    [
     [ 1  0 -1 -1 -0  1]
     [ 0  1 -1 -0 -1  1]
    ]

=cut

*interaction_code = \&PDL::interaction_code;
sub PDL::interaction_code {
  my $i = ones( $_[0]->dim(0), 1 );
  $i = ($i * $_->dummy(1))->clump(1,2) for @_;
  $i;
}

=head2 ols

=for ref

Ordinary least squares regression, aka linear regression.

Unlike B<ols_t>, ols is not broadcastable, but it can handle bad value (by
ignoring observations with bad value in dependent or independent variables
list-wise) and returns the full model in list context with various stats.

IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. Intercept is automatically added and returned
as FIRST of the coeffs if CONST=>1. Returns full model in list context
and coeff in scalar context.

For more on multiple linear regression see
L<https://en.wikipedia.org/wiki/Multiple_linear_regression>.

=for options

Default options (case insensitive):

    CONST  => 1,
    PLOT   => 0,   # see plot_residuals() for plot options
    WIN    => undef,      # for plotting

=for usage

Usage:

    # suppose this is a person's ratings for top 10 box office movies
    # ascending sorted by box office

    pdl> $y = pdl '[1 1 2 2 2 2 4 4 5 5]'

    # construct IV with linear and quadratic component

    pdl> p $x = cat sequence(10), sequence(10)**2
    [
     [ 0  1  2  3  4  5  6  7  8  9]
     [ 0  1  4  9 16 25 36 49 64 81]
    ]

    pdl> %m = $y->ols( $x )

    pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m

    F       40.4225352112676
    F_df    [2 7]
    F_p     0.000142834216344756
    R2      0.920314253647587

    # coeff  constant   linear    quadratic
    b        [0.981818  0.212121  0.030303]
    b_p      [0.039910  0.328001  0.203034]
    b_se     [0.389875  0.201746  0.021579]
    b_t      [2.518284  1.051422  1.404218]
    ss_model        19.8787878787879
    ss_residual     1.72121212121212
    ss_total        21.6
    y_pred  [0.98181818  1.2242424  1.5272727  ...  4.6181818  5.3454545]

=cut

*ols = \&PDL::ols;
sub PDL::ols {
  _ols_common(0, @_);
}

# ivs = [nobs x nivs] so can `dog` retval
sub _rm_bad_value {
  my ($y, $ivs) = @_;
  return ($y, $ivs, undef) if !$y->check_badflag and !$ivs->check_badflag;
  my $idx = which($y->isgood & (nbadover ($ivs->transpose)==0));
  $_ = $_->slice($idx)->sever for $y, $ivs;
  $_->badflag(0) for $y, $ivs;
  ($y, $ivs, $idx);
}

=head2 ols_rptd

=for ref

Repeated measures linear regression.
Handles purely within-subject design for now.

(Lorch & Myers, 1990; Van den Noortgate & Onghena, 2006).
See F<t/glm.t> for an example using the Lorch and Myers data.

=for usage

Usage:

    # This is the example from Lorch and Myers (1990),
    # a study on how characteristics of sentences affected reading time
    # Three within-subject IVs:
    # SP -- serial position of sentence
    # WORDS -- number of words in sentence
    # NEW -- number of new arguments in sentence

    # $subj can be 1D pdl or @ ref and must be the first argument
    # IV can be 1D @ ref or pdl
    # 1D @ ref is effect coded internally into pdl
    # pdl is left as is

    my %r = $rt->ols_rptd( $subj, $sp, $words, $new );

    print "$_\t$r{$_}\n" for sort keys %r;

    ss_residual   58.3754646504336
    ss_subject    51.8590337714286
    ss_total      405.188241771429
    #      SP        WORDS      NEW
    F   [  7.208473  61.354153  1.0243311]
    F_p [0.025006181 2.619081e-05 0.33792837]
    coeff   [0.33337285 0.45858933 0.15162986]
    df  [1 1 1]
    df_err  [9 9 9]
    ms  [ 18.450705  73.813294 0.57026483]
    ms_err  [ 2.5595857  1.2030692 0.55671923]
    ss  [ 18.450705  73.813294 0.57026483]
    ss_err  [ 23.036272  10.827623  5.0104731]

=cut

*ols_rptd = \&PDL::ols_rptd;
sub PDL::ols_rptd {
  my ($y, $subj, @ivs_raw) = @_;

