1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
--
-- SUBSELECT
--
SELECT 1 AS one WHERE 1 IN (SELECT 1);
SELECT 1 AS zero WHERE 1 NOT IN (SELECT 1);
SELECT 1 AS zero WHERE 1 IN (SELECT 2);
-- Check grammar's handling of extra parens in assorted contexts
SELECT * FROM (SELECT 1 AS x) ss;
SELECT * FROM ((SELECT 1 AS x)) ss;
SELECT * FROM ((SELECT 1 AS x)), ((SELECT * FROM ((SELECT 2 AS y))));
(SELECT 2) UNION SELECT 2;
((SELECT 2)) UNION SELECT 2;
SELECT ((SELECT 2) UNION SELECT 2);
SELECT (((SELECT 2)) UNION SELECT 2);
SELECT (SELECT ARRAY[1,2,3])[1];
SELECT ((SELECT ARRAY[1,2,3]))[2];
SELECT (((SELECT ARRAY[1,2,3])))[3];
-- Set up some simple test tables
CREATE TABLE SUBSELECT_TBL (
f1 integer,
f2 integer,
f3 float
);
INSERT INTO SUBSELECT_TBL VALUES (1, 2, 3);
INSERT INTO SUBSELECT_TBL VALUES (2, 3, 4);
INSERT INTO SUBSELECT_TBL VALUES (3, 4, 5);
INSERT INTO SUBSELECT_TBL VALUES (1, 1, 1);
INSERT INTO SUBSELECT_TBL VALUES (2, 2, 2);
INSERT INTO SUBSELECT_TBL VALUES (3, 3, 3);
INSERT INTO SUBSELECT_TBL VALUES (6, 7, 8);
INSERT INTO SUBSELECT_TBL VALUES (8, 9, NULL);
SELECT * FROM SUBSELECT_TBL;
-- Uncorrelated subselects
SELECT f1 AS "Constant Select" FROM SUBSELECT_TBL
WHERE f1 IN (SELECT 1);
SELECT f1 AS "Uncorrelated Field" FROM SUBSELECT_TBL
WHERE f1 IN (SELECT f2 FROM SUBSELECT_TBL);
SELECT f1 AS "Uncorrelated Field" FROM SUBSELECT_TBL
WHERE f1 IN (SELECT f2 FROM SUBSELECT_TBL WHERE
f2 IN (SELECT f1 FROM SUBSELECT_TBL));
SELECT f1, f2
FROM SUBSELECT_TBL
WHERE (f1, f2) NOT IN (SELECT f2, CAST(f3 AS int4) FROM SUBSELECT_TBL
WHERE f3 IS NOT NULL);
-- Correlated subselects
SELECT f1 AS "Correlated Field", f2 AS "Second Field"
FROM SUBSELECT_TBL upper
WHERE f1 IN (SELECT f2 FROM SUBSELECT_TBL WHERE f1 = upper.f1);
SELECT f1 AS "Correlated Field", f3 AS "Second Field"
FROM SUBSELECT_TBL upper
WHERE f1 IN
(SELECT f2 FROM SUBSELECT_TBL WHERE CAST(upper.f2 AS float) = f3);
SELECT f1 AS "Correlated Field", f3 AS "Second Field"
FROM SUBSELECT_TBL upper
WHERE f3 IN (SELECT upper.f1 + f2 FROM SUBSELECT_TBL
WHERE f2 = CAST(f3 AS integer));
SELECT f1 AS "Correlated Field"
FROM SUBSELECT_TBL
WHERE (f1, f2) IN (SELECT f2, CAST(f3 AS int4) FROM SUBSELECT_TBL
WHERE f3 IS NOT NULL);
-- Check ROWCOMPARE cases, both correlated and not
EXPLAIN (VERBOSE, COSTS OFF)
SELECT ROW(1, 2) = (SELECT f1, f2) AS eq FROM SUBSELECT_TBL;
SELECT ROW(1, 2) = (SELECT f1, f2) AS eq FROM SUBSELECT_TBL;
EXPLAIN (VERBOSE, COSTS OFF)
SELECT ROW(1, 2) = (SELECT 3, 4) AS eq FROM SUBSELECT_TBL;
SELECT ROW(1, 2) = (SELECT 3, 4) AS eq FROM SUBSELECT_TBL;
SELECT ROW(1, 2) = (SELECT f1, f2 FROM SUBSELECT_TBL); -- error
