1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
use strict;
use warnings;
use Test::More;
use PDL::Stats::Basic;
use PDL::Stats::Kmeans;
use PDL::LiteF;
use Test::PDL qw(is_pdl eq_pdl);
{
my $a = iv_cluster( [qw(a a b b)] );
is_pdl $a, pdl([1,1,0,0], [0,0,1,1]), 'independent variable cluster';
}
is_pdl scalar iv_cluster([qw(a a BAD b b)]), pdl('1 1 BAD 0 0;0 0 BAD 1 1'),
'independent variable cluster with bad data';
is_pdl +(sequence(4,3) % 2)->assign(xvals(2,3)), short('1 0 1 0; 0 1 0 1');
{
my ($m, $ss) = sequence(4,3)->centroid(byte([1,0,1,0], [0,1,0,1]));
is_pdl $m, pdl([1,2], [5,6], [9,10]), "centroid";
is_pdl $ss, ones(2,3) * 2, "centroid";
}
{
my $centroid = pdl( [0,1], [0,1], [0,1] );
my $a = pdl '0 1 0 1 BAD; 1 0 1 0 1; 0 1 0 1 BAD';
is_pdl $a->assign($centroid), short([1,0,1,0,0], [0,1,0,1,1]),
"assign with bad data";
}
{
my $a = pdl '0 1 2 3 BAD; 5 6 7 8 9; 10 11 12 13 BAD';
my $cluster = pdl(byte, [1,0,1,0,0], [0,1,0,1,1]);
my ($m, $ss) = $a->centroid($cluster);
my $m_a = pdl([1,2], [6,7.6666667], [11,12]);
my $ss_a = pdl([1,1], [1,1.5555556], [1,1]);
is_pdl $m, $m_a, "centroid with bad data";
is_pdl $ss, $ss_a, "centroid with bad data";
}
# make kmeans deterministic:
srandom(5);
{
my $data = pdl '0 0 2 3 4 5 6; 7 0 9 10 11 12 13; 14 0 16 17 18 19 20';
my %m = $data->kmeans({NCLUS=>2, NSEED=>6, NTRY=>10, V=>0});
is_pdl $m{centroid}->sumover, pdl('3.3333333 10.333333 17.333333'), 'kmeans';
}
{
my $data = pdl '
[
[0 0 2 3 4 5 6; 0 0 9 10 11 12 13; 14 0 16 17 18 19 20]
[21 0 23 24 25 26 27; 28 0 30 31 32 33 34; 35 0 37 38 39 40 41]
]
[
[0 0 44 45 46 47 48; 0 0 51 52 53 54 55; 56 0 58 59 60 61 62]
[63 0 65 66 67 68 69; 70 0 72 73 74 75 76; 77 0 79 80 81 82 83]
]
';
my %m = $data->kmeans( {nclus=>[2,1,1], ntry=>20, v=>0} );
# print "$_\t$m{$_}\n" for sort keys %m;
my %a = (
'R2' => pdl
(
[ qw(0.74223245 0.97386667) ],
[ qw(0.84172845 0.99499377) ],
),
'ss_sum' => pdl (
[
[ qw( 10 10 108 )],
[ qw( 23.333333 23.333333 23.333333 )],
],
[
[ qw( 10 10 1578 )],
[ qw( 23.333333 23.333333 23.333333 )],
]
),
);
is_pdl $m{R2}, $a{R2}, "kmeans R2 result as expected";
is_pdl $m{ss}->sumover, $a{ss_sum}, {atol=>1e-3, test_name=>"kmeans ss result as expected"};
}
{
my $data = pdl '
[
[0 0 2 3 4 5 6; 0 0 9 10 11 12 13; 14 0 16 17 18 19 20]
[21 0 23 24 25 26 27; 28 0 30 31 32 33 34; 35 0 37 38 39 40 41]
]
[
[0 0 44 45 46 47 48; 0 0 51 52 53 54 55; 56 0 58 59 60 61 62]
[63 0 65 66 67 68 69; 70 0 72 73 74 75 76; 77 0 79 80 81 82 83]
]
';
# centroid intentionally has one less dim than data
my $centroid = pdl('[10 0; 10 0; 10 0] [20 0; 30 0; 30 0]');
# use dummy to match centroid dims to data dims
my %m = $data->kmeans( {cntrd=>$centroid->dummy(-1), v=>0} );
# print "$_\t$m{$_}\n" for sort keys %m;
my %a = (
R2 => pdl('0.74223245 0.97386667; 0.84172845 0.99499377'),
ss_sum => pdl('
[10 10 108; 23.333333 23.333333 23.333333]
[10 10 1578; 23.333333 23.333333 23.333333]
'),
);
is_pdl $m{R2}, $a{R2}, "kmeans R2 with manually seeded centroid";
is_pdl $m{ss}->sumover, $a{ss_sum}, {atol=>1e-3, test_name=>"kmeans ss with manually seeded centroid"};
}
{
my $data = sequence 7, 3;
$data = $data->setbadat(4,0);
my %m = $data->kmeans({NCLUS=>2, NTRY=>10, V=>0});
#print "$_\t$m{$_}\n" for sort keys %m;
is_pdl $m{ms}->sumover, pdl('1.5 1.9166667 1.9166667'), 'kmeans bad';
}
{
my $data = pdl '
[0 0 2 BAD 4 5 6; 0 0 9 10 11 12 13; 0 0 16 17 18 19 20]
[21 22 23 24 1 1 1; 28 29 30 31 1 1 1; 35 36 37 38 1 1 1]
';
my %m = $data->kmeans( {nclus=>[2,1], ntry=>20, v=>0} );
# print "$_\t$m{$_}\n" for sort keys %m;
my %a = (
'R2' => pdl( [ qw( 0.96879592 0.99698988 ) ] ),
'ms' => pdl('[2.1875 0; 2 0; 2 0] [0,1.25; 0 1.25; 0 1.25]'),
);
is_pdl $m{R2}, $a{R2}, "3d kmeans with bad data R2 is as expected";
is_pdl $m{ms}->sumover, $a{ms}->sumover, {atol=>1e-3, test_name=>"3d kmeans with bad data ss is as expected"};
}
{
my $l = pdl(
[qw( -0.798603 -0.61624 -0.906765 0.103116)],
[qw( 0.283269 -0.41041 0.131113 0.894118)],
[qw( -0.419717 0.649522 -0.0223668 0.434389)],
[qw( 0.325314 0.173015 -0.400108 0.0350236)],
);
my $c = $l->pca_cluster({v=>0,ncomp=>4,plot=>0});
is_pdl $c, pdl([1,0,1,0], [0,1,0,0], [0,0,0,1]),
"principal component analysis clustering";
}
{
my $a = pdl( [[3,1], [2,4]] );
my $b = pdl( [2,4], [3,1] );
my $c = pdl( 5,15 );
my $d = PDL::Stats::Kmeans::_d_point2line( $a, $b, $c );
is_pdl $d, pdl(1.754116, 1.4142136), '_d_point2line';
}
{
my $c0 = pdl(byte, [1,0,1,0], [0,1,0,1]);
my $c1 = pdl(byte, [0,0,0,1], [0,1,1,0]);
my $c = cat $c0, $c1;
my $ans = indx( [0,1,0,1], [-1,1,1,0] );
is_pdl $c->which_cluster, $ans, 'which_cluster';
}
done_testing();
|