  $y = $y->squeeze;
  $y->getndims > 1 and
    croak "ols_rptd does not support broadcasting";

  my @ivs = map {  (ref $_ eq 'PDL' and $_->ndims > 1)?  $_
                  : ref $_ eq 'PDL' ?                    $_->dummy(1)
                  :                   scalar effect_code($_)
                  ;
                } @ivs_raw;

  my %r;

  $r{ss_total} = $y->ss;

  # STEP 1: subj
  my $s = effect_code $subj;
  my $b_s = $y->ols_t($s);
  my $pred = sumover($b_s->slice('1:-1') * $s->transpose) + $b_s->slice(0);
  $r{ss_subject} = $r{ss_total} - $y->sse( $pred );

  # STEP 2: add predictor variables
  my $iv_p = $s->glue(1, @ivs);
  my $b_p = $y->ols_t($iv_p);

    # only care about coeff for predictor vars. no subj or const coeff
  $r{coeff} = $b_p->slice([-@ivs,-1])->sever;

    # get total sse for this step
  $pred = sumover($b_p->slice('1:-1') * $iv_p->transpose) + $b_p->slice(0);
  my $ss_pe  = $y->sse( $pred );

    # get predictor ss by successively reducing the model
  $r{ss} = zeroes scalar(@ivs);
  for my $i (0 .. $#ivs) {
    my $iv = $s->glue(1, @ivs[ grep $_ != $i, 0..$#ivs ]);
    my $b  = $y->ols_t($iv);
    $pred = sumover($b->slice('1:-1') * $iv->transpose) + $b->slice(0);
    $r{ss}->slice($i) .= $y->sse($pred) - $ss_pe;
  }

  # STEP 3: get predictor x subj interaction as error term
  my $iv_e = PDL::glue 1, map interaction_code( $s, $_ ), @ivs;

    # get total sse for this step. full model now.
  my $b_f = $y->ols_t( $iv_p->glue(1,$iv_e) );
  $pred = sumover($b_f->slice('1:-1') * $iv_p->glue(1,$iv_e)->transpose) + $b_f->slice(0);
  $r{ss_residual}  = $y->sse( $pred );

    # get predictor x subj ss by successively reducing the error term
  $r{ss_err} = zeroes scalar(@ivs);
  for my $i (0 .. $#ivs) {
    my $iv = $iv_p->glue(1, map interaction_code($s, $_),
      @ivs[grep $_ != $i, 0..$#ivs]);
    my $b  = $y->ols_t($iv);
    my $pred = sumover($b->slice('1:-1') * $iv->transpose) + $b->slice(0);
    $r{ss_err}->slice($i) .= $y->sse($pred) - $r{ss_residual};
  }

  # Finally, get MS, F, etc

  $r{df} = pdl( map $_->squeeze->ndims, @ivs );
  $r{ms} = $r{ss} / $r{df};

  $r{df_err} = $s->dim(1) * $r{df};
  $r{ms_err} = $r{ss_err} / $r{df_err};

  $r{F} = $r{ms} / $r{ms_err};

  $r{F_p} = 1 - $r{F}->gsl_cdf_fdist_P( $r{df}, $r{df_err} )
    if $CDF;

  %r;
}

=head2 logistic

=for ref

Logistic regression with maximum likelihood estimation using L<PDL::Fit::LM>.

IVs ($x) should be pdl dims $y->nelem or $y->nelem x n_iv. Do not supply
the constant vector in $x. It is included in the model and returned as
LAST of coeff. Returns full model in list context and coeff in scalar
context.

The significance tests are likelihood ratio tests (-2LL deviance)
tests. IV significance is tested by comparing deviances between the
reduced model (ie with the IV in question removed) and the full model.

***NOTE: the results here are qualitatively similar to but not identical
with results from R, because different algorithms are used for the
nonlinear parameter fit. Use with discretion***

=for options

Default options (case insensitive):

    INITP => zeroes( $x->dim(1) + 1 ),    # n_iv + 1
    MAXIT => 1000,
    EPS   => 1e-7,

=for usage

Usage:

    # suppose this is whether a person had rented 10 movies

    pdl> p $y = ushort( random(10)*2 )
    [0 0 0 1 1 0 0 1 1 1]

    # IV 1 is box office ranking

    pdl> p $x1 = sequence(10)
    [0 1 2 3 4 5 6 7 8 9]

    # IV 2 is whether the movie is action- or chick-flick

    pdl> p $x2 = sequence(10) % 2
    [0 1 0 1 0 1 0 1 0 1]