-- Subselects without aliases
SELECT count FROM (SELECT COUNT(DISTINCT name) FROM road);
SELECT COUNT(*) FROM (SELECT DISTINCT name FROM road);
SELECT * FROM (SELECT * FROM int4_tbl), (VALUES (123456)) WHERE f1 = column1;
CREATE VIEW view_unnamed_ss AS
SELECT * FROM (SELECT * FROM (SELECT abs(f1) AS a1 FROM int4_tbl)),
(SELECT * FROM int8_tbl)
WHERE a1 < 10 AND q1 > a1 ORDER BY q1, q2;
SELECT * FROM view_unnamed_ss;
\sv view_unnamed_ss
DROP VIEW view_unnamed_ss;
-- Test matching of locking clause to correct alias
CREATE VIEW view_unnamed_ss_locking AS
SELECT * FROM (SELECT * FROM int4_tbl), int8_tbl AS unnamed_subquery
WHERE f1 = q1
FOR UPDATE OF unnamed_subquery;
\sv view_unnamed_ss_locking
DROP VIEW view_unnamed_ss_locking;
--
-- Use some existing tables in the regression test
--
SELECT ss.f1 AS "Correlated Field", ss.f3 AS "Second Field"
FROM SUBSELECT_TBL ss
WHERE f1 NOT IN (SELECT f1+1 FROM INT4_TBL
WHERE f1 != ss.f1 AND f1 < 2147483647);
select q1, float8(count(*)) / (select count(*) from int8_tbl)
from int8_tbl group by q1 order by q1;
-- Unspecified-type literals in output columns should resolve as text
SELECT *, pg_typeof(f1) FROM
(SELECT 'foo' AS f1 FROM generate_series(1,3)) ss ORDER BY 1;
-- ... unless there's context to suggest differently
explain (verbose, costs off) select '42' union all select '43';
explain (verbose, costs off) select '42' union all select 43;
-- check materialization of an initplan reference (bug #14524)
explain (verbose, costs off)
select 1 = all (select (select 1));
select 1 = all (select (select 1));
--
-- Check EXISTS simplification with LIMIT
--
explain (costs off)
select * from int4_tbl o where exists
(select 1 from int4_tbl i where i.f1=o.f1 limit null);
explain (costs off)
select * from int4_tbl o where not exists
(select 1 from int4_tbl i where i.f1=o.f1 limit 1);
explain (costs off)
select * from int4_tbl o where exists
(select 1 from int4_tbl i where i.f1=o.f1 limit 0);
--
-- Test cases to catch unpleasant interactions between IN-join processing
-- and subquery pullup.
--
select count(*) from
(select 1 from tenk1 a
where unique1 IN (select hundred from tenk1 b)) ss;
select count(distinct ss.ten) from
(select ten from tenk1 a
where unique1 IN (select hundred from tenk1 b)) ss;
select count(*) from
(select 1 from tenk1 a
where unique1 IN (select distinct hundred from tenk1 b)) ss;
select count(distinct ss.ten) from
(select ten from tenk1 a
where unique1 IN (select distinct hundred from tenk1 b)) ss;
--
-- Test cases to check for overenthusiastic optimization of
-- "IN (SELECT DISTINCT ...)" and related cases. Per example from
-- Luca Pireddu and Michael Fuhr.
