1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
|
--
-- AGGREGATES
--
-- directory paths are passed to us in environment variables
\getenv abs_srcdir PG_ABS_SRCDIR
-- avoid bit-exact output here because operations may not be bit-exact.
SET extra_float_digits = 0;
-- prepare some test data
CREATE TABLE aggtest (
a int2,
b float4
);
\set filename :abs_srcdir '/data/agg.data'
COPY aggtest FROM :'filename';
ANALYZE aggtest;
SELECT avg(four) AS avg_1 FROM onek;
SELECT avg(a) AS avg_32 FROM aggtest WHERE a < 100;
-- In 7.1, avg(float4) is computed using float8 arithmetic.
-- Round the result to 3 digits to avoid platform-specific results.
SELECT avg(b)::numeric(10,3) AS avg_107_943 FROM aggtest;
SELECT avg(gpa) AS avg_3_4 FROM ONLY student;
SELECT sum(four) AS sum_1500 FROM onek;
SELECT sum(a) AS sum_198 FROM aggtest;
SELECT sum(b) AS avg_431_773 FROM aggtest;
SELECT sum(gpa) AS avg_6_8 FROM ONLY student;
SELECT max(four) AS max_3 FROM onek;
SELECT max(a) AS max_100 FROM aggtest;
SELECT max(aggtest.b) AS max_324_78 FROM aggtest;
SELECT max(student.gpa) AS max_3_7 FROM student;
SELECT stddev_pop(b) FROM aggtest;
SELECT stddev_samp(b) FROM aggtest;
SELECT var_pop(b) FROM aggtest;
SELECT var_samp(b) FROM aggtest;
SELECT stddev_pop(b::numeric) FROM aggtest;
SELECT stddev_samp(b::numeric) FROM aggtest;
SELECT var_pop(b::numeric) FROM aggtest;
SELECT var_samp(b::numeric) FROM aggtest;
-- population variance is defined for a single tuple, sample variance
-- is not
SELECT var_pop(1.0::float8), var_samp(2.0::float8);
SELECT stddev_pop(3.0::float8), stddev_samp(4.0::float8);
SELECT var_pop('inf'::float8), var_samp('inf'::float8);
SELECT stddev_pop('inf'::float8), stddev_samp('inf'::float8);
SELECT var_pop('nan'::float8), var_samp('nan'::float8);
SELECT stddev_pop('nan'::float8), stddev_samp('nan'::float8);
SELECT var_pop(1.0::float4), var_samp(2.0::float4);
SELECT stddev_pop(3.0::float4), stddev_samp(4.0::float4);
SELECT var_pop('inf'::float4), var_samp('inf'::float4);
SELECT stddev_pop('inf'::float4), stddev_samp('inf'::float4);
SELECT var_pop('nan'::float4), var_samp('nan'::float4);
SELECT stddev_pop('nan'::float4), stddev_samp('nan'::float4);
SELECT var_pop(1.0::numeric), var_samp(2.0::numeric);
SELECT stddev_pop(3.0::numeric), stddev_samp(4.0::numeric);
SELECT var_pop('inf'::numeric), var_samp('inf'::numeric);
SELECT stddev_pop('inf'::numeric), stddev_samp('inf'::numeric);
SELECT var_pop('nan'::numeric), var_samp('nan'::numeric);
SELECT stddev_pop('nan'::numeric), stddev_samp('nan'::numeric);
-- verify correct results for null and NaN inputs
select sum(null::int4) from generate_series(1,3);
select sum(null::int8) from generate_series(1,3);
select sum(null::numeric) from generate_series(1,3);
select sum(null::float8) from generate_series(1,3);
select avg(null::int4) from generate_series(1,3);
select avg(null::int8) from generate_series(1,3);
select avg(null::numeric) from generate_series(1,3);
select avg(null::float8) from generate_series(1,3);
select sum('NaN'::numeric) from generate_series(1,3);
select avg('NaN'::numeric) from generate_series(1,3);
-- verify correct results for infinite inputs
SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
FROM (VALUES ('1'), ('infinity')) v(x);
SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
FROM (VALUES ('infinity'), ('1')) v(x);
SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
FROM (VALUES ('infinity'), ('infinity')) v(x);
SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
FROM (VALUES ('-infinity'), ('infinity')) v(x);
SELECT sum(x::float8), avg(x::float8), var_pop(x::float8)
FROM (VALUES ('-infinity'), ('-infinity')) v(x);
SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
FROM (VALUES ('1'), ('infinity')) v(x);
SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
FROM (VALUES ('infinity'), ('1')) v(x);
SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
FROM (VALUES ('infinity'), ('infinity')) v(x);
SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
FROM (VALUES ('-infinity'), ('infinity')) v(x);
SELECT sum(x::numeric), avg(x::numeric), var_pop(x::numeric)
FROM (VALUES ('-infinity'), ('-infinity')) v(x);
-- test accuracy with a large input offset