    # concatenate the IVs together

    pdl> p $x = cat $x1, $x2
    [
     [0 1 2 3 4 5 6 7 8 9]
     [0 1 0 1 0 1 0 1 0 1]
    ]

    pdl> %m = $y->logistic( $x )

    pdl> p "$_\t$m{$_}\n" for sort keys %m

    D0	13.8629436111989
    Dm	9.8627829791575
    Dm_chisq	4.00016063204141
    Dm_df	2
    Dm_p	0.135324414081692
      #  ranking    genre      constant
    b	[0.41127706 0.53876358 -2.1201285]
    b_chisq	[ 3.5974504 0.16835559  2.8577151]
    b_p	[0.057868258  0.6815774 0.090936587]
    iter	12
    y_pred	[0.10715577 0.23683909 ... 0.76316091 0.89284423]

    # to get the covariance out, supply a true value for the COV option:
    pdl> %m = $y->logistic( $x, {COV=>1} )
    pdl> p $m{cov};

=cut

*logistic = \&PDL::logistic;
sub PDL::logistic {
  require PDL::Fit::LM;
  my ( $self, $ivs, $opt ) = @_;
  $self = $self->squeeze;
    # make compatible w multiple var cases
  $ivs->getndims == 1 and $ivs = $ivs->dummy(1);
  $self->dim(0) != $ivs->dim(0) and
    carp "mismatched n btwn DV and IV!";
  my %opt = (
    INITP => zeroes( $ivs->dim(1) + 1 ),    # n_ivs + 1
    MAXIT => 1000,
    EPS   => 1e-7,
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
    # not using it atm
  $opt{WT} = 1;
    # Use lmfit. Fourth input argument is reference to user-defined
    # copy INITP so we have the original value when needed
  my ($yfit,$coeff,$cov,$iter)
    = PDL::Fit::LM::lmfit($ivs, $self, $opt{WT}, \&_logistic, $opt{INITP}->copy,
      { Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
    # apparently at least coeff is child of some pdl
    # which is changed in later lmfit calls
  $yfit  = $yfit->copy;
  $coeff = $coeff->copy;
  return $coeff unless wantarray;
  my %ret;
  my $n0 = $self->where($self == 0)->nelem;
  my $n1 = $self->nelem - $n0;
  $ret{cov} = $cov if $opt{COV};
  $ret{D0} = -2*($n0 * log($n0 / $self->nelem) + $n1 * log($n1 / $self->nelem));
  $ret{Dm} = sum( $self->dvrs( $yfit ) ** 2 );
  $ret{Dm_chisq} = $ret{D0} - $ret{Dm};
  $ret{Dm_df} = $ivs->dim(1);
  $ret{Dm_p}
    = 1 - PDL::GSL::CDF::gsl_cdf_chisq_P( $ret{Dm_chisq}, $ret{Dm_df} )
    if $CDF;
  my $coeff_chisq = zeroes $opt{INITP}->nelem;
  if ( $ivs->dim(1) > 1 ) {
    for my $k (0 .. $ivs->dim(1)-1) {
      my @G = grep { $_ != $k } (0 .. $ivs->dim(1)-1);
      my $G = $ivs->dice_axis(1, \@G);
      my $init = $opt{INITP}->dice([ @G, $opt{INITP}->dim(0)-1 ])->copy;
      my $y_G
        = PDL::Fit::LM::lmfit( $G, $self, $opt{WT}, \&_logistic, $init,
        { Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
      $coeff_chisq->slice($k) .= $self->dm( $y_G ) - $ret{Dm};
    }
  }
  else {
      # d0 is, by definition, the deviance with only intercept
    $coeff_chisq->slice(0) .= $ret{D0} - $ret{Dm};
  }
  my $y_c
      = PDL::Fit::LM::lmfit( $ivs, $self, $opt{WT}, \&_logistic_no_intercept, $opt{INITP}->slice('0:-2')->sever,
      { Maxiter=>$opt{MAXIT}, Eps=>$opt{EPS} } );
  $coeff_chisq->slice(-1) .= $self->dm( $y_c ) - $ret{Dm};
  $ret{b} = $coeff;
  $ret{b_chisq} = $coeff_chisq;
  $ret{b_p} = 1 - $ret{b_chisq}->gsl_cdf_chisq_P( 1 )
    if $CDF;
  $ret{y_pred} = $yfit;
  $ret{iter} = $iter;
  for (keys %ret) { ref $ret{$_} eq 'PDL' and $ret{$_} = $ret{$_}->squeeze };
  %ret;
}