--
CREATE TEMP TABLE foo (id integer);
CREATE TEMP TABLE bar (id1 integer, id2 integer);
INSERT INTO foo VALUES (1);
INSERT INTO bar VALUES (1, 1);
INSERT INTO bar VALUES (2, 2);
INSERT INTO bar VALUES (3, 1);
-- These cases require an extra level of distinct-ing above subquery s
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT DISTINCT id1, id2 FROM bar) AS s);
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT id1,id2 FROM bar GROUP BY id1,id2) AS s);
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT id1, id2 FROM bar UNION
SELECT id1, id2 FROM bar) AS s);
-- These cases do not
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT DISTINCT ON (id2) id1, id2 FROM bar) AS s);
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT id2 FROM bar GROUP BY id2) AS s);
SELECT * FROM foo WHERE id IN
(SELECT id2 FROM (SELECT id2 FROM bar UNION
SELECT id2 FROM bar) AS s);
--
-- Test case to catch problems with multiply nested sub-SELECTs not getting
-- recalculated properly. Per bug report from Didier Moens.
--
CREATE TABLE orderstest (
approver_ref integer,
po_ref integer,
ordercanceled boolean
);
INSERT INTO orderstest VALUES (1, 1, false);
INSERT INTO orderstest VALUES (66, 5, false);
INSERT INTO orderstest VALUES (66, 6, false);
INSERT INTO orderstest VALUES (66, 7, false);
INSERT INTO orderstest VALUES (66, 1, true);
INSERT INTO orderstest VALUES (66, 8, false);
INSERT INTO orderstest VALUES (66, 1, false);
INSERT INTO orderstest VALUES (77, 1, false);
INSERT INTO orderstest VALUES (1, 1, false);
INSERT INTO orderstest VALUES (66, 1, false);
INSERT INTO orderstest VALUES (1, 1, false);
CREATE VIEW orders_view AS
SELECT *,
(SELECT CASE
WHEN ord.approver_ref=1 THEN '---' ELSE 'Approved'
END) AS "Approved",
(SELECT CASE
WHEN ord.ordercanceled
THEN 'Canceled'
ELSE
(SELECT CASE
WHEN ord.po_ref=1
THEN
(SELECT CASE
WHEN ord.approver_ref=1
THEN '---'
ELSE 'Approved'
END)
ELSE 'PO'
END)
END) AS "Status",
(CASE
WHEN ord.ordercanceled
THEN 'Canceled'
ELSE
(CASE
WHEN ord.po_ref=1
THEN
(CASE
WHEN ord.approver_ref=1
THEN '---'
ELSE 'Approved'
END)
ELSE 'PO'
END)
END) AS "Status_OK"
FROM orderstest ord;
SELECT * FROM orders_view;
DROP TABLE orderstest cascade;
--
-- Test cases to catch situations where rule rewriter fails to propagate
-- hasSubLinks flag correctly. Per example from Kyle Bateman.
--
create temp table parts (
partnum text,
cost float8
);
create temp table shipped (
ttype char(2),
ordnum int4,
partnum text,
value float8
);
create temp view shipped_view as
select * from shipped where ttype = 'wt';
create rule shipped_view_insert as on insert to shipped_view do instead
insert into shipped values('wt', new.ordnum, new.partnum, new.value);
insert into parts (partnum, cost) values (1, 1234.56);
insert into shipped_view (ordnum, partnum, value)
values (0, 1, (select cost from parts where partnum = '1'));
select * from shipped_view;
create rule shipped_view_update as on update to shipped_view do instead
update shipped set partnum = new.partnum, value = new.value
where ttype = new.ttype and ordnum = new.ordnum;
update shipped_view set value = 11
from int4_tbl a join int4_tbl b
on (a.f1 = (select f1 from int4_tbl c where c.f1=b.f1))
where ordnum = a.f1;
select * from shipped_view;
select f1, ss1 as relabel from
(select *, (select sum(f1) from int4_tbl b where f1 >= a.f1) as ss1
from int4_tbl a) ss;
--
-- Test cases involving PARAM_EXEC parameters and min/max index optimizations.
-- Per bug report from David Sanchez i Gregori.
