1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
|
/*
* Copyright (c) 2017 Google Inc. All rights reserved
* Contributed by Stephane Eranian <eranian@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* This file is part of libpfm, a performance monitoring support library for
* applications on Linux.
*
* PMU: bdx_unc_ha
*/
static intel_x86_umask_t bdx_unc_h_bypass_imc[]={
{ .uname = "NOT_TAKEN",
.ucode = 0x200,
.udesc = "HA to iMC Bypass -- Not Taken",
},
{ .uname = "TAKEN",
.ucode = 0x100,
.udesc = "HA to iMC Bypass -- Taken",
},
};
static intel_x86_umask_t bdx_unc_h_directory_lookup[]={
{ .uname = "NO_SNP",
.ucode = 0x200,
.udesc = "Directory Lookups -- Snoop Not Needed",
},
{ .uname = "SNP",
.ucode = 0x100,
.udesc = "Directory Lookups -- Snoop Needed",
},
};
static intel_x86_umask_t bdx_unc_h_directory_update[]={
{ .uname = "ANY",
.ucode = 0x300,
.udesc = "Directory Updates -- Any Directory Update",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "CLEAR",
.ucode = 0x200,
.udesc = "Directory Updates -- Directory Clear",
},
{ .uname = "SET",
.ucode = 0x100,
.udesc = "Directory Updates -- Directory Set",
},
};
static intel_x86_umask_t bdx_unc_h_hitme_hit[]={
{ .uname = "ACKCNFLTWBI",
.ucode = 0x400,
.udesc = "Counts Number of Hits in HitMe Cache -- op is AckCnfltWbI",
},
{ .uname = "ALL",
.ucode = 0xff00,
.udesc = "Counts Number of Hits in HitMe Cache -- All Requests",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "ALLOCS",
.ucode = 0x7000,
.udesc = "Counts Number of Hits in HitMe Cache -- Allocations",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "EVICTS",
.ucode = 0x4200,
.udesc = "Counts Number of Hits in HitMe Cache -- Allocations",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "HOM",
.ucode = 0xf00,
.udesc = "Counts Number of Hits in HitMe Cache -- HOM Requests",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "INVALS",
.ucode = 0x2600,
.udesc = "Counts Number of Hits in HitMe Cache -- Invalidations",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "READ_OR_INVITOE",
.ucode = 0x100,
.udesc = "Counts Number of Hits in HitMe Cache -- op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE",
},
{ .uname = "RSP",
.ucode = 0x8000,
.udesc = "Counts Number of Hits in HitMe Cache -- op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI",
},
{ .uname = "RSPFWDI_LOCAL",
.ucode = 0x2000,
.udesc = "Counts Number of Hits in HitMe Cache -- op is RspIFwd or RspIFwdWb for a local request",
},
{ .uname = "RSPFWDI_REMOTE",
.ucode = 0x1000,
.udesc = "Counts Number of Hits in HitMe Cache -- op is RspIFwd or RspIFwdWb for a remote request",
},
{ .uname = "RSPFWDS",
.ucode = 0x4000,
.udesc = "Counts Number of Hits in HitMe Cache -- op is RsSFwd or RspSFwdWb",
},
{ .uname = "WBMTOE_OR_S",
.ucode = 0x800,
.udesc = "Counts Number of Hits in HitMe Cache -- op is WbMtoE or WbMtoS",
},
{ .uname = "WBMTOI",
.ucode = 0x200,
.udesc = "Counts Number of Hits in HitMe Cache -- op is WbMtoI",
},
};
static intel_x86_umask_t bdx_unc_h_hitme_hit_pv_bits_set[]={
{ .uname = "ACKCNFLTWBI",
.ucode = 0x400,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is AckCnfltWbI",
},
{ .uname = "ALL",
.ucode = 0xff00,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- All Requests",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "HOM",
.ucode = 0xf00,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- HOM Requests",
},
{ .uname = "READ_OR_INVITOE",
.ucode = 0x100,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE",
},
{ .uname = "RSP",
.ucode = 0x8000,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI",
},
{ .uname = "RSPFWDI_LOCAL",
.ucode = 0x2000,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is RspIFwd or RspIFwdWb for a local request",
},
{ .uname = "RSPFWDI_REMOTE",
.ucode = 0x1000,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is RspIFwd or RspIFwdWb for a remote request",
},
{ .uname = "RSPFWDS",
.ucode = 0x4000,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is RsSFwd or RspSFwdWb",
},
{ .uname = "WBMTOE_OR_S",
.ucode = 0x800,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is WbMtoE or WbMtoS",
},
{ .uname = "WBMTOI",
.ucode = 0x200,
.udesc = "Accumulates Number of PV bits set on HitMe Cache Hits -- op is WbMtoI",
},
};
static intel_x86_umask_t bdx_unc_h_hitme_lookup[]={
{ .uname = "ACKCNFLTWBI",
.ucode = 0x400,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is AckCnfltWbI",
},
{ .uname = "ALL",
.ucode = 0xff00,
.udesc = "Counts Number of times HitMe Cache is accessed -- All Requests",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "ALLOCS",