SELECT avg(x::float8), var_pop(x::float8)
FROM (VALUES (100000003), (100000004), (100000006), (100000007)) v(x);
SELECT avg(x::float8), var_pop(x::float8)
FROM (VALUES (7000000000005), (7000000000007)) v(x);
-- SQL2003 binary aggregates
SELECT regr_count(b, a) FROM aggtest;
SELECT regr_sxx(b, a) FROM aggtest;
SELECT regr_syy(b, a) FROM aggtest;
SELECT regr_sxy(b, a) FROM aggtest;
SELECT regr_avgx(b, a), regr_avgy(b, a) FROM aggtest;
SELECT regr_r2(b, a) FROM aggtest;
SELECT regr_slope(b, a), regr_intercept(b, a) FROM aggtest;
SELECT covar_pop(b, a), covar_samp(b, a) FROM aggtest;
SELECT corr(b, a) FROM aggtest;
-- check single-tuple behavior
SELECT covar_pop(1::float8,2::float8), covar_samp(3::float8,4::float8);
SELECT covar_pop(1::float8,'inf'::float8), covar_samp(3::float8,'inf'::float8);
SELECT covar_pop(1::float8,'nan'::float8), covar_samp(3::float8,'nan'::float8);
-- test accum and combine functions directly
CREATE TABLE regr_test (x float8, y float8);
INSERT INTO regr_test VALUES (10,150),(20,250),(30,350),(80,540),(100,200);
SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x)
FROM regr_test WHERE x IN (10,20,30,80);
SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x)
FROM regr_test;
SELECT float8_accum('{4,140,2900}'::float8[], 100);
SELECT float8_regr_accum('{4,140,2900,1290,83075,15050}'::float8[], 200, 100);
SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x)
FROM regr_test WHERE x IN (10,20,30);
SELECT count(*), sum(x), regr_sxx(y,x), sum(y),regr_syy(y,x), regr_sxy(y,x)
FROM regr_test WHERE x IN (80,100);
SELECT float8_combine('{3,60,200}'::float8[], '{0,0,0}'::float8[]);
SELECT float8_combine('{0,0,0}'::float8[], '{2,180,200}'::float8[]);
SELECT float8_combine('{3,60,200}'::float8[], '{2,180,200}'::float8[]);
SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[],
'{0,0,0,0,0,0}'::float8[]);
SELECT float8_regr_combine('{0,0,0,0,0,0}'::float8[],
'{2,180,200,740,57800,-3400}'::float8[]);
SELECT float8_regr_combine('{3,60,200,750,20000,2000}'::float8[],
'{2,180,200,740,57800,-3400}'::float8[]);
DROP TABLE regr_test;
-- test count, distinct
SELECT count(four) AS cnt_1000 FROM onek;
SELECT count(DISTINCT four) AS cnt_4 FROM onek;
select ten, count(*), sum(four) from onek
group by ten order by ten;
select ten, count(four), sum(DISTINCT four) from onek
group by ten order by ten;
-- user-defined aggregates
SELECT newavg(four) AS avg_1 FROM onek;
SELECT newsum(four) AS sum_1500 FROM onek;
SELECT newcnt(four) AS cnt_1000 FROM onek;
SELECT newcnt(*) AS cnt_1000 FROM onek;
SELECT oldcnt(*) AS cnt_1000 FROM onek;
SELECT sum2(q1,q2) FROM int8_tbl;
-- test for outer-level aggregates
-- this should work
select ten, sum(distinct four) from onek a
group by ten
having exists (select 1 from onek b where sum(distinct a.four) = b.four);
-- this should fail because subquery has an agg of its own in WHERE
select ten, sum(distinct four) from onek a
group by ten
having exists (select 1 from onek b
where sum(distinct a.four + b.four) = b.four);
-- Test handling of sublinks within outer-level aggregates.
-- Per bug report from Daniel Grace.
select
(select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1)))
from tenk1 o;
-- Test handling of Params within aggregate arguments in hashed aggregation.
-- Per bug report from Jeevan Chalke.
explain (verbose, costs off)
select s1, s2, sm
from generate_series(1, 3) s1,
lateral (select s2, sum(s1 + s2) sm
from generate_series(1, 3) s2 group by s2) ss
order by 1, 2;
select s1, s2, sm
from generate_series(1, 3) s1,
lateral (select s2, sum(s1 + s2) sm
from generate_series(1, 3) s2 group by s2) ss
order by 1, 2;
explain (verbose, costs off)
select array(select sum(x+y) s
from generate_series(1,3) y group by y order by s)
from generate_series(1,3) x;
select array(select sum(x+y) s
from generate_series(1,3) y group by y order by s)
from generate_series(1,3) x;
--
-- test for bitwise integer aggregates
--
CREATE TEMPORARY TABLE bitwise_test(
i2 INT2,
i4 INT4,
i8 INT8,
i INTEGER,
x INT2,
y BIT(4)
);
-- empty case
SELECT
BIT_AND(i2) AS "?",
BIT_OR(i4) AS "?",
BIT_XOR(i8) AS "?"
FROM bitwise_test;
COPY bitwise_test FROM STDIN NULL 'null';
1 1 1 1 1 B0101
3 3 3 null 2 B0100
7 7 7 3 4 B1100
\.
