1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
/*
* ita2_btb.c - example of how use the BTB with the Itanium 2 PMU
*
* Copyright (c) 2003-2006 Hewlett-Packard Development Company, L.P.
* Contributed by Stephane Eranian <eranian@hpl.hp.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* This file is part of libpfm, a performance monitoring support library for
* applications on Linux.
*/
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <perfmon/perfmon.h>
#include <perfmon/perfmon_dfl_smpl.h>
#include <perfmon/pfmlib_itanium2.h>
typedef pfm_dfl_smpl_hdr_t btb_hdr_t;
typedef pfm_dfl_smpl_entry_t btb_entry_t;
typedef pfm_dfl_smpl_arg_t smpl_arg_t;
#define NUM_PMCS PFMLIB_MAX_PMCS
#define NUM_PMDS PFMLIB_MAX_PMDS
#define MAX_EVT_NAME_LEN 128
#define MAX_PMU_NAME_LEN 32
/*
* The BRANCH_EVENT is increment by 1 for each branch event. Such event is composed of
* two entries in the BTB: a source and a target entry. The BTB is full after 4 branch
* events.
*/
#define SMPL_PERIOD (4UL*256)
/*
* We use a small buffer size to exercise the overflow handler
*/
#define SMPL_BUF_NENTRIES 64
static void *smpl_vaddr;
static unsigned int entry_size;
static int id;
#define BPL (sizeof(uint64_t)<<3)
#define LBPL 6
static inline void pfm_bv_set(uint64_t *bv, uint16_t rnum)
{
bv[rnum>>LBPL] |= 1UL << (rnum&(BPL-1));
}
/*
* we don't use static to make sure the compiler does not inline the function
*/
long func1(void) { return 0;}
long
do_test(unsigned long loop)
{
long sum = 0;
while(loop--) {
if (loop & 0x1)
sum += func1();
else
sum += loop;
}
return sum;
}
static void fatal_error(char *fmt,...) __attribute__((noreturn));
static void
fatal_error(char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
exit(1);
}
/*
* print content of sampling buffer
*
* XXX: using stdio to print from a signal handler is not safe with multi-threaded
* applications
*/
#define safe_printf printf
static void
show_btb_reg(int j, pfm_ita2_pmd_reg_t reg, pfm_ita2_pmd_reg_t pmd16)
{
unsigned long bruflush, b1;
int is_valid = reg.pmd8_15_ita2_reg.btb_b == 0 && reg.pmd8_15_ita2_reg.btb_mp == 0 ? 0 :1;
b1 = (pmd16.pmd_val >> (4 + 4*(j-8))) & 0x1;
bruflush = (pmd16.pmd_val >> (5 + 4*(j-8))) & 0x1;
safe_printf("\tPMD%-2d: 0x%016lx b=%d mp=%d bru=%ld b1=%ld valid=%c\n",
j,
reg.pmd_val,
reg.pmd8_15_ita2_reg.btb_b,
reg.pmd8_15_ita2_reg.btb_mp,
bruflush, b1,
is_valid ? 'Y' : 'N');
if (!is_valid) return;
if (reg.pmd8_15_ita2_reg.btb_b) {
unsigned long addr;
addr = (reg.pmd8_15_ita2_reg.btb_addr+b1)<<4;
addr |= reg.pmd8_15_ita2_reg.btb_slot < 3 ? reg.pmd8_15_ita2_reg.btb_slot : 0;
safe_printf("\t Source Address: 0x%016lx\n"
"\t Taken=%c Prediction: %s\n\n",
addr,
reg.pmd8_15_ita2_reg.btb_slot < 3 ? 'Y' : 'N',
reg.pmd8_15_ita2_reg.btb_mp ? "FE Failure" :
bruflush ? "BE Failure" : "Success");
} else {
safe_printf("\t Target Address: 0x%016lx\n\n",
(unsigned long)(reg.pmd8_15_ita2_reg.btb_addr<<4));
}
}
static void
show_btb(pfm_ita2_pmd_reg_t *btb, pfm_ita2_pmd_reg_t *pmd16)
{
int i, last;
i = (pmd16->pmd16_ita2_reg.btbi_full) ? pmd16->pmd16_ita2_reg.btbi_bbi : 0;
last = pmd16->pmd16_ita2_reg.btbi_bbi;
safe_printf("btb_trace: i=%d last=%d bbi=%d full=%d\n", i, last,pmd16->pmd16_ita2_reg.btbi_bbi, pmd16->pmd16_ita2_reg.btbi_full);
do {
show_btb_reg(i+8, btb[i], *pmd16);
i = (i+1) % 8;
} while (i != last);
}
void
process_smpl_buffer(void)
{
btb_hdr_t *hdr;
btb_entry_t *ent;
unsigned long pos;
unsigned long smpl_entry = 0;
pfm_ita2_pmd_reg_t *reg, *pmd16;
unsigned long i;
int ret;
static unsigned long last_ovfl = ~0UL;
hdr = (btb_hdr_t *)smpl_vaddr;
/*
* check that we are not diplaying the previous set of samples again.