.ucode = 0x7000,
.udesc = "Counts Number of times HitMe Cache is accessed -- Allocations",
},
{ .uname = "HOM",
.ucode = 0xf00,
.udesc = "Counts Number of times HitMe Cache is accessed -- HOM Requests",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "INVALS",
.ucode = 0x2600,
.udesc = "Counts Number of times HitMe Cache is accessed -- Invalidations",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "READ_OR_INVITOE",
.ucode = 0x100,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is RdCode, RdData, RdDataMigratory, RdInvOwn, RdCur or InvItoE",
},
{ .uname = "RSP",
.ucode = 0x8000,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is RspI, RspIWb, RspS, RspSWb, RspCnflt or RspCnfltWbI",
},
{ .uname = "RSPFWDI_LOCAL",
.ucode = 0x2000,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is RspIFwd or RspIFwdWb for a local request",
},
{ .uname = "RSPFWDI_REMOTE",
.ucode = 0x1000,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is RspIFwd or RspIFwdWb for a remote request",
},
{ .uname = "RSPFWDS",
.ucode = 0x4000,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is RsSFwd or RspSFwdWb",
},
{ .uname = "WBMTOE_OR_S",
.ucode = 0x800,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is WbMtoE or WbMtoS",
},
{ .uname = "WBMTOI",
.ucode = 0x200,
.udesc = "Counts Number of times HitMe Cache is accessed -- op is WbMtoI",
},
};
static intel_x86_umask_t bdx_unc_h_igr_no_credit_cycles[]={
{ .uname = "AD_QPI0",
.ucode = 0x100,
.udesc = "Cycles without QPI Ingress Credits -- AD to QPI Link 0",
},
{ .uname = "AD_QPI1",
.ucode = 0x200,
.udesc = "Cycles without QPI Ingress Credits -- AD to QPI Link 1",
},
{ .uname = "AD_QPI2",
.ucode = 0x1000,
.udesc = "Cycles without QPI Ingress Credits -- BL to QPI Link 0",
},
{ .uname = "BL_QPI0",
.ucode = 0x400,
.udesc = "Cycles without QPI Ingress Credits -- BL to QPI Link 0",
},
{ .uname = "BL_QPI1",
.ucode = 0x800,
.udesc = "Cycles without QPI Ingress Credits -- BL to QPI Link 1",
},
{ .uname = "BL_QPI2",
.ucode = 0x2000,
.udesc = "Cycles without QPI Ingress Credits -- BL to QPI Link 1",
},
};
static intel_x86_umask_t bdx_unc_h_imc_reads[]={
{ .uname = "NORMAL",
.ucode = 0x100,
.udesc = "HA to iMC Normal Priority Reads Issued -- Normal Priority",
.uflags = INTEL_X86_DFL,
},
};
static intel_x86_umask_t bdx_unc_h_imc_writes[]={
{ .uname = "ALL",
.ucode = 0xf00,
.udesc = "HA to iMC Full Line Writes Issued -- All Writes",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "FULL",
.ucode = 0x100,
.udesc = "HA to iMC Full Line Writes Issued -- Full Line Non-ISOCH",
},
{ .uname = "FULL_ISOCH",
.ucode = 0x400,
.udesc = "HA to iMC Full Line Writes Issued -- ISOCH Full Line",
},
{ .uname = "PARTIAL",
.ucode = 0x200,
.udesc = "HA to iMC Full Line Writes Issued -- Partial Non-ISOCH",
},
{ .uname = "PARTIAL_ISOCH",
.ucode = 0x800,
.udesc = "HA to iMC Full Line Writes Issued -- ISOCH Partial",
},
};
static intel_x86_umask_t bdx_unc_h_osb[]={
{ .uname = "CANCELLED",
.ucode = 0x1000,
.udesc = "OSB Snoop Broadcast -- Cancelled",
},
{ .uname = "INVITOE_LOCAL",
.ucode = 0x400,
.udesc = "OSB Snoop Broadcast -- Local InvItoE",
},
{ .uname = "READS_LOCAL",
.ucode = 0x200,
.udesc = "OSB Snoop Broadcast -- Local Reads",
},
{ .uname = "READS_LOCAL_USEFUL",
.ucode = 0x2000,
.udesc = "OSB Snoop Broadcast -- Reads Local - Useful",
},
{ .uname = "REMOTE",
.ucode = 0x800,
.udesc = "OSB Snoop Broadcast -- Remote",
},
{ .uname = "REMOTE_USEFUL",
.ucode = 0x4000,
.udesc = "OSB Snoop Broadcast -- Remote - Useful",
},
};
static intel_x86_umask_t bdx_unc_h_osb_edr[]={
{ .uname = "ALL",
.ucode = 0x100,
.udesc = "OSB Early Data Return -- All",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "READS_LOCAL_I",
.ucode = 0x200,
.udesc = "OSB Early Data Return -- Reads to Local I",
},
{ .uname = "READS_LOCAL_S",
.ucode = 0x800,
.udesc = "OSB Early Data Return -- Reads to Local S",
},
{ .uname = "READS_REMOTE_I",
.ucode = 0x400,
.udesc = "OSB Early Data Return -- Reads to Remote I",
},
{ .uname = "READS_REMOTE_S",
.ucode = 0x1000,
.udesc = "OSB Early Data Return -- Reads to Remote S",
},
};
static intel_x86_umask_t bdx_unc_h_requests[]={
{ .uname = "INVITOE_LOCAL",
.ucode = 0x1000,
.udesc = "Read and Write Requests -- Local InvItoEs",
},
{ .uname = "INVITOE_REMOTE",
.ucode = 0x2000,
.udesc = "Read and Write Requests -- Remote InvItoEs",
},
{ .uname = "READS",
.ucode = 0x300,
.udesc = "Read and Write Requests -- Reads",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "READS_LOCAL",