sub _logistic {
  my ($x,$par,$ym,$dyda) = @_;
    # $b and $c are fit parameters slope and intercept
  my $b = $par->slice([0,$x->dim(1) - 1])->sever;
  my $c = $par->slice(-1)->sever;
    # Write function with dependent variable $ym,
    # independent variable $x, and fit parameters as specified above.
    # Use the .= (dot equals) assignment operator to express the equality
    # (not just a plain equals)
  $ym .= 1 / ( 1 + exp( -1 * (sumover($b * $x->transpose) + $c) ) );
  my @dy = map $dyda->slice(",($_)"), 0 .. $par->dim(0)-1;
    # Partial derivative of the function with respect to each slope
    # fit parameter ($b in this case). Again, note .= assignment
    # operator (not just "equals")
  $dy[$_] .= $x->slice(':',$_) * $ym * (1 - $ym)
    for (0 .. $b->dim(0)-1);
    # Partial derivative of the function re intercept par
  $dy[-1] .= $ym * (1 - $ym);
}

sub _logistic_no_intercept {
  my ($x,$par,$ym,$dyda) = @_;
  my $b = $par->slice([0,$x->dim(1) - 1])->sever;
    # Write function with dependent variable $ym,
    # independent variable $x, and fit parameters as specified above.
    # Use the .= (dot equals) assignment operator to express the equality
    # (not just a plain equals)
  $ym .= 1 / ( 1 + exp( -1 * sumover($b * $x->transpose) ) );
  my (@dy) = map {$dyda -> slice(",($_)") } (0 .. $par->dim(0)-1);
    # Partial derivative of the function with respect to each slope
    # fit parameter ($b in this case). Again, note .= assignment
    # operator (not just "equals")
  $dy[$_] .= $x->slice(':',$_) * $ym * (1 - $ym)
    for 0 .. $b->dim(0)-1;
}

=head2 pca

=for ref

Principal component analysis. Based on corr instead of cov.

Bad values are ignored pair-wise. OK when bad values are few but otherwise
probably should fill_m etc before pca). Uses L<PDL::MatrixOps/eigens_sym>.

=for options

Default options (case insensitive):

    CORR  => 1,     # boolean. use correlation or covariance
    PLOT  => 0,     # calls plot_screes by default
                    # can set plot_screes options here
    WIN    => undef,      # for plotting

=for usage

Usage:

    my $d = qsort random 10, 5;      # 10 obs on 5 variables
    my %r = $d->pca( \%opt );
    print "$_\t$r{$_}\n" for (keys %r);

    eigenvalue    # variance accounted for by each component
    [4.70192 0.199604 0.0471421 0.0372981 0.0140346]

    eigenvector   # dim var x comp. weights for mapping variables to component
    [
     [ -0.451251  -0.440696  -0.457628  -0.451491  -0.434618]
     [ -0.274551   0.582455   0.131494   0.255261  -0.709168]
     [   0.43282   0.500662  -0.139209  -0.735144 -0.0467834]
     [  0.693634  -0.428171   0.125114   0.128145  -0.550879]
     [  0.229202   0.180393  -0.859217     0.4173  0.0503155]
    ]

    loadings      # dim var x comp. correlation between variable and component
    [
     [ -0.978489  -0.955601  -0.992316   -0.97901  -0.942421]
     [ -0.122661   0.260224  0.0587476   0.114043  -0.316836]
     [ 0.0939749   0.108705 -0.0302253  -0.159616 -0.0101577]
     [   0.13396 -0.0826915  0.0241629  0.0247483   -0.10639]
     [  0.027153  0.0213708  -0.101789  0.0494365 0.00596076]
    ]

    pct_var       # percent variance accounted for by each component
    [0.940384 0.0399209 0.00942842 0.00745963 0.00280691]

Plot scores along the first two components,

    $d->plot_scores( $r{eigenvector} );

=cut

*pca = \&PDL::pca;
sub PDL::pca {
  my ($self, $opt) = @_;
  my %opt = (
    CORR  => 1,
    PLOT  => 0,
    WIN    => undef,      # for plotting
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  my $var_var = $opt{CORR}? $self->corr_table : $self->cov_table;
    # value is axis pdl and score is var x axis
  my ($eigvec, $eigval) = $var_var->eigens_sym;
  $eigvec = $eigvec->transpose; # compatibility with PDL::Slatec::eigsys
    # ind is sticky point for broadcasting
  my $ind_sorted = $eigval->qsorti->slice('-1:0');
  $eigvec = $eigvec->slice(':',$ind_sorted)->sever;
  $eigval = $eigval->slice($ind_sorted)->sever;
    # var x axis
  my $var     = $eigval / $eigval->sum->sclr;
  my $loadings;
  if ($opt{CORR}) {
    $loadings = $eigvec * sqrt( $eigval->transpose );
  }
  else {
    my $scores = $eigvec x $self->dev_m;
    $loadings = $self->corr( $scores->dummy(1) );
  }
  $var->plot_screes(\%opt)
    if $opt{PLOT};
  ( eigenvalue=>$eigval, eigenvector=>$eigvec,
           pct_var=>$var, loadings=>$loadings );
}