--
select * from (
select max(unique1) from tenk1 as a
where exists (select 1 from tenk1 as b where b.thousand = a.unique2)
) ss;
select * from (
select min(unique1) from tenk1 as a
where not exists (select 1 from tenk1 as b where b.unique2 = 10000)
) ss;
--
-- Test that an IN implemented using a UniquePath does unique-ification
-- with the right semantics, as per bug #4113. (Unfortunately we have
-- no simple way to ensure that this test case actually chooses that type
-- of plan, but it does in releases 7.4-8.3. Note that an ordering difference
-- here might mean that some other plan type is being used, rendering the test
-- pointless.)
--
create temp table numeric_table (num_col numeric);
insert into numeric_table values (1), (1.000000000000000000001), (2), (3);
create temp table float_table (float_col float8);
insert into float_table values (1), (2), (3);
select * from float_table
where float_col in (select num_col from numeric_table);
select * from numeric_table
where num_col in (select float_col from float_table);
--
-- Test case for bug #4290: bogus calculation of subplan param sets
--
create temp table ta (id int primary key, val int);
insert into ta values(1,1);
insert into ta values(2,2);
create temp table tb (id int primary key, aval int);
insert into tb values(1,1);
insert into tb values(2,1);
insert into tb values(3,2);
insert into tb values(4,2);
create temp table tc (id int primary key, aid int);
insert into tc values(1,1);
insert into tc values(2,2);
select
( select min(tb.id) from tb
where tb.aval = (select ta.val from ta where ta.id = tc.aid) ) as min_tb_id
from tc;
--
-- Test case for 8.3 "failed to locate grouping columns" bug
--
create temp table t1 (f1 numeric(14,0), f2 varchar(30));
select * from
(select distinct f1, f2, (select f2 from t1 x where x.f1 = up.f1) as fs
from t1 up) ss
group by f1,f2,fs;
--
-- Test case for bug #5514 (mishandling of whole-row Vars in subselects)
--
create temp table table_a(id integer);
insert into table_a values (42);
create temp view view_a as select * from table_a;
select view_a from view_a;
select (select view_a) from view_a;
select (select (select view_a)) from view_a;
select (select (a.*)::text) from view_a a;
--
-- Check that whole-row Vars reading the result of a subselect don't include
-- any junk columns therein
--
select q from (select max(f1) from int4_tbl group by f1 order by f1) q;
with q as (select max(f1) from int4_tbl group by f1 order by f1)
select q from q;
--
-- Test case for sublinks pulled up into joinaliasvars lists in an
-- inherited update/delete query
--
begin; -- this shouldn't delete anything, but be safe
delete from road
where exists (
select 1
from
int4_tbl cross join
( select f1, array(select q1 from int8_tbl) as arr
from text_tbl ) ss
where road.name = ss.f1 );
rollback;
--
-- Test case for sublinks pushed down into subselects via join alias expansion
--
select
(select sq1) as qq1
from
(select exists(select 1 from int4_tbl where f1 = q2) as sq1, 42 as dummy
from int8_tbl) sq0
join
int4_tbl i4 on dummy = i4.f1;
--
-- Test case for subselect within UPDATE of INSERT...ON CONFLICT DO UPDATE
--
create temp table upsert(key int4 primary key, val text);
insert into upsert values(1, 'val') on conflict (key) do update set val = 'not seen';
insert into upsert values(1, 'val') on conflict (key) do update set val = 'seen with subselect ' || (select f1 from int4_tbl where f1 != 0 limit 1)::text;
select * from upsert;
with aa as (select 'int4_tbl' u from int4_tbl limit 1)
insert into upsert values (1, 'x'), (999, 'y')
on conflict (key) do update set val = (select u from aa)
returning *;
--
-- Test case for cross-type partial matching in hashed subplan (bug #7597)
--
create temp table outer_7597 (f1 int4, f2 int4);
insert into outer_7597 values (0, 0);
insert into outer_7597 values (1, 0);
insert into outer_7597 values (0, null);
insert into outer_7597 values (1, null);