.ucode = 0x100,
.udesc = "Read and Write Requests -- Local Reads",
},
{ .uname = "READS_REMOTE",
.ucode = 0x200,
.udesc = "Read and Write Requests -- Remote Reads",
},
{ .uname = "WRITES",
.ucode = 0xc00,
.udesc = "Read and Write Requests -- Writes",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "WRITES_LOCAL",
.ucode = 0x400,
.udesc = "Read and Write Requests -- Local Writes",
},
{ .uname = "WRITES_REMOTE",
.ucode = 0x800,
.udesc = "Read and Write Requests -- Remote Writes",
},
};
static intel_x86_umask_t bdx_unc_h_ring_ad_used[]={
{ .uname = "CCW",
.ucode = 0xc00,
.udesc = "Counterclockwise",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CCW_EVEN",
.ucode = 0x400,
.udesc = "Counterclockwise and Even",
},
{ .uname = "CCW_ODD",
.ucode = 0x800,
.udesc = "Counterclockwise and Odd",
},
{ .uname = "CW",
.ucode = 0x300,
.udesc = "Clockwise",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CW_EVEN",
.ucode = 0x100,
.udesc = "Clockwise and Even",
},
{ .uname = "CW_ODD",
.ucode = 0x200,
.udesc = "Clockwise and Odd",
},
};
static intel_x86_umask_t bdx_unc_h_rpq_cycles_no_reg_credits[]={
{ .uname = "CHN0",
.ucode = 0x100,
.udesc = "iMC RPQ Credits Empty - Regular -- Channel 0",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN1",
.ucode = 0x200,
.udesc = "iMC RPQ Credits Empty - Regular -- Channel 1",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN2",
.ucode = 0x400,
.udesc = "iMC RPQ Credits Empty - Regular -- Channel 2",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN3",
.ucode = 0x800,
.udesc = "iMC RPQ Credits Empty - Regular -- Channel 3",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_sbo0_credits_acquired[]={
{ .uname = "AD",
.ucode = 0x100,
.udesc = "For AD Ring",
},
{ .uname = "BL",
.ucode = 0x200,
.udesc = "For BL Ring",
},
};
static intel_x86_umask_t bdx_unc_h_snoops_rsp_after_data[]={
{ .uname = "LOCAL",
.ucode = 0x100,
.udesc = "Data beat the Snoop Responses -- Local Requests",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REMOTE",
.ucode = 0x200,
.udesc = "Data beat the Snoop Responses -- Remote Requests",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_snoop_cycles_ne[]={
{ .uname = "ALL",
.ucode = 0x300,
.udesc = "Cycles with Snoops Outstanding -- All Requests",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "LOCAL",
.ucode = 0x100,
.udesc = "Cycles with Snoops Outstanding -- Local Requests",
},
{ .uname = "REMOTE",
.ucode = 0x200,
.udesc = "Cycles with Snoops Outstanding -- Remote Requests",
},
};
static intel_x86_umask_t bdx_unc_h_snoop_occupancy[]={
{ .uname = "LOCAL",
.ucode = 0x100,
.udesc = "Tracker Snoops Outstanding Accumulator -- Local Requests",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REMOTE",
.ucode = 0x200,
.udesc = "Tracker Snoops Outstanding Accumulator -- Remote Requests",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_snoop_resp[]={
{ .uname = "RSPCNFLCT",
.ucode = 0x4000,
.udesc = "Snoop Responses Received -- RSPCNFLCT*",
},
{ .uname = "RSPI",
.ucode = 0x100,
.udesc = "Snoop Responses Received -- RspI",
},
{ .uname = "RSPIFWD",
.ucode = 0x400,
.udesc = "Snoop Responses Received -- RspIFwd",
},
{ .uname = "RSPS",
.ucode = 0x200,
.udesc = "Snoop Responses Received -- RspS",
},
{ .uname = "RSPSFWD",
.ucode = 0x800,
.udesc = "Snoop Responses Received -- RspSFwd",
},
{ .uname = "RSP_FWD_WB",
.ucode = 0x2000,
.udesc = "Snoop Responses Received -- Rsp*Fwd*WB",
},
{ .uname = "RSP_WB",
.ucode = 0x1000,
.udesc = "Snoop Responses Received -- Rsp*WB",
},
};
static intel_x86_umask_t bdx_unc_h_snp_resp_recv_local[]={
{ .uname = "OTHER",
.ucode = 0x8000,
.udesc = "Snoop Responses Received Local -- Other",
},
{ .uname = "RSPCNFLCT",
.ucode = 0x4000,
.udesc = "Snoop Responses Received Local -- RspCnflct",
},
{ .uname = "RSPI",
.ucode = 0x100,
.udesc = "Snoop Responses Received Local -- RspI",
},
{ .uname = "RSPIFWD",
.ucode = 0x400,
.udesc = "Snoop Responses Received Local -- RspIFwd",
},
{ .uname = "RSPS",
.ucode = 0x200,
.udesc = "Snoop Responses Received Local -- RspS",
},
{ .uname = "RSPSFWD",
.ucode = 0x800,
.udesc = "Snoop Responses Received Local -- RspSFwd",
},
{ .uname = "RSPxFWDxWB",
.ucode = 0x2000,
.udesc = "Snoop Responses Received Local -- Rsp*FWD*WB",
},
{ .uname = "RSPxWB",
.ucode = 0x1000,
.udesc = "Snoop Responses Received Local -- Rsp*WB",
},
};
static intel_x86_umask_t bdx_unc_h_stall_no_sbo_credit[]={
{ .uname = "SBO0_AD",
.ucode = 0x100,
.udesc = "Stall on No Sbo Credits -- For SBo0, AD Ring",
},
{ .uname = "SBO0_BL",
.ucode = 0x400,