=head2 pca_sorti

Determine by which vars a component is best represented. Descending sort
vars by size of association with that component. Returns sorted var and
relevant component indices.

=for options

Default options (case insensitive):

    NCOMP => 10,     # maximum number of components to consider

=for usage

Usage:

      # let's see if we replicated the Osgood et al. (1957) study
    pdl> ($data, $idv, $ido) = rtable 'osgood_exp.csv', {v=>0}

      # select a subset of var to do pca
    pdl> $ind = which_id $idv, [qw( ACTIVE BASS BRIGHT CALM FAST GOOD HAPPY HARD LARGE HEAVY )]
    pdl> $data = $data( ,$ind)->sever
    pdl> @$idv = @$idv[list $ind]

    pdl> %m = $data->pca

    pdl> ($iv, $ic) = $m{loadings}->pca_sorti()

    pdl> p "$idv->[$_]\t" . $m{loadings}->($_,$ic)->flat . "\n" for (list $iv)

             #   COMP0     COMP1    COMP2    COMP3
    HAPPY	[0.860191 0.364911 0.174372 -0.10484]
    GOOD	[0.848694 0.303652 0.198378 -0.115177]
    CALM	[0.821177 -0.130542 0.396215 -0.125368]
    BRIGHT	[0.78303 0.232808 -0.0534081 -0.0528796]
    HEAVY	[-0.623036 0.454826 0.50447 0.073007]
    HARD	[-0.679179 0.0505568 0.384467 0.165608]
    ACTIVE	[-0.161098 0.760778 -0.44893 -0.0888592]
    FAST	[-0.196042 0.71479 -0.471355 0.00460276]
    LARGE	[-0.241994 0.594644 0.634703 -0.00618055]
    BASS	[-0.621213 -0.124918 0.0605367 -0.765184]

=cut

*pca_sorti = \&PDL::pca_sorti;
sub PDL::pca_sorti {
    # $self is pdl (var x component)
  my ($self, $opt) = @_;
  my %opt = (
    NCOMP => 10,     # maximum number of components to consider
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  my $ncomp = pdl($opt{NCOMP}, $self->dim(1))->min;
  $self = $self->dice_axis( 1, pdl(0..$ncomp-1) );
  my $icomp = $self->transpose->abs->maximum_ind;
    # sort between comp
  my $ivar_sort = $icomp->qsorti;
  $self = $self->slice($ivar_sort)->sever;
    # sort within comp
  my $ic = $icomp->slice($ivar_sort)->iv_cluster;
  for my $comp (0 .. $ic->dim(1)-1) {
    my $i = $self->slice(which($ic->slice(':',$comp)), "($comp)")->qsorti->slice('-1:0');
    $ivar_sort->slice(which $ic->slice(':',$comp))
      .= $ivar_sort->slice(which $ic->slice(':',$comp))->slice($i);
  }
  wantarray ? ($ivar_sort, pdl(0 .. $ic->dim(1)-1)) : $ivar_sort;
}

=head2 plot_means

Plots means anova style. Can handle up to 4-way interactions (ie 4D pdl).

=for options

Default options (case insensitive):

    IVNM  => ['IV_0', 'IV_1', 'IV_2', 'IV_3'],
    DVNM  => 'DV',
    AUTO  => 1,       # auto set dims to be on x-axis, line, panel
                      # if set 0, dim 0 goes on x-axis, dim 1 as lines
                      # dim 2+ as panels
      # see PDL::Graphics::Simple for next option
    WIN   => undef,   # pgswin object. not closed here if passed
                      # allows comparing multiple lines in same plot
    SIZE  => 640,           # individual square panel size in pixels

=for usage

Usage:

      # see anova for mean / se pdl structure
    $mean->plot_means( $se, {IVNM=>['apple', 'bake']} );

Or like this:

    $m{'| apple ~ bake | m'}->plot_means;