SELECT
BIT_AND(i2) AS "1",
BIT_AND(i4) AS "1",
BIT_AND(i8) AS "1",
BIT_AND(i) AS "?",
BIT_AND(x) AS "0",
BIT_AND(y) AS "0100",
BIT_OR(i2) AS "7",
BIT_OR(i4) AS "7",
BIT_OR(i8) AS "7",
BIT_OR(i) AS "?",
BIT_OR(x) AS "7",
BIT_OR(y) AS "1101",
BIT_XOR(i2) AS "5",
BIT_XOR(i4) AS "5",
BIT_XOR(i8) AS "5",
BIT_XOR(i) AS "?",
BIT_XOR(x) AS "7",
BIT_XOR(y) AS "1101"
FROM bitwise_test;
--
-- test boolean aggregates
--
-- first test all possible transition and final states
SELECT
-- boolean and transitions
-- null because strict
booland_statefunc(NULL, NULL) IS NULL AS "t",
booland_statefunc(TRUE, NULL) IS NULL AS "t",
booland_statefunc(FALSE, NULL) IS NULL AS "t",
booland_statefunc(NULL, TRUE) IS NULL AS "t",
booland_statefunc(NULL, FALSE) IS NULL AS "t",
-- and actual computations
booland_statefunc(TRUE, TRUE) AS "t",
NOT booland_statefunc(TRUE, FALSE) AS "t",
NOT booland_statefunc(FALSE, TRUE) AS "t",
NOT booland_statefunc(FALSE, FALSE) AS "t";
SELECT
-- boolean or transitions
-- null because strict
boolor_statefunc(NULL, NULL) IS NULL AS "t",
boolor_statefunc(TRUE, NULL) IS NULL AS "t",
boolor_statefunc(FALSE, NULL) IS NULL AS "t",
boolor_statefunc(NULL, TRUE) IS NULL AS "t",
boolor_statefunc(NULL, FALSE) IS NULL AS "t",
-- actual computations
boolor_statefunc(TRUE, TRUE) AS "t",
boolor_statefunc(TRUE, FALSE) AS "t",
boolor_statefunc(FALSE, TRUE) AS "t",
NOT boolor_statefunc(FALSE, FALSE) AS "t";
CREATE TEMPORARY TABLE bool_test(
b1 BOOL,
b2 BOOL,
b3 BOOL,
b4 BOOL);
-- empty case
SELECT
BOOL_AND(b1) AS "n",
BOOL_OR(b3) AS "n"
FROM bool_test;
COPY bool_test FROM STDIN NULL 'null';
TRUE null FALSE null
FALSE TRUE null null
null TRUE FALSE null
\.
SELECT
BOOL_AND(b1) AS "f",
BOOL_AND(b2) AS "t",
BOOL_AND(b3) AS "f",
BOOL_AND(b4) AS "n",
BOOL_AND(NOT b2) AS "f",
BOOL_AND(NOT b3) AS "t"
FROM bool_test;
SELECT
EVERY(b1) AS "f",
EVERY(b2) AS "t",
EVERY(b3) AS "f",
EVERY(b4) AS "n",
EVERY(NOT b2) AS "f",
EVERY(NOT b3) AS "t"
FROM bool_test;
SELECT
BOOL_OR(b1) AS "t",
BOOL_OR(b2) AS "t",
BOOL_OR(b3) AS "f",
BOOL_OR(b4) AS "n",
BOOL_OR(NOT b2) AS "f",
BOOL_OR(NOT b3) AS "t"
FROM bool_test;
--
-- Test cases that should be optimized into indexscans instead of
-- the generic aggregate implementation.
--
-- Basic cases
explain (costs off)
select min(unique1) from tenk1;
select min(unique1) from tenk1;
explain (costs off)
select max(unique1) from tenk1;
select max(unique1) from tenk1;
explain (costs off)
select max(unique1) from tenk1 where unique1 < 42;
select max(unique1) from tenk1 where unique1 < 42;
explain (costs off)
select max(unique1) from tenk1 where unique1 > 42;
select max(unique1) from tenk1 where unique1 > 42;
-- the planner may choose a generic aggregate here if parallel query is
-- enabled, since that plan will be parallel safe and the "optimized"
-- plan, which has almost identical cost, will not be. we want to test
-- the optimized plan, so temporarily disable parallel query.