.udesc = "Stall on No Sbo Credits -- For SBo0, BL Ring",
},
{ .uname = "SBO1_AD",
.ucode = 0x200,
.udesc = "Stall on No Sbo Credits -- For SBo1, AD Ring",
},
{ .uname = "SBO1_BL",
.ucode = 0x800,
.udesc = "Stall on No Sbo Credits -- For SBo1, BL Ring",
},
};
static intel_x86_umask_t bdx_unc_h_tad_requests_g0[]={
{ .uname = "REGION0",
.ucode = 0x100,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 0",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION1",
.ucode = 0x200,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 1",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION2",
.ucode = 0x400,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 2",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION3",
.ucode = 0x800,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 3",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION4",
.ucode = 0x1000,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 4",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION5",
.ucode = 0x2000,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 5",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION6",
.ucode = 0x4000,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 6",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION7",
.ucode = 0x8000,
.udesc = "HA Requests to a TAD Region - Group 0 -- TAD Region 7",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_tad_requests_g1[]={
{ .uname = "REGION10",
.ucode = 0x400,
.udesc = "HA Requests to a TAD Region - Group 1 -- TAD Region 10",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION11",
.ucode = 0x800,
.udesc = "HA Requests to a TAD Region - Group 1 -- TAD Region 11",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION8",
.ucode = 0x100,
.udesc = "HA Requests to a TAD Region - Group 1 -- TAD Region 8",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REGION9",
.ucode = 0x200,
.udesc = "HA Requests to a TAD Region - Group 1 -- TAD Region 9",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_tracker_cycles_full[]={
{ .uname = "ALL",
.ucode = 0x200,
.udesc = "Tracker Cycles Full -- Cycles Completely Used",
.uflags = INTEL_X86_DFL,
},
{ .uname = "GP",
.ucode = 0x100,
.udesc = "Tracker Cycles Full -- Cycles GP Completely Used",
},
};
static intel_x86_umask_t bdx_unc_h_tracker_cycles_ne[]={
{ .uname = "ALL",
.ucode = 0x300,
.udesc = "Tracker Cycles Not Empty -- All Requests",
.uflags = INTEL_X86_NCOMBO | INTEL_X86_DFL,
},
{ .uname = "LOCAL",
.ucode = 0x100,
.udesc = "Tracker Cycles Not Empty -- Local Requests",
},
{ .uname = "REMOTE",
.ucode = 0x200,
.udesc = "Tracker Cycles Not Empty -- Remote Requests",
},
};
static intel_x86_umask_t bdx_unc_h_tracker_occupancy[]={
{ .uname = "INVITOE_LOCAL",
.ucode = 0x4000,
.udesc = "Tracker Occupancy Accumultor -- Local InvItoE Requests",
},
{ .uname = "INVITOE_REMOTE",
.ucode = 0x8000,
.udesc = "Tracker Occupancy Accumultor -- Remote InvItoE Requests",
},
{ .uname = "READS_LOCAL",
.ucode = 0x400,
.udesc = "Tracker Occupancy Accumultor -- Local Read Requests",
},
{ .uname = "READS_REMOTE",
.ucode = 0x800,
.udesc = "Tracker Occupancy Accumultor -- Remote Read Requests",
},
{ .uname = "WRITES_LOCAL",
.ucode = 0x1000,
.udesc = "Tracker Occupancy Accumultor -- Local Write Requests",
},
{ .uname = "WRITES_REMOTE",
.ucode = 0x2000,
.udesc = "Tracker Occupancy Accumultor -- Remote Write Requests",
},
};
static intel_x86_umask_t bdx_unc_h_tracker_pending_occupancy[]={
{ .uname = "LOCAL",
.ucode = 0x100,
.udesc = "Data Pending Occupancy Accumultor -- Local Requests",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "REMOTE",
.ucode = 0x200,
.udesc = "Data Pending Occupancy Accumultor -- Remote Requests",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_umask_t bdx_unc_h_txr_ad_cycles_full[]={
{ .uname = "ALL",
.ucode = 0x300,
.udesc = "All",
.uflags = INTEL_X86_DFL,
},
{ .uname = "SCHED0",
.ucode = 0x100,
.udesc = "Scheduler 0",
},
{ .uname = "SCHED1",
.ucode = 0x200,
.udesc = "Scheduler 1",
},
};
static intel_x86_umask_t bdx_unc_h_txr_bl[]={
{ .uname = "DRS_CACHE",
.ucode = 0x100,
.udesc = "Outbound DRS Ring Transactions to Cache -- Data to Cache",
},
{ .uname = "DRS_CORE",
.ucode = 0x200,
.udesc = "Outbound DRS Ring Transactions to Cache -- Data to Core",
},
{ .uname = "DRS_QPI",
.ucode = 0x400,
.udesc = "Outbound DRS Ring Transactions to Cache -- Data to QPI",
},
};
static intel_x86_umask_t bdx_unc_h_txr_starved[]={
{ .uname = "AK",
.ucode = 0x100,
.udesc = "Injection Starvation -- For AK Ring",
},
{ .uname = "BL",
.ucode = 0x200,