create temp table inner_7597(c1 int8, c2 int8);
insert into inner_7597 values(0, null);
select * from outer_7597 where (f1, f2) not in (select * from inner_7597);
--
-- Similar test case using text that verifies that collation
-- information is passed through by execTuplesEqual() in nodeSubplan.c
-- (otherwise it would error in texteq())
--
create temp table outer_text (f1 text, f2 text);
insert into outer_text values ('a', 'a');
insert into outer_text values ('b', 'a');
insert into outer_text values ('a', null);
insert into outer_text values ('b', null);
create temp table inner_text (c1 text, c2 text);
insert into inner_text values ('a', null);
insert into inner_text values ('123', '456');
select * from outer_text where (f1, f2) not in (select * from inner_text);
--
-- Another test case for cross-type hashed subplans: comparison of
-- inner-side values must be done with appropriate operator
--
explain (verbose, costs off)
select 'foo'::text in (select 'bar'::name union all select 'bar'::name);
select 'foo'::text in (select 'bar'::name union all select 'bar'::name);
--
-- Test that we don't try to hash nested records (bug #17363)
-- (Hashing could be supported, but for now we don't)
--
explain (verbose, costs off)
select row(row(row(1))) = any (select row(row(1)));
select row(row(row(1))) = any (select row(row(1)));
--
-- Test case for premature memory release during hashing of subplan output
--
select '1'::text in (select '1'::name union all select '1'::name);
--
-- Test that we don't try to use a hashed subplan if the simplified
-- testexpr isn't of the right shape
--
-- this fails by default, of course
select * from int8_tbl where q1 in (select c1 from inner_text);
begin;
-- make an operator to allow it to succeed
create function bogus_int8_text_eq(int8, text) returns boolean
language sql as 'select $1::text = $2';
create operator = (procedure=bogus_int8_text_eq, leftarg=int8, rightarg=text);
explain (costs off)
select * from int8_tbl where q1 in (select c1 from inner_text);
select * from int8_tbl where q1 in (select c1 from inner_text);
-- inlining of this function results in unusual number of hash clauses,
-- which we can still cope with
create or replace function bogus_int8_text_eq(int8, text) returns boolean
language sql as 'select $1::text = $2 and $1::text = $2';
explain (costs off)
select * from int8_tbl where q1 in (select c1 from inner_text);
select * from int8_tbl where q1 in (select c1 from inner_text);
-- inlining of this function causes LHS and RHS to be switched,
-- which we can't cope with, so hashing should be abandoned
create or replace function bogus_int8_text_eq(int8, text) returns boolean
language sql as 'select $2 = $1::text';
explain (costs off)
select * from int8_tbl where q1 in (select c1 from inner_text);
select * from int8_tbl where q1 in (select c1 from inner_text);
rollback; -- to get rid of the bogus operator
--
-- Test resolution of hashed vs non-hashed implementation of EXISTS subplan
--
explain (costs off)
select count(*) from tenk1 t
where (exists(select 1 from tenk1 k where k.unique1 = t.unique2) or ten < 0);
select count(*) from tenk1 t
where (exists(select 1 from tenk1 k where k.unique1 = t.unique2) or ten < 0);
explain (costs off)
select count(*) from tenk1 t
where (exists(select 1 from tenk1 k where k.unique1 = t.unique2) or ten < 0)
and thousand = 1;
select count(*) from tenk1 t
where (exists(select 1 from tenk1 k where k.unique1 = t.unique2) or ten < 0)
and thousand = 1;
-- It's possible for the same EXISTS to get resolved both ways
create temp table exists_tbl (c1 int, c2 int, c3 int) partition by list (c1);
create temp table exists_tbl_null partition of exists_tbl for values in (null);
create temp table exists_tbl_def partition of exists_tbl default;
insert into exists_tbl select x, x/2, x+1 from generate_series(0,10) x;
analyze exists_tbl;
explain (costs off)
select * from exists_tbl t1
where (exists(select 1 from exists_tbl t2 where t1.c1 = t2.c2) or c3 < 0);