begin;
set local max_parallel_workers_per_gather = 0;
explain (costs off)
select max(unique1) from tenk1 where unique1 > 42000;
select max(unique1) from tenk1 where unique1 > 42000;
rollback;
-- multi-column index (uses tenk1_thous_tenthous)
explain (costs off)
select max(tenthous) from tenk1 where thousand = 33;
select max(tenthous) from tenk1 where thousand = 33;
explain (costs off)
select min(tenthous) from tenk1 where thousand = 33;
select min(tenthous) from tenk1 where thousand = 33;
-- check parameter propagation into an indexscan subquery
explain (costs off)
select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt
from int4_tbl;
select f1, (select min(unique1) from tenk1 where unique1 > f1) AS gt
from int4_tbl;
-- check some cases that were handled incorrectly in 8.3.0
explain (costs off)
select distinct max(unique2) from tenk1;
select distinct max(unique2) from tenk1;
explain (costs off)
select max(unique2) from tenk1 order by 1;
select max(unique2) from tenk1 order by 1;
explain (costs off)
select max(unique2) from tenk1 order by max(unique2);
select max(unique2) from tenk1 order by max(unique2);
explain (costs off)
select max(unique2) from tenk1 order by max(unique2)+1;
select max(unique2) from tenk1 order by max(unique2)+1;
explain (costs off)
select max(unique2), generate_series(1,3) as g from tenk1 order by g desc;
select max(unique2), generate_series(1,3) as g from tenk1 order by g desc;
-- interesting corner case: constant gets optimized into a seqscan
explain (costs off)
select max(100) from tenk1;
select max(100) from tenk1;
-- try it on an inheritance tree
create table minmaxtest(f1 int);
create table minmaxtest1() inherits (minmaxtest);
create table minmaxtest2() inherits (minmaxtest);
create table minmaxtest3() inherits (minmaxtest);
create index minmaxtesti on minmaxtest(f1);
create index minmaxtest1i on minmaxtest1(f1);
create index minmaxtest2i on minmaxtest2(f1 desc);
create index minmaxtest3i on minmaxtest3(f1) where f1 is not null;
insert into minmaxtest values(11), (12);
insert into minmaxtest1 values(13), (14);
insert into minmaxtest2 values(15), (16);
insert into minmaxtest3 values(17), (18);
explain (costs off)
select min(f1), max(f1) from minmaxtest;
select min(f1), max(f1) from minmaxtest;
-- DISTINCT doesn't do anything useful here, but it shouldn't fail
explain (costs off)
select distinct min(f1), max(f1) from minmaxtest;
select distinct min(f1), max(f1) from minmaxtest;
drop table minmaxtest cascade;
-- check for correct detection of nested-aggregate errors
select max(min(unique1)) from tenk1;
select (select max(min(unique1)) from int8_tbl) from tenk1;
--
-- Test removal of redundant GROUP BY columns
--
create temp table t1 (a int, b int, c int, d int, primary key (a, b));
create temp table t2 (x int, y int, z int, primary key (x, y));
create temp table t3 (a int, b int, c int, primary key(a, b) deferrable);
-- Non-primary-key columns can be removed from GROUP BY
explain (costs off) select * from t1 group by a,b,c,d;
-- No removal can happen if the complete PK is not present in GROUP BY
explain (costs off) select a,c from t1 group by a,c,d;
-- Test removal across multiple relations
explain (costs off) select *
from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y
group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.y,t2.z;
-- Test case where t1 can be optimized but not t2
explain (costs off) select t1.*,t2.x,t2.z
from t1 inner join t2 on t1.a = t2.x and t1.b = t2.y
group by t1.a,t1.b,t1.c,t1.d,t2.x,t2.z;
-- Cannot optimize when PK is deferrable
explain (costs off) select * from t3 group by a,b,c;
create temp table t1c () inherits (t1);
-- Ensure we don't remove any columns when t1 has a child table
explain (costs off) select * from t1 group by a,b,c,d;
-- Okay to remove columns if we're only querying the parent.
explain (costs off) select * from only t1 group by a,b,c,d;
create temp table p_t1 (
a int,
b int,
c int,
d int,
primary key(a,b)
) partition by list(a);
create temp table p_t1_1 partition of p_t1 for values in(1);
create temp table p_t1_2 partition of p_t1 for values in(2);
-- Ensure we can remove non-PK columns for partitioned tables.
explain (costs off) select * from p_t1 group by a,b,c,d;
drop table t1 cascade;
drop table t2;
drop table t3;
drop table p_t1;
--
-- Test GROUP BY matching of join columns that are type-coerced due to USING
--
create temp table t1(f1 int, f2 bigint);
create temp table t2(f1 bigint, f22 bigint);
select f1 from t1 left join t2 using (f1) group by f1;
select f1 from t1 left join t2 using (f1) group by t1.f1;
select t1.f1 from t1 left join t2 using (f1) group by t1.f1;
-- only this one should fail:
select t1.f1 from t1 left join t2 using (f1) group by f1;
drop table t1, t2;
--
-- Test combinations of DISTINCT and/or ORDER BY
--
select array_agg(a order by b)
from (values (1,4),(2,3),(3,1),(4,2)) v(a,b);
select array_agg(a order by a)
from (values (1,4),(2,3),(3,1),(4,2)) v(a,b);
select array_agg(a order by a desc)
from (values (1,4),(2,3),(3,1),(4,2)) v(a,b);
select array_agg(b order by a desc)
from (values (1,4),(2,3),(3,1),(4,2)) v(a,b);
select array_agg(distinct a)
from (values (1),(2),(1),(3),(null),(2)) v(a);
select array_agg(distinct a order by a)
from (values (1),(2),(1),(3),(null),(2)) v(a);
select array_agg(distinct a order by a desc)
from (values (1),(2),(1),(3),(null),(2)) v(a);
select array_agg(distinct a order by a desc nulls last)
from (values (1),(2),(1),(3),(null),(2)) v(a);