.udesc = "Injection Starvation -- For BL Ring",
},
};
static intel_x86_umask_t bdx_unc_h_wpq_cycles_no_reg_credits[]={
{ .uname = "CHN0",
.ucode = 0x100,
.udesc = "HA iMC CHN0 WPQ Credits Empty - Regular -- Channel 0",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN1",
.ucode = 0x200,
.udesc = "HA iMC CHN0 WPQ Credits Empty - Regular -- Channel 1",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN2",
.ucode = 0x400,
.udesc = "HA iMC CHN0 WPQ Credits Empty - Regular -- Channel 2",
.uflags = INTEL_X86_NCOMBO,
},
{ .uname = "CHN3",
.ucode = 0x800,
.udesc = "HA iMC CHN0 WPQ Credits Empty - Regular -- Channel 3",
.uflags = INTEL_X86_NCOMBO,
},
};
static intel_x86_entry_t intel_bdx_unc_h_pe[]={
/* ADDR_OPC_MATCH not supported (linux kernel has no support for HA OPC yet*/
{ .name = "UNC_H_BT_CYCLES_NE",
.code = 0x42,
.desc = "Cycles the Backup Tracker (BT) is not empty. The BT is the actual HOM tracker in IVT.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_BT_OCCUPANCY",
.code = 0x43,
.desc = "Accumulates the occupancy of te HA BT pool in every cycle. This can be used with the 'not empty' stat to calculate the average queue occupancy or the 'allocations' stat to calculate average queue latency. HA BTs are allocated as son as a request enters the HA and are released after the snoop response and data return and the response is returned to the ring",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_BYPASS_IMC",
.code = 0x14,
.desc = "Counts the number of times when the HA was able to bypass was attempted. This is a latency optimization for situations when there is light loadings on the memory subsystem. This can be filted by when the bypass was taken and when it was not.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_bypass_imc,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_bypass_imc),
},
{ .name = "UNC_H_CONFLICT_CYCLES",
.code = 0xb,
.desc = "TBD",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_CLOCKTICKS",
.code = 0x0,
.desc = "Counts the number of uclks in the HA. This will be slightly different than the count in the Ubox because of enable/freeze delays. The HA is on the other side of the die from the fixed Ubox uclk counter, so the drift could be somewhat larger than in units that are closer like the QPI Agent.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_DIRECT2CORE_COUNT",
.code = 0x11,
.desc = "Number of Direct2Core messages sent",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_DIRECT2CORE_CYCLES_DISABLED",
.code = 0x12,
.desc = "Number of cycles in which Direct2Core was disabled",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_DIRECT2CORE_TXN_OVERRIDE",
.code = 0x13,
.desc = "Number of Reads where Direct2Core overridden",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_DIRECTORY_LAT_OPT",
.code = 0x41,
.desc = "Directory Latency Optimization Data Return Path Taken. When directory mode is enabled and the directory retuned for a read is Dir=I, then data can be returned using a faster path if certain conditions are met (credits, free pipeline, etc).",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_DIRECTORY_LOOKUP",
.code = 0xc,
.desc = "Counts the number of transactions that looked up the directory. Can be filtered by requests that had to snoop and those that did not have to.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_directory_lookup,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_directory_lookup),
},
{ .name = "UNC_H_DIRECTORY_UPDATE",
.code = 0xd,
.desc = "Counts the number of directory updates that were required. These result in writes to the memory controller. This can be filtered by directory sets and directory clears.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_directory_update,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_directory_update),
},
{ .name = "UNC_H_HITME_HIT",
.code = 0x71,
.desc = "TBD",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_hitme_hit,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_hitme_hit),
},
{ .name = "UNC_H_HITME_HIT_PV_BITS_SET",
.code = 0x72,
.desc = "TBD",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_hitme_hit_pv_bits_set,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_hitme_hit_pv_bits_set),
},
{ .name = "UNC_H_HITME_LOOKUP",
.code = 0x70,
.desc = "TBD",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_hitme_lookup,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_hitme_lookup),
},
{ .name = "UNC_H_IGR_NO_CREDIT_CYCLES",
.code = 0x22,