=cut

*plot_means = \&PDL::plot_means;
sub PDL::plot_means {
  require PDL::Graphics::Simple;
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($self, $se) = @_;
  $self = $self->squeeze;
  if ($self->ndims > 4) {
    carp "Data is > 4D. No plot here.";
    return;
  }
  my %opt = (
    IVNM => ['IV_0', 'IV_1', 'IV_2', 'IV_3'],
    DVNM => 'DV',
    AUTO  => 1,             # auto set vars to be on X axis, line, panel
    WIN   => undef,         # PDL::Graphics::Simple object
    SIZE  => 640,           # individual square panel size in pixels
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt }
    # decide which vars to plot as x axis, lines, panels
    # put var w most levels on x axis
    # put var w least levels on diff panels
  my @iD = 0..3;
  my @dims = (1, 1, 1, 1);
    # splice ARRAY,OFFSET,LENGTH,LIST
  splice @dims, 0, $self->ndims, $self->dims;
  $self = $self->reshape(@dims)->sever;
  $se = $se->reshape(@dims)->sever
    if defined $se;
  @iD = reverse list qsorti pdl @dims
    if $opt{AUTO};
    # $iD[0] on x axis
    # $iD[1] as separate lines
  my $nx = $self->dim($iD[2]);    # n xpanels
  my $ny = $self->dim($iD[3]);    # n ypanels
  my $w = $opt{WIN} || PDL::Graphics::Simple::pgswin(
    size=>[$opt{SIZE}*$nx, $opt{SIZE}*$ny,'px']);
  my $seq0 = sequence(my $dim0 = $self->dim($iD[0]));
  my ($pcount, @plots) = 0;
  for my $y (0..$ny-1) {
    for my $x (0..$nx-1) {
      my $key_prefix = "$opt{IVNM}[$iD[0]]|";
      $key_prefix .= $opt{IVNM}[$iD[2]] . "=$x|" if $nx > 1;
      $key_prefix .= $opt{IVNM}[$iD[3]] . "=$y|" if $ny > 1;
      for (0 .. $self->dim($iD[1]) - 1) {
        my $ke = "$key_prefix$opt{IVNM}[$iD[1]]=$_";
        my $ydiced = $self->dice_axis($iD[3],$y)->dice_axis($iD[2],$x)->dice_axis($iD[1],$_)->squeeze;
        push @plots, with=>'lines', ke=>"$ke mean", style=>$pcount,
          $seq0+$pcount*0.05, $ydiced;
        push @plots, with=>'errorbars', ke=>"$ke error", style=>$pcount,
          $seq0+$pcount*0.05, $ydiced,
          $se->dice_axis($iD[3],$y)->dice_axis($iD[2],$x)
            ->dice_axis($iD[1],$_)->squeeze
          if defined($se);
        $pcount++;
      }
    }
  }
  my ($ymin, $ymax) = pdl($self, !defined $se ? () : ($self+$se, $self-$se))->minmax;
  $w->plot(@plots,
    { xlabel=>$opt{IVNM}[$iD[0]], ylabel=>$opt{DVNM},
      xrange=>[-0.05,$dim0-1+$pcount*0.05], yrange=>[$ymin-0.05,$ymax+0.05] }
  );
  $w;
}

=head2 plot_residuals

Plots residuals against predicted values.

=for usage

Usage:

    use PDL::Graphics::Simple;
    $w = pgswin();
    $y->plot_residuals( $y_pred, { win=>$w } );

=for options

Default options (case insensitive):

     # see PDL::Graphics::Simple for more info
    WIN   => undef,  # pgswin object. not closed here if passed
                     # allows comparing multiple lines in same plot
    SIZE  => 640,    # plot size in pixels
    COLOR => 1,

=cut

*plot_residuals = \&PDL::plot_residuals;
sub PDL::plot_residuals {
  require PDL::Graphics::Simple;
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($y, $y_pred) = @_;
  my %opt = (
     # see PDL::Graphics::Simple for next options
    WIN   => undef,  # pgswin object. not closed here if passed
                     # allows comparing multiple lines in same plot
    SIZE  => 640,    # plot size in pixels
    COLOR => 1,
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  my $residuals = $y - $y_pred;
  my $win = $opt{WIN} || PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
  $win->plot(
    with=>'points', style=>$opt{COLOR}, $y_pred, $residuals,
    with=>'lines',  style=>$opt{COLOR}, pdl($y_pred->minmax), pdl(0,0), # 0-line
    {xlabel=>'predicted value', ylabel=>'residuals'},
  );
}

=head2 plot_scores

Plots standardized original and PCA transformed scores against two components. (Thank you, Bob MacCallum, for the documentation suggestion that led to this function.)