select * from exists_tbl t1
where (exists(select 1 from exists_tbl t2 where t1.c1 = t2.c2) or c3 < 0);
--
-- Test case for planner bug with nested EXISTS handling
--
select a.thousand from tenk1 a, tenk1 b
where a.thousand = b.thousand
and exists ( select 1 from tenk1 c where b.hundred = c.hundred
and not exists ( select 1 from tenk1 d
where a.thousand = d.thousand ) );
--
-- Check that nested sub-selects are not pulled up if they contain volatiles
--
explain (verbose, costs off)
select x, x from
(select (select now()) as x from (values(1),(2)) v(y)) ss;
explain (verbose, costs off)
select x, x from
(select (select random()) as x from (values(1),(2)) v(y)) ss;
explain (verbose, costs off)
select x, x from
(select (select now() where y=y) as x from (values(1),(2)) v(y)) ss;
explain (verbose, costs off)
select x, x from
(select (select random() where y=y) as x from (values(1),(2)) v(y)) ss;
--
-- Test rescan of a hashed subplan (the use of random() is to prevent the
-- sub-select from being pulled up, which would result in not hashing)
--
explain (verbose, costs off)
select sum(ss.tst::int) from
onek o cross join lateral (
select i.ten in (select f1 from int4_tbl where f1 <= o.hundred) as tst,
random() as r
from onek i where i.unique1 = o.unique1 ) ss
where o.ten = 0;
select sum(ss.tst::int) from
onek o cross join lateral (
select i.ten in (select f1 from int4_tbl where f1 <= o.hundred) as tst,
random() as r
from onek i where i.unique1 = o.unique1 ) ss
where o.ten = 0;
--
-- Test rescan of a SetOp node
--
explain (costs off)
select count(*) from
onek o cross join lateral (
select * from onek i1 where i1.unique1 = o.unique1
except
select * from onek i2 where i2.unique1 = o.unique2
) ss
where o.ten = 1;
select count(*) from
onek o cross join lateral (
select * from onek i1 where i1.unique1 = o.unique1
except
select * from onek i2 where i2.unique1 = o.unique2
) ss
where o.ten = 1;
--
-- Test rescan of a RecursiveUnion node
--
explain (costs off)
select sum(o.four), sum(ss.a) from
onek o cross join lateral (
with recursive x(a) as
(select o.four as a
union
select a + 1 from x
where a < 10)
select * from x
) ss
where o.ten = 1;
select sum(o.four), sum(ss.a) from
onek o cross join lateral (
with recursive x(a) as
(select o.four as a
union
select a + 1 from x
where a < 10)
select * from x
) ss
where o.ten = 1;
--
-- Check we don't misoptimize a NOT IN where the subquery returns no rows.
--
create temp table notinouter (a int);
create temp table notininner (b int not null);
insert into notinouter values (null), (1);
select * from notinouter where a not in (select b from notininner);
--
-- Check we behave sanely in corner case of empty SELECT list (bug #8648)
--
create temp table nocolumns();
select exists(select * from nocolumns);
--
-- Check behavior with a SubPlan in VALUES (bug #14924)
--
select val.x
from generate_series(1,10) as s(i),
lateral (
values ((select s.i + 1)), (s.i + 101)
) as val(x)
where s.i < 10 and (select val.x) < 110;
-- another variant of that (bug #16213)
explain (verbose, costs off)
select * from
(values
(3 not in (select * from (values (1), (2)) ss1)),
(false)
) ss;
select * from
(values
(3 not in (select * from (values (1), (2)) ss1)),
(false)
) ss;
--
-- Check sane behavior with nested IN SubLinks
--
explain (verbose, costs off)
select * from int4_tbl where
(case when f1 in (select unique1 from tenk1 a) then f1 else null end) in
(select ten from tenk1 b);
select * from int4_tbl where
(case when f1 in (select unique1 from tenk1 a) then f1 else null end) in
(select ten from tenk1 b);
--
-- Check for incorrect optimization when IN subquery contains a SRF
--
explain (verbose, costs off)
select * from int4_tbl o where (f1, f1) in
(select f1, generate_series(1,50) / 10 g from int4_tbl i group by f1);
select * from int4_tbl o where (f1, f1) in
(select f1, generate_series(1,50) / 10 g from int4_tbl i group by f1);
--