* Required to take care of the last batch of samples.
*/
if (hdr->hdr_overflows <= last_ovfl && last_ovfl != ~0UL) {
printf("skipping identical set of samples %lu <= %lu\n", hdr->hdr_overflows, last_ovfl);
return;
}
pos = (unsigned long)(hdr+1);
/*
* walk through all the entries recored in the buffer
*/
for(i=0; i < hdr->hdr_count; i++) {
ret = 0;
ent = (btb_entry_t *)pos;
/*
* print entry header
*/
safe_printf("Entry %ld PID:%d TID:%d CPU:%d STAMP:0x%lx IIP:0x%016lx\n",
smpl_entry++,
ent->tgid,
ent->pid,
ent->cpu,
ent->tstamp,
ent->ip);
/*
* point to first recorded register (always contiguous with entry header)
*/
reg = (pfm_ita2_pmd_reg_t*)(ent+1);
/*
* in this particular example, we have pmd8-pmd15 has the BTB. We have also
* included pmd16 (BTB index) has part of the registers to record. This trick
* allows us to get the index to decode the sequential order of the BTB.
*
* Recorded registers are always recorded in increasing order. So we know
* that pmd16 is at a fixed offset (+8*sizeof(unsigned long)) from pmd8.
*/
pmd16 = reg+8;
show_btb(reg, pmd16);
/*
* move to next entry
*/
pos += entry_size;
}
}
static void
overflow_handler(int n, struct siginfo *info, struct sigcontext *sc)
{
/* dangerous */
printf("Notification received\n");
process_smpl_buffer();
/*
* And resume monitoring
*/
if (pfm_restart(id) == -1) {
perror("pfm_restart");
exit(1);
}
}
int
main(void)
{
int ret;
int type = 0;
pfarg_pmd_t pd[NUM_PMDS];
pfarg_pmc_t pc[NUM_PMCS];
pfmlib_input_param_t inp;
pfmlib_output_param_t outp;
pfmlib_ita2_input_param_t ita2_inp;
pfarg_ctx_t ctx;
smpl_arg_t buf_arg;
pfarg_load_t load_args;
pfmlib_options_t pfmlib_options;
struct sigaction act;
unsigned int i;
/*
* Initialize pfm library (required before we can use it)
*/
ret = pfm_initialize();
if (ret != PFMLIB_SUCCESS)
fatal_error("Cannot initialize library: %s\n", pfm_strerror(ret));
/*
* Let's make sure we run this on the right CPU
*/
pfm_get_pmu_type(&type);
if (type != PFMLIB_ITANIUM2_PMU) {
char model[MAX_PMU_NAME_LEN];
pfm_get_pmu_name(model, MAX_PMU_NAME_LEN);
fatal_error("this program does not work with %s PMU\n", model);
}
/*
* Install the overflow handler (SIGIO)
*/
memset(&act, 0, sizeof(act));
act.sa_handler = (sig_t)overflow_handler;
sigaction (SIGIO, &act, 0);
/*
* pass options to library (optional)
*/
memset(&pfmlib_options, 0, sizeof(pfmlib_options));
pfmlib_options.pfm_debug = 0; /* set to 1 for debug */
pfmlib_options.pfm_verbose = 1; /* set to 1 for debug */
pfm_set_options(&pfmlib_options);
memset(pd, 0, sizeof(pd));
memset(&ctx, 0, sizeof(ctx));
memset(&buf_arg, 0, sizeof(buf_arg));
/*
* prepare parameters to library. we don't use any Itanium
* specific features here. so the pfp_model is NULL.
*/
memset(&inp,0, sizeof(inp));
memset(&outp,0, sizeof(outp));
memset(&ita2_inp,0, sizeof(ita2_inp));
/*
* Before calling pfm_find_dispatch(), we must specify what kind
* of branches we want to capture. We are interesteed in all the mispredicted branches,
* therefore we program we set the various fields of the BTB config to:
*/
ita2_inp.pfp_ita2_btb.btb_used = 1;
ita2_inp.pfp_ita2_btb.btb_ds = 0;
ita2_inp.pfp_ita2_btb.btb_tm = 0x3;
ita2_inp.pfp_ita2_btb.btb_ptm = 0x3;
ita2_inp.pfp_ita2_btb.btb_ppm = 0x3;
ita2_inp.pfp_ita2_btb.btb_brt = 0x0;
ita2_inp.pfp_ita2_btb.btb_plm = PFM_PLM3;
if (pfm_find_full_event("BRANCH_EVENT", &inp.pfp_events[0]) != PFMLIB_SUCCESS) {
fatal_error("cannot find event BRANCH_EVENT\n");
}
/*
* set the (global) privilege mode:
* PFM_PLM3 : user level only
*/
inp.pfp_dfl_plm = PFM_PLM3;
/*
* how many counters we use
*/
inp.pfp_event_count = 1;
/*
* let the library figure out the values for the PMCS
*/
if ((ret=pfm_dispatch_events(&inp, &ita2_inp, &outp, NULL)) != PFMLIB_SUCCESS) {
fatal_error("cannot configure events: %s\n", pfm_strerror(ret));
}
/*
* the size of the buffer is indicated in bytes (not entries).