=for options

Default options (case insensitive):

  CORR  => 1,      # boolean. PCA was based on correlation or covariance
  COMP  => [0,1],  # indices to components to plot
    # see PDL::Graphics::Simple for next options
  WIN   => undef,  # pgswin object. not closed here if passed
                   # allows comparing multiple lines in same plot
  SIZE  => 640,    # plot size in pixels
  COLOR => [1,2],  # color for original and rotated scores

=for usage

Usage:

  my %p = $data->pca();
  $data->plot_scores( $p{eigenvector}, \%opt );

=cut

*plot_scores = \&PDL::plot_scores;
sub PDL::plot_scores {
  require PDL::Graphics::Simple;
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($self, $eigvec) = @_;
  my %opt = (
    CORR  => 1,      # boolean. PCA was based on correlation or covariance
    COMP  => [0,1],  # indices to components to plot
     # see PDL::Graphics::Simple for next options
    WIN   => undef,  # pgswin object. not closed here if passed
                     # allows comparing multiple lines in same plot
    SIZE  => 640,    # plot size in pixels
    COLOR => [1,2],  # color for original and transformed scoress
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt }
  my $i = pdl $opt{COMP};
  my $z = $opt{CORR} ? $self->stddz : $self->dev_m;
    # transformed normed values
  my $scores = sumover($eigvec->slice(':',$i) * $z->transpose->dummy(1))->transpose;
  $z = $z->slice(':',$i)->sever;
  my $win = $opt{WIN} || PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
  $win->plot(
    with=>'points', style=>$opt{COLOR}[0], ke=>'original', $z->slice(',(0)'), $z->slice(',(1)'),
    with=>'points', style=>$opt{COLOR}[1], ke=>'transformed', $scores->slice(',(0)'), $scores->slice(',(1)'),
    {xlabel=>"Component $opt{COMP}[0]", ylabel=>"Component $opt{COMP}[1]"},
  );
}

=head2 plot_screes

Scree plot. Plots proportion of variance accounted for by PCA components.

=for options

Default options (case insensitive):

  NCOMP => 20,     # max number of components to plot
  CUT   => 0,      # set to plot cutoff line after this many components
                   # undef to plot suggested cutoff line for NCOMP comps
   # see PDL::Graphics::Simple for next options
  WIN   => undef,  # pgswin object. not closed here if passed
                   # allows comparing multiple lines in same plot
  SIZE  => 640,    # plot size in pixels

=for usage

Usage:

  # variance should be in descending order
  $d = qsort random 10, 5;      # 10 obs on 5 variables
  %pca = $d->pca( \%opt );
  $pca{pct_var}->plot_screes( {ncomp=>16, win=>$win=PDL::Graphics::Simple::pgswin()} );

Or, because NCOMP is used so often, it is allowed a shortcut,

  $pca{pct_var}->plot_screes( 16 );

=cut

*plot_scree = \&PDL::plot_screes;      # here for now for compatibility
*plot_screes = \&PDL::plot_screes;
sub PDL::plot_screes {
  require PDL::Graphics::Simple;
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($self, $ncomp) = @_;
  my %opt = (
    NCOMP => 20,     # max number of components to plot
    CUT   => 0,      # set to plot cutoff line after this many components
                     # undef to plot suggested cutoff line for NCOMP comps
     # see PDL::Graphics::Simple for next options
    WIN   => undef,  # pgswin object. not closed here if passed
                     # allows comparing multiple lines in same plot
    SIZE  => 640,    # plot size in pixels
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  $opt{NCOMP} = $ncomp
    if $ncomp;
    # re-use $ncomp below
  $ncomp = ($self->dim(0) < $opt{NCOMP})? $self->dim(0) : $opt{NCOMP};
  my $self_comp = $self->slice([0,$ncomp-1]);
  $opt{CUT}   = PDL::Stats::Kmeans::_scree_ind $self_comp
    if !defined $opt{CUT};
  my $win = $opt{WIN} ||
    PDL::Graphics::Simple::pgswin(size=>[@opt{qw(SIZE SIZE)}, 'px']);
  $win->plot(
    with=>'lines', ke=>'scree', sequence($ncomp), $self_comp,
    !$opt{CUT} ? () : (with=>'lines', ke=>'cut', pdl($opt{CUT}-.5, $opt{CUT}-.5), pdl(-.05, $self->max->sclr+.05)),
    {xlabel=>'Component', ylabel=>'Proportion of Variance Accounted for',
      xrange=>[-0.05,$ncomp-0.95], yrange=>[0,1], le=>'tr'},
  );
}

=head2 plot_stripchart

Stripchart plot. Plots ANOVA-style data, categorised against given IVs.