-- check for over-optimization of whole-row Var referencing an Append plan
--
select (select q from
(select 1,2,3 where f1 > 0
union all
select 4,5,6.0 where f1 <= 0
) q )
from int4_tbl;
--
-- Check for sane handling of a lateral reference in a subquery's quals
-- (most of the complication here is to prevent the test case from being
-- flattened too much)
--
explain (verbose, costs off)
select * from
int4_tbl i4,
lateral (
select i4.f1 > 1 as b, 1 as id
from (select random() order by 1) as t1
union all
select true as b, 2 as id
) as t2
where b and f1 >= 0;
select * from
int4_tbl i4,
lateral (
select i4.f1 > 1 as b, 1 as id
from (select random() order by 1) as t1
union all
select true as b, 2 as id
) as t2
where b and f1 >= 0;
--
-- Check that volatile quals aren't pushed down past a DISTINCT:
-- nextval() should not be called more than the nominal number of times
--
create temp sequence ts1;
select * from
(select distinct ten from tenk1) ss
where ten < 10 + nextval('ts1')
order by 1;
select nextval('ts1');
--
-- Check that volatile quals aren't pushed down past a set-returning function;
-- while a nonvolatile qual can be, if it doesn't reference the SRF.
--
create function tattle(x int, y int) returns bool
volatile language plpgsql as $$
begin
raise notice 'x = %, y = %', x, y;
return x > y;
end$$;
explain (verbose, costs off)
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, 8);
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, 8);
-- if we pretend it's stable, we get different results:
alter function tattle(x int, y int) stable;
explain (verbose, costs off)
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, 8);
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, 8);
-- although even a stable qual should not be pushed down if it references SRF
explain (verbose, costs off)
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, u);
select * from
(select 9 as x, unnest(array[1,2,3,11,12,13]) as u) ss
where tattle(x, u);
drop function tattle(x int, y int);
--
-- Test that LIMIT can be pushed to SORT through a subquery that just projects
-- columns. We check for that having happened by looking to see if EXPLAIN
-- ANALYZE shows that a top-N sort was used. We must suppress or filter away
-- all the non-invariant parts of the EXPLAIN ANALYZE output.
--
create table sq_limit (pk int primary key, c1 int, c2 int);
insert into sq_limit values
(1, 1, 1),
(2, 2, 2),
(3, 3, 3),
(4, 4, 4),
(5, 1, 1),
(6, 2, 2),
(7, 3, 3),
(8, 4, 4);
create function explain_sq_limit() returns setof text language plpgsql as
$$
declare ln text;
begin
for ln in
explain (analyze, summary off, timing off, costs off)
select * from (select pk,c2 from sq_limit order by c1,pk) as x limit 3
loop
ln := regexp_replace(ln, 'Memory: \S*', 'Memory: xxx');
return next ln;
end loop;
end;
$$;
select * from explain_sq_limit();
select * from (select pk,c2 from sq_limit order by c1,pk) as x limit 3;
drop function explain_sq_limit();
drop table sq_limit;
--
-- Ensure that backward scan direction isn't propagated into
-- expression subqueries (bug #15336)
--
begin;
declare c1 scroll cursor for
select * from generate_series(1,4) i
where i <> all (values (2),(3));
move forward all in c1;
fetch backward all in c1;
commit;
--
-- Verify that we correctly flatten cases involving a subquery output
-- expression that doesn't need to be wrapped in a PlaceHolderVar
--
explain (costs off)
select tname, attname from (
select relname::information_schema.sql_identifier as tname, * from
(select * from pg_class c) ss1) ss2
right join pg_attribute a on a.attrelid = ss2.oid
where tname = 'tenk1' and attnum = 1;
select tname, attname from (
select relname::information_schema.sql_identifier as tname, * from
(select * from pg_class c) ss1) ss2
right join pg_attribute a on a.attrelid = ss2.oid
where tname = 'tenk1' and attnum = 1;
-- Check behavior when there's a lateral reference in the output expression
explain (verbose, costs