-- multi-arg aggs, strict/nonstrict, distinct/order by
select aggfstr(a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select aggfns(a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select aggfstr(distinct a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
select aggfns(distinct a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
select aggfstr(distinct a,b,c order by b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
select aggfns(distinct a,b,c order by b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
-- test specific code paths
select aggfns(distinct a,a,c order by c using ~<~,a)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
select aggfns(distinct a,a,c order by c using ~<~)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
select aggfns(distinct a,a,c order by a)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
select aggfns(distinct a,b,c order by a,c using ~<~,b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
-- check node I/O via view creation and usage, also deparsing logic
create view agg_view1 as
select aggfns(a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(distinct a,b,c)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(distinct a,b,c order by b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,3) i;
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(a,b,c order by b+1)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(a,a,c order by b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(a,b,c order by c using ~<~)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c);
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
create or replace view agg_view1 as
select aggfns(distinct a,b,c order by a,c using ~<~,b)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
select * from agg_view1;
select pg_get_viewdef('agg_view1'::regclass);
drop view agg_view1;
-- incorrect DISTINCT usage errors
select aggfns(distinct a,b,c order by i)
from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i;
select aggfns(distinct a,b,c order by a,b+1)
from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i;
select aggfns(distinct a,b,c order by a,b,i,c)
from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i;
select aggfns(distinct a,a,c order by a,b)
from (values (1,1,'foo')) v(a,b,c), generate_series(1,2) i;
-- string_agg tests
select string_agg(a,',') from (values('aaaa'),('bbbb'),('cccc')) g(a);
select string_agg(a,',') from (values('aaaa'),(null),('bbbb'),('cccc')) g(a);
select string_agg(a,'AB') from (values(null),(null),('bbbb'),('cccc')) g(a);
select string_agg(a,',') from (values(null),(null)) g(a);
-- check some implicit casting cases, as per bug #5564
select string_agg(distinct f1, ',' order by f1) from varchar_tbl; -- ok
select string_agg(distinct f1::text, ',' order by f1) from varchar_tbl; -- not ok
select string_agg(distinct f1, ',' order by f1::text) from varchar_tbl; -- not ok
select string_agg(distinct f1::text, ',' order by f1::text) from varchar_tbl; -- ok
-- string_agg bytea tests
create table bytea_test_table(v bytea);
select string_agg(v, '') from bytea_test_table;
insert into bytea_test_table values(decode('ff','hex'));
select string_agg(v, '') from bytea_test_table;
insert into bytea_test_table values(decode('aa','hex'));
select string_agg(v, '') from bytea_test_table;
select string_agg(v, NULL) from bytea_test_table;
select string_agg(v, decode('ee', 'hex')) from bytea_test_table;
drop table bytea_test_table;
-- FILTER tests
select min(unique1) filter (where unique1 > 100) from tenk1;
select sum(1/ten) filter (where ten > 0) from tenk1;
select ten, sum(distinct four) filter (where four::text ~ '123') from onek a
group by ten;
select ten, sum(distinct four) filter (where four > 10) from onek a
group by ten
having exists (select 1 from onek b where sum(distinct a.four) = b.four);
select max(foo COLLATE "C") filter (where (bar collate "POSIX") > '0')
from (values ('a', 'b')) AS v(foo,bar);
-- outer reference in FILTER (PostgreSQL extension)
select (select count(*)
from (values (1)) t0(inner_c))
from (values (2),(3)) t1(outer_c); -- inner query is aggregation query
select (select count(*) filter (where outer_c <> 0)
from (values (1)) t0(inner_c))
from (values (2),(3)) t1(outer_c); -- outer query is aggregation query
select (select count(inner_c) filter (where outer_c <> 0)
from (values (1)) t0(inner_c))
from (values (2),(3)) t1(outer_c); -- inner query is aggregation query
select
(select max((select i.unique2 from tenk1 i where i.unique1 = o.unique1))
filter (where o.unique1 < 10))
from tenk1 o; -- outer query is aggregation query
-- subquery in FILTER clause (PostgreSQL extension)
select sum(unique1) FILTER (WHERE
unique1 IN (SELECT unique1 FROM onek where unique1 < 100)) FROM tenk1;
-- exercise lots of aggregate parts with FILTER
select aggfns(distinct a,b,c order by a,c using ~<~,b) filter (where a > 1)
from (values (1,3,'foo'),(0,null,null),(2,2,'bar'),(3,1,'baz')) v(a,b,c),
generate_series(1,2) i;
-- check handling of bare boolean Var in FILTER
select max(0) filter (where b1) from bool_test;
select (select max(0) filter (where b1)) from bool_test;
-- check for correct detection of nested-aggregate errors in FILTER
select max(unique1) filter (where sum(ten) > 0) from tenk1;
select (select max(unique1) filter (where sum(ten) > 0) from int8_tbl) from tenk1;
select max(unique1) filter (where bool_or(ten > 0)) from tenk1;
select (select max(unique1) filter (where bool_or(ten > 0)) from int8_tbl) from tenk1;
-- ordered-set aggregates