.desc = "Counts the number of cycles when the HA does not have credits to send messages to the QPI Agent. This can be filtered by the different credit pools and the different links.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_igr_no_credit_cycles,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_igr_no_credit_cycles),
},
{ .name = "UNC_H_IMC_READS",
.code = 0x17,
.desc = "Count of the number of reads issued to any of the memory controller channels. This can be filtered by the priority of the reads.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_imc_reads,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_imc_reads),
},
{ .name = "UNC_H_IMC_RETRY",
.code = 0x1e,
.desc = "TBD",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
},
{ .name = "UNC_H_IMC_WRITES",
.code = 0x1a,
.desc = "Counts the total number of full line writes issued from the HA into the memory controller. This counts for all four channels. It can be filtered by full/partial and ISOCH/non-ISOCH.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_imc_writes,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_imc_writes),
},
{ .name = "UNC_H_OSB",
.code = 0x53,
.desc = "Count of OSB snoop broadcasts. Counts by 1 per request causing OSB snoops to be broadcast. Does not count all the snoops generated by OSB.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_osb,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_osb),
},
{ .name = "UNC_H_OSB_EDR",
.code = 0x54,
.desc = "Counts the number of transactions that broadcast snoop due to OSB, but found clean data in memory and was able to do early data return",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_osb_edr,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_osb_edr),
},
{ .name = "UNC_H_REQUESTS",
.code = 0x1,
.desc = "Counts the total number of read requests made into the Home Agent. Reads include all read opcodes (including RFO). Writes include all writes (streaming, evictions, HitM, etc).",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_requests,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_requests),
},
{ .name = "UNC_H_RING_AD_USED",
.code = 0x3e,
.desc = "Counts the number of cycles that the AD ring is being used at this ring stop. This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_ring_ad_used,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_ring_ad_used),
},
{ .name = "UNC_H_RING_AK_USED",
.code = 0x3f,
.desc = "Counts the number of cycles that the AK ring is being used at this ring stop. This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_ring_ad_used,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_ring_ad_used),
},
{ .name = "UNC_H_RING_BL_USED",
.code = 0x40,
.desc = "Counts the number of cycles that the BL ring is being used at this ring stop. This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_ring_ad_used,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_ring_ad_used),
},
{ .name = "UNC_H_RPQ_CYCLES_NO_REG_CREDITS",
.code = 0x15,
.desc = "Counts the number of cycles when there are no regular credits available for posting reads from the HA into the iMC. In order to send reads into the memory controller, the HA must first acquire a credit for the iMCs RPQ (read pending queue). This queue is broken into regular credits/buffers that are used by general reads, and special requests such as ISOCH reads. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given iven time.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_rpq_cycles_no_reg_credits,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_rpq_cycles_no_reg_credits),
},
{ .name = "UNC_H_SBO0_CREDITS_ACQUIRED",
.code = 0x68,
.desc = "Number of Sbo 0 credits acquired in a given cycle, per ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_sbo0_credits_acquired,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_sbo0_credits_acquired),
},
{ .name = "UNC_H_SBO0_CREDIT_OCCUPANCY",
.code = 0x6a,
.desc = "Number of Sbo 0 credits in use in a given cycle, per ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_sbo0_credits_acquired,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_sbo0_credits_acquired),
},
{ .name = "UNC_H_SBO1_CREDITS_ACQUIRED",
.code = 0x69,
.desc = "Number of Sbo 1 credits acquired in a given cycle, per ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_sbo0_credits_acquired,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_sbo0_credits_acquired),
},
{ .name = "UNC_H_SBO1_CREDIT_OCCUPANCY",
.code = 0x6b,