*
* The kernel will record into the buffer up to a certain point.
* No partial samples are ever recorded.
*/
buf_arg.buf_size = getpagesize();
/*
* now create the context for self monitoring/per-task
*/
id = pfm_create_context(&ctx, "default", &buf_arg, sizeof(buf_arg));
if (id == -1) {
if (errno == ENOSYS) {
fatal_error("Your kernel does not have performance monitoring support!\n");
}
fatal_error("Can't create PFM context %s\n", strerror(errno));
}
/*
* retrieve the virtual address at which the sampling
* buffer has been mapped
*/
smpl_vaddr = mmap(NULL, (size_t)buf_arg.buf_size, PROT_READ, MAP_PRIVATE, id, 0);
if (smpl_vaddr == MAP_FAILED)
fatal_error("cannot mmap sampling buffer errno %d\n", errno);
printf("Sampling buffer mapped at %p\n", smpl_vaddr);
/*
* Now prepare the argument to initialize the PMDs and PMCS.
* We must pfp_pmc_count to determine the number of PMC to intialize.
* We must use pfp_event_count to determine the number of PMD to initialize.
* Some events cause extra PMCs to be used, so pfp_pmc_count may be >= pfp_event_count.
*
* This step is new compared to libpfm-2.x. It is necessary because the library no
* longer knows about the kernel data structures.
*/
for (i=0; i < outp.pfp_pmc_count; i++) {
pc[i].reg_num = outp.pfp_pmcs[i].reg_num;
pc[i].reg_value = outp.pfp_pmcs[i].reg_value;
}
/*
* figure out pmd mapping from output pmc
* PMD16 is part of the set of used PMD returned by libpfm.
* It will be reset automatically
*/
for (i=0; i < outp.pfp_pmd_count; i++)
pd[i].reg_num = outp.pfp_pmds[i].reg_num;
/*
* indicate we want notification when buffer is full
*/
pd[0].reg_flags |= PFM_REGFL_OVFL_NOTIFY;
/*
* Now prepare the argument to initialize the PMD and the sampling period
* We know we use only one PMD in this case, therefore pmd[0] corresponds
* to our first event which is our sampling period.
*/
pd[0].reg_value = - SMPL_PERIOD;
pd[0].reg_long_reset = - SMPL_PERIOD;
pd[0].reg_short_reset = - SMPL_PERIOD;
pfm_bv_set(pd[0].reg_smpl_pmds, 16);
entry_size = sizeof(btb_entry_t) + 1 * 8;
for(i=8; i < 16; i++) {
pfm_bv_set(pd[0].reg_smpl_pmds, i);
entry_size += 8;
}
/*
* When our counter overflows, we want to BTB index to be reset, so that we keep
* in sync. This is required to make it possible to interpret pmd16 on overflow
* to avoid repeating the same branch several times.
*/
pfm_bv_set(pd[0].reg_reset_pmds, 16);
/*
* Now program the registers
*/
if (pfm_write_pmcs(id, pc, outp.pfp_pmc_count) == -1)
fatal_error("pfm_write_pmcs error errno %d\n",errno);
if (pfm_write_pmds(id, pd, outp.pfp_pmd_count) == -1)
fatal_error("pfm_write_pmds error errno %d\n",errno);
/*
* now we load (i.e., attach) the context to ourself
*/
load_args.load_pid = getpid();
if (pfm_load_context(id, &load_args) == -1)
fatal_error("pfm_load_context error errno %d\n",errno);
/*
* setup asynchronous notification on the file descriptor
*/
ret = fcntl(id, F_SETFL, fcntl(id, F_GETFL, 0) | O_ASYNC);
if (ret == -1)
fatal_error("cannot set ASYNC: %s\n", strerror(errno));
/*
* get ownership of the descriptor
*/
ret = fcntl(id, F_SETOWN, getpid());
if (ret == -1)
fatal_error("cannot setown: %s\n", strerror(errno));
/*
* Let's roll now.
*/
pfm_self_start(id);
do_test(100000);
pfm_self_stop(id);
/*
* We must call the processing routine to cover the last entries recorded
* in the sampling buffer. Note that the buffer may not be full at this point.
*
*/
process_smpl_buffer();
/*
* let's stop this now
*/
munmap(smpl_vaddr, (size_t)buf_arg.buf_size);
close(id);
return 0;
}
|