select p, percentile_cont(p) within group (order by x::float8)
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, percentile_cont(p order by p) within group (order by x) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, sum() within group (order by x::float8) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select p, percentile_cont(p,p) -- error
from generate_series(1,5) x,
(values (0::float8),(0.1),(0.25),(0.4),(0.5),(0.6),(0.75),(0.9),(1)) v(p)
group by p order by p;
select percentile_cont(0.5) within group (order by b) from aggtest;
select percentile_cont(0.5) within group (order by b), sum(b) from aggtest;
select percentile_cont(0.5) within group (order by thousand) from tenk1;
select percentile_disc(0.5) within group (order by thousand) from tenk1;
select rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select cume_dist(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select percent_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4),(5)) v(x);
select dense_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select percentile_disc(array[0,0.1,0.25,0.5,0.75,0.9,1]) within group (order by thousand)
from tenk1;
select percentile_cont(array[0,0.25,0.5,0.75,1]) within group (order by thousand)
from tenk1;
select percentile_disc(array[[null,1,0.5],[0.75,0.25,null]]) within group (order by thousand)
from tenk1;
select percentile_cont(array[0,1,0.25,0.75,0.5,1,0.3,0.32,0.35,0.38,0.4]) within group (order by x)
from generate_series(1,6) x;
select ten, mode() within group (order by string4) from tenk1 group by ten;
select percentile_disc(array[0.25,0.5,0.75]) within group (order by x)
from unnest('{fred,jim,fred,jack,jill,fred,jill,jim,jim,sheila,jim,sheila}'::text[]) u(x);
-- check collation propagates up in suitable cases:
select pg_collation_for(percentile_disc(1) within group (order by x collate "POSIX"))
from (values ('fred'),('jim')) v(x);
-- ordered-set aggs created with CREATE AGGREGATE
select test_rank(3) within group (order by x)
from (values (1),(1),(2),(2),(3),(3),(4)) v(x);
select test_percentile_disc(0.5) within group (order by thousand) from tenk1;
-- ordered-set aggs can't use ungrouped vars in direct args:
select rank(x) within group (order by x) from generate_series(1,5) x;
-- outer-level agg can't use a grouped arg of a lower level, either:
select array(select percentile_disc(a) within group (order by x)
from (values (0.3),(0.7)) v(a) group by a)
from generate_series(1,5) g(x);
-- agg in the direct args is a grouping violation, too:
select rank(sum(x)) within group (order by x) from generate_series(1,5) x;
-- hypothetical-set type unification and argument-count failures:
select rank(3) within group (order by x) from (values ('fred'),('jim')) v(x);
select rank(3) within group (order by stringu1,stringu2) from tenk1;
select rank('fred') within group (order by x) from generate_series(1,5) x;
select rank('adam'::text collate "C") within group (order by x collate "POSIX")
from (values ('fred'),('jim')) v(x);
-- hypothetical-set type unification successes:
select rank('adam'::varchar) within group (order by x) from (values ('fred'),('jim')) v(x);
select rank('3') within group (order by x) from generate_series(1,5) x;
-- divide by zero check
select percent_rank(0) within group (order by x) from generate_series(1,0) x;
-- deparse and multiple features:
create view aggordview1 as
select ten,
percentile_disc(0.5) within group (order by thousand) as p50,
percentile_disc(0.5) within group (order by thousand) filter (where hundred=1) as px,
rank(5,'AZZZZ',50) within group (order by hundred, string4 desc, hundred)
from tenk1
group by ten order by ten;
select pg_get_viewdef('aggordview1');
select * from aggordview1 order by ten;
drop view aggordview1;
-- variadic aggregates
select least_agg(q1,q2) from int8_tbl;
select least_agg(variadic array[q1,q2]) from int8_tbl;
select cleast_agg(q1,q2) from int8_tbl;
select cleast_agg(4.5,f1) from int4_tbl;
select cleast_agg(variadic array[4.5,f1]) from int4_tbl;
select pg_typeof(cleast_agg(variadic array[4.5,f1])) from int4_tbl;
-- test aggregates with common transition functions share the same states
begin work;
create type avg_state as (total bigint, count bigint);
create or replace function avg_transfn(state avg_state, n int) returns avg_state as
$$
declare new_state avg_state;
begin
raise notice 'avg_transfn called with %', n;
if state is null then
if n is not null then
new_state.total := n;
new_state.count := 1;
return new_state;
end if;
return null;
elsif n is not null then
state.total := state.total + n;
state.count := state.count + 1;
return state;
end if;
return null;
end
$$ language plpgsql;
create function avg_finalfn(state avg_state) returns int4 as
$$
begin
if state is null then
return NULL;
else
return state.total / state.count;
end if;
end
$$ language plpgsql;
create function sum_finalfn(state avg_state) returns int4 as
$$
begin
if state is null then
return NULL;
else
return state.total;
end if;
end
$$ language plpgsql;
create aggregate my_avg(int4)
(
stype = avg_state,
sfunc = avg_transfn,
finalfunc = avg_finalfn
);
create aggregate my_sum(int4)
(
stype = avg_state,
sfunc = avg_transfn,
finalfunc = sum_finalfn
);
-- aggregate state should be shared as aggs are the same.
select my_avg(one),my_avg(one) from (values(1),(3)) t(one);
-- aggregate state should be shared as transfn is the same for both aggs.
select my_avg(one),my_sum(one) from (values(1),(3)) t(one);
-- same as previous one, but with DISTINCT, which requires sorting the input.