.desc = "Number of Sbo 1 credits in use in a given cycle, per ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_sbo0_credits_acquired,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_sbo0_credits_acquired),
},
{ .name = "UNC_H_SNOOPS_RSP_AFTER_DATA",
.code = 0xa,
.desc = "Counts the number of reads when the snoop was on the critical path to the data return.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_snoops_rsp_after_data,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_snoops_rsp_after_data),
},
{ .name = "UNC_H_SNOOP_CYCLES_NE",
.code = 0x8,
.desc = "Counts cycles when one or more snoops are outstanding.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_snoop_cycles_ne,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_snoop_cycles_ne),
},
{ .name = "UNC_H_SNOOP_OCCUPANCY",
.code = 0x9,
.desc = "Accumulates the occupancy of either the local HA tracker pool that have snoops pending in every cycle. This can be used in conjection with the not empty stat to calculate average queue occupancy or the allocations stat in order to calculate average queue latency. HA trackers are allocated as soon as a request enters the HA if an HT (HomeTracker) entry is available and this occupancy is decremented when all the snoop responses have returned.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_snoop_occupancy,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_snoop_occupancy),
},
{ .name = "UNC_H_SNOOP_RESP",
.code = 0x21,
.desc = "Counts the total number of RspI snoop responses received. Whenever a snoops are issued, one or more snoop responses will be returned depending on the topology of the system. In systems larger than 2s, when multiple snoops are returned this will count all the snoops that are received. For example, if 3 snoops were issued and returned RspI, RspS, and RspSFwd; then each of these sub-events would increment by 1.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_snoop_resp,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_snoop_resp),
},
{ .name = "UNC_H_SNP_RESP_RECV_LOCAL",
.code = 0x60,
.desc = "Number of snoop responses received for a Local request",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_snp_resp_recv_local,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_snp_resp_recv_local),
},
{ .name = "UNC_H_STALL_NO_SBO_CREDIT",
.code = 0x6c,
.desc = "Number of cycles Egress is stalled waiting for an Sbo credit to become available. Per Sbo, per Ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_stall_no_sbo_credit,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_stall_no_sbo_credit),
},
{ .name = "UNC_H_TAD_REQUESTS_G0",
.code = 0x1b,
.desc = "Counts the number of HA requests to a given TAD region. There are up to 11 TAD (target address decode) regions in each home agent. All requests destined for the memory controller must first be decoded to determine which TAD region they are in. This event is filtered based on the TAD region ID, and covers regions 0 to 7. This event is useful for understanding how applications are using the memory that is spread across the different memory regions. It is particularly useful for Monroe systems that use the TAD to enable individual channels to enter self-refresh to save power.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tad_requests_g0,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tad_requests_g0),
},
{ .name = "UNC_H_TAD_REQUESTS_G1",
.code = 0x1c,
.desc = "Counts the number of HA requests to a given TAD region. There are up to 11 TAD (target address decode) regions in each home agent. All requests destined for the memory controller must first be decoded to determine which TAD region they are in. This event is filtered based on the TAD region ID, and covers regions 8 to 10. This event is useful for understanding how applications are using the memory that is spread across the different memory regions. It is particularly useful for Monroe systems that use the TAD to enable individual channels to enter self-refresh to save power.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tad_requests_g1,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tad_requests_g1),
},
{ .name = "UNC_H_TRACKER_CYCLES_FULL",
.code = 0x2,
.desc = "Counts the number of cycles when the local HA tracker pool is completely used. This can be used with edge detect to identify the number of situations when the pool became fully utilized. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, the system could be starved for RTIDs but not fill up the HA trackers. HA trackers are allocated as soon as a request enters the HA and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tracker_cycles_full,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tracker_cycles_full),