=for options

Default options (case insensitive):

  IVNM => [],   # auto filled as ['IV_0', 'IV_1', ... ]
  DVNM => 'DV',
   # see PDL::Graphics::Simple for next options
  WIN => undef,  # pgswin object. not closed here if passed

=for usage

Usage:

  %m = $y->plot_stripchart( $a, \@b, { IVNM=>[qw(apple bake)] } );

=cut

my $CHART_GAP = 0.1;
*plot_stripchart = \&PDL::plot_stripchart;
sub PDL::plot_stripchart {
  require PDL::Graphics::Simple;
  my $opt = ref($_[-1]) eq 'HASH' ? pop @_ : undef;
  my ($y, @ivs_raw) = @_;
  my %opt = (
    IVNM => [],   # auto filled as ['IV_0', 'IV_1', ... ]
    DVNM => 'DV',
    WIN => undef,  # pgswin object. not closed here if passed
  );
  if ($opt) { $opt{uc $_} = $opt->{$_} for keys %$opt; }
  $opt{IVNM} = [ map { "IV_$_" } 0 .. $#ivs_raw ]
    if !$opt{IVNM} or !@{ $opt{IVNM} };
  my $w = $opt{WIN} || PDL::Graphics::Simple::pgswin();
  my @codes = map [code_ivs($_)], @ivs_raw;
  my @levels = map {
    my $map = $_->[1];
    [sort {$map->{$a} <=> $map->{$b}} keys %$map];
  } @codes;
  my $xjitter = $y->random * $CHART_GAP;
  my ($pcount, @plots) = 0;
  push @plots, with=>'points', ke=>"all data", $xjitter+$pcount, $y;
  $pcount++;
  for my $i (0..$#ivs_raw) {
    my $levs = $levels[$i];
    my $name = $opt{IVNM}[$i];
    my $coded = $codes[$i][0];
    for my $j (0..$#$levs) {
      my $inds = which($coded == $j);
      push @plots, with=>'points', ke=>"$name=$levs->[$j]",
        $xjitter->slice($inds)+$pcount+$j*$CHART_GAP, $y->slice($inds);
    }
    $pcount++;
  }
  my ($ymin, $ymax) = $y->minmax;
  my $xmax = $pcount-1 + $CHART_GAP*($#{$levels[-1]} + 2);
  $w->plot(@plots,
    { xlabel=>'IV', ylabel=>$opt{DVNM},
      xrange=>[-1,$xmax], yrange=>[$ymin-$CHART_GAP,$ymax+$CHART_GAP] }
  );
  $w;
}

=head1 SEE ALSO

L<PDL::Fit::Linfit>

L<PDL::Fit::LM>

=head1 REFERENCES

Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003). Applied
Multiple Regression/correlation Analysis for the Behavioral Sciences
(3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

Hosmer, D.W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd
ed.). New York, NY: Wiley-Interscience.

Lorch, R.F., & Myers, J.L. (1990). Regression analyses of repeated
measures data in cognitive research. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 16, 149-157.

Osgood C.E., Suci, G.J., & Tannenbaum, P.H. (1957). The Measurement of
Meaning. Champaign, IL: University of Illinois Press.

Rutherford, A. (2011). ANOVA and ANCOVA: A GLM Approach (2nd ed.). Wiley.

Shlens, J. (2009). A Tutorial on Principal Component Analysis. Retrieved
April 10, 2011 from http://citeseerx.ist.psu.edu/

The GLM procedure: unbalanced ANOVA for two-way design with
interaction. (2008). SAS/STAT(R) 9.2 User's Guide. Retrieved June 18,
2009 from http://support.sas.com/

Van den Noortgate, W., & Onghena, P. (2006). Analysing repeated
measures data in cognitive research: A comment on regression coefficient
analyses. European Journal of Cognitive Psychology, 18, 937-952.

=head1 AUTHOR

Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>

All rights reserved. There is no warranty. You are allowed to redistribute
this software / documentation as described in the file COPYING in the
PDL distribution.

=cut
#line 2491 "lib/PDL/Stats/GLM.pm"

# Exit with OK status

1;