select my_avg(distinct one),my_sum(distinct one) from (values(1),(3),(1)) t(one);
-- shouldn't share states due to the distinctness not matching.
select my_avg(distinct one),my_sum(one) from (values(1),(3)) t(one);
-- shouldn't share states due to the filter clause not matching.
select my_avg(one) filter (where one > 1),my_sum(one) from (values(1),(3)) t(one);
-- this should not share the state due to different input columns.
select my_avg(one),my_sum(two) from (values(1,2),(3,4)) t(one,two);
-- exercise cases where OSAs share state
select
percentile_cont(0.5) within group (order by a),
percentile_disc(0.5) within group (order by a)
from (values(1::float8),(3),(5),(7)) t(a);
select
percentile_cont(0.25) within group (order by a),
percentile_disc(0.5) within group (order by a)
from (values(1::float8),(3),(5),(7)) t(a);
-- these can't share state currently
select
rank(4) within group (order by a),
dense_rank(4) within group (order by a)
from (values(1),(3),(5),(7)) t(a);
-- test that aggs with the same sfunc and initcond share the same agg state
create aggregate my_sum_init(int4)
(
stype = avg_state,
sfunc = avg_transfn,
finalfunc = sum_finalfn,
initcond = '(10,0)'
);
create aggregate my_avg_init(int4)
(
stype = avg_state,
sfunc = avg_transfn,
finalfunc = avg_finalfn,
initcond = '(10,0)'
);
create aggregate my_avg_init2(int4)
(
stype = avg_state,
sfunc = avg_transfn,
finalfunc = avg_finalfn,
initcond = '(4,0)'
);
-- state should be shared if INITCONDs are matching
select my_sum_init(one),my_avg_init(one) from (values(1),(3)) t(one);
-- Varying INITCONDs should cause the states not to be shared.
select my_sum_init(one),my_avg_init2(one) from (values(1),(3)) t(one);
rollback;
-- test aggregate state sharing to ensure it works if one aggregate has a
-- finalfn and the other one has none.
begin work;
create or replace function sum_transfn(state int4, n int4) returns int4 as
$$
declare new_state int4;
begin
raise notice 'sum_transfn called with %', n;
if state is null then
if n is not null then
new_state := n;
return new_state;
end if;
return null;
elsif n is not null then
state := state + n;
return state;
end if;
return null;
end
$$ language plpgsql;
create function halfsum_finalfn(state int4) returns int4 as
$$
begin
if state is null then
return NULL;
else
return state / 2;
end if;
end
$$ language plpgsql;
create aggregate my_sum(int4)
(
stype = int4,
sfunc = sum_transfn
);
create aggregate my_half_sum(int4)
(
stype = int4,
sfunc = sum_transfn,
finalfunc = halfsum_finalfn
);
-- Agg state should be shared even though my_sum has no finalfn
select my_sum(one),my_half_sum(one) from (values(1),(2),(3),(4)) t(one);
rollback;
-- test that the aggregate transition logic correctly handles
-- transition / combine functions returning NULL
-- First test the case of a normal transition function returning NULL
BEGIN;
CREATE FUNCTION balkifnull(int8, int4)
RETURNS int8
STRICT
LANGUAGE plpgsql AS $$
BEGIN
IF $1 IS NULL THEN
RAISE 'erroneously called with NULL argument';
END IF;
RETURN NULL;
END$$;
CREATE AGGREGATE balk(int4)
(
SFUNC = balkifnull(int8, int4),
STYPE = int8,
PARALLEL = SAFE,
INITCOND = '0'
);
SELECT balk(hundred) FROM tenk1;
ROLLBACK;
-- Secondly test the case of a parallel aggregate combiner function
-- returning NULL. For that use normal transition function, but a
-- combiner function returning NULL.