},
{ .name = "UNC_H_TRACKER_CYCLES_NE",
.code = 0x3,
.desc = "Counts the number of cycles when the local HA tracker pool is not empty. This can be used with edge detect to identify the number of situations when the pool became empty. This should not be confused with RTID credit usage -- which must be tracked inside each cbo individually -- but represents the actual tracker buffer structure. In other words, this buffer could be completely empty, but there may still be credits in use by the CBos. This stat can be used in conjunction with the occupancy accumulation stat in order to calculate average queue occpancy. HA trackers are allocated as soon as a request enters the HA if an HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tracker_cycles_ne,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tracker_cycles_ne),
},
{ .name = "UNC_H_TRACKER_OCCUPANCY",
.code = 0x4,
.desc = "Accumulates the occupancy of the local HA tracker pool in every cycle. This can be used in conjection with the not empty stat to calculate average queue occupancy or the allocations stat in order to calculate average queue latency. HA trackers are allocated as soon as a request enters the HA if a HT (Home Tracker) entry is available and is released after the snoop response and data return (or post in the case of a write) and the response is returned on the rhe ring.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tracker_occupancy,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tracker_occupancy),
},
{ .name = "UNC_H_TRACKER_PENDING_OCCUPANCY",
.code = 0x5,
.desc = "Accumulates the number of transactions that have data from the memory controller until they get scheduled to the Egress. This can be used to calculate the queuing latency for two things. (1) If the system is waiting for snoops, this will increase. (2) If the system cant schedule to the Egress because of either (a) Egress Credits or (b) QPI BL IGR credits for remote requestss.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_tracker_pending_occupancy,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_tracker_pending_occupancy),
},
{ .name = "UNC_H_TXR_AD_CYCLES_FULL",
.code = 0x2a,
.desc = "AD Egress Full",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_txr_ad_cycles_full,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_txr_ad_cycles_full),
},
{ .name = "UNC_H_TXR_AK_CYCLES_FULL",
.code = 0x32,
.desc = "AK Egress Full",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_txr_ad_cycles_full,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_txr_ad_cycles_full), /* shared */
},
{ .name = "UNC_H_TXR_BL",
.code = 0x10,
.desc = "Counts the number of DRS messages sent out on the BL ring. This can be filtered by the destination.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_txr_bl,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_txr_bl),
},
{ .name = "UNC_H_TXR_BL_CYCLES_FULL",
.code = 0x36,
.desc = "BL Egress Full",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_txr_ad_cycles_full,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_txr_ad_cycles_full), /* shared */
},
{ .name = "UNC_H_TXR_STARVED",
.code = 0x6d,
.desc = "Counts injection starvation. This starvation is triggered when the Egress cannot send a transaction onto the ring for a long period of time.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_txr_starved,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_txr_starved),
},
{ .name = "UNC_H_WPQ_CYCLES_NO_REG_CREDITS",
.code = 0x18,
.desc = "Counts the number of cycles when there are no regular credits available for posting writes from the HA into the iMC. In order to send writes into the memory controller, the HA must first acquire a credit for the iMCs WPQ (write pending queue). This queue is broken into regular credits/buffers that are used by general writes, and special requests such as ISOCH writes. This count only tracks the regular credits Common high banwidth workloads should be able to make use of all of the regular buffers, but it will be difficult (and uncommon) to make use of both the regular and special buffers at the same time. One can filter based on the memory controller channel. One or more channels can be tracked at a given iven time.",
.modmsk = BDX_UNC_HA_ATTRS,
.cntmsk = 0xf,
.ngrp = 1,
.umasks = bdx_unc_h_wpq_cycles_no_reg_credits,
.numasks= LIBPFM_ARRAY_SIZE(bdx_unc_h_wpq_cycles_no_reg_credits),
},
};
|