BEGIN;
CREATE FUNCTION balkifnull(int8, int8)
RETURNS int8
PARALLEL SAFE
STRICT
LANGUAGE plpgsql AS $$
BEGIN
IF $1 IS NULL THEN
RAISE 'erroneously called with NULL argument';
END IF;
RETURN NULL;
END$$;
CREATE AGGREGATE balk(int4)
(
SFUNC = int4_sum(int8, int4),
STYPE = int8,
COMBINEFUNC = balkifnull(int8, int8),
PARALLEL = SAFE,
INITCOND = '0'
);
-- force use of parallelism
ALTER TABLE tenk1 set (parallel_workers = 4);
SET LOCAL parallel_setup_cost=0;
SET LOCAL max_parallel_workers_per_gather=4;
EXPLAIN (COSTS OFF) SELECT balk(hundred) FROM tenk1;
SELECT balk(hundred) FROM tenk1;
ROLLBACK;
-- test coverage for aggregate combine/serial/deserial functions
BEGIN;
SET parallel_setup_cost = 0;
SET parallel_tuple_cost = 0;
SET min_parallel_table_scan_size = 0;
SET max_parallel_workers_per_gather = 4;
SET parallel_leader_participation = off;
SET enable_indexonlyscan = off;
-- variance(int4) covers numeric_poly_combine
-- sum(int8) covers int8_avg_combine
-- regr_count(float8, float8) covers int8inc_float8_float8 and aggregates with > 1 arg
EXPLAIN (COSTS OFF, VERBOSE)
SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8)
FROM (SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1) u;
SELECT variance(unique1::int4), sum(unique1::int8), regr_count(unique1::float8, unique1::float8)
FROM (SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1) u;
-- variance(int8) covers numeric_combine
-- avg(numeric) covers numeric_avg_combine
EXPLAIN (COSTS OFF, VERBOSE)
SELECT variance(unique1::int8), avg(unique1::numeric)
FROM (SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1) u;
SELECT variance(unique1::int8), avg(unique1::numeric)
FROM (SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1
UNION ALL SELECT * FROM tenk1) u;
ROLLBACK;
-- test coverage for dense_rank
SELECT dense_rank(x) WITHIN GROUP (ORDER BY x) FROM (VALUES (1),(1),(2),(2),(3),(3)) v(x) GROUP BY (x) ORDER BY 1;
-- Ensure that the STRICT checks for aggregates does not take NULLness
-- of ORDER BY columns into account. See bug report around
-- 2a505161-2727-2473-7c46-591ed108ac52@email.cz
SELECT min(x ORDER BY y) FROM (VALUES(1, NULL)) AS d(x,y);
SELECT min(x ORDER BY y) FROM (VALUES(1, 2)) AS d(x,y);
-- check collation-sensitive matching between grouping expressions
select v||'a', case v||'a' when 'aa' then 1 else 0 end, count(*)
from unnest(array['a','b']) u(v)
group by v||'a' order by 1;
select v||'a', case when v||'a' = 'aa' then 1 else 0 end, count(*)
from unnest(array['a','b']) u(v)
group by v||'a' order by 1;
-- Make sure that generation of HashAggregate for uniqification purposes
-- does not lead to array overflow due to unexpected duplicate hash keys
-- see CAFeeJoKKu0u+A_A9R9316djW-YW3-+Gtgvy3ju655qRHR3jtdA@mail.gmail.com
set enable_memoize to off;
explain (costs off)
select 1 from tenk1
where (hundred, thousand) in (select twothousand, twothousand from onek);
reset enable_memoize;
--
-- Hash Aggregation Spill tests
--
set enable_sort=false;
set work_mem='64kB';
select unique1, count(*), sum(twothousand) from tenk1
group by unique1
having sum(fivethous) > 4975
order by sum(twothousand);
set work_mem to default;
set enable_sort to default;
--
-- Compare results between plans using sorting and plans using hash
-- aggregation. Force spilling in both cases by setting work_mem low.
--
set work_mem='64kB';
create table agg_data_2k as
select g from generate_series(0, 1999) g;
analyze agg_data_2k;
create table agg_data_20k as
select g from generate_series(0, 19999) g;
analyze agg_data_20k;
-- Produce results with sorting.
set enable_hashagg = false;
set jit_above_cost = 0;
explain (costs off)
select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3
from agg_data_20k group by g%10000;
create table agg_group_1 as
select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3
from agg_data_20k group by g%10000;
create table agg_group_2 as
select * from
(values (100), (300), (500)) as r(a),
lateral (
select (g/2)::numeric as c1,
array_agg(g::numeric) as c2,
count(*) as c3
from agg_data_2k
where g < r.a
group by g/2) as s;
set jit_above_cost to default;
create table agg_group_3 as
select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3
from agg_data_2k group by g/2;
create table agg_group_4 as
select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3
from agg_data_2k group by g/2;
-- Produce results with hash aggregation
set enable_hashagg = true;
set enable_sort = false;
set jit_above_cost = 0;
explain (costs off)
select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3
from agg_data_20k group by g%10000;
create table agg_hash_1 as
select g%10000 as c1, sum(g::numeric) as c2, count(*) as c3
from agg_data_20k group by g%10000;
create table agg_hash_2 as
select * from
(values (100), (300), (500)) as r(a),
lateral (
select (g/2)::numeric as c1,
array_agg(g::numeric) as c2,
count(*) as c3
from agg_data_2k
where g < r.a
group by g/2) as s;
set jit_above_cost to default;
create table agg_hash_3 as
select (g/2)::numeric as c1, sum(7::int4) as c2, count(*) as c3
from agg_data_2k group by g/2;
create table agg_hash_4 as
select (g/2)::numeric as c1, array_agg(g::numeric) as c2, count(*) as c3
from agg_data_2k group by g/2;
set enable_sort = true;
set work_mem to default;
-- Compare group aggregation results to hash aggregation results
(select * from agg_hash_1 except select * from agg_group_1)
union all
(select * from agg_group_1 except select * from agg_hash_1);
(select * from agg_hash_2 except select * from agg_group_2)
union all
(select * from agg_group_2 except select * from agg_hash_2);
(select * from agg_hash_3 except select * from agg_group_3)
union all
(select * from agg_group_3 except select * from agg_hash_3);
(select * from agg_hash_4 except select * from agg_group_4)
union all
(select * from agg_group_4 except select * from agg_hash_4);
drop table agg_group_1;
drop table agg_group_2;
drop table agg_group_3;
drop table agg_group_4;
drop table agg_hash_1;
drop table agg_hash_2;
drop table agg_hash_3;
drop table agg_hash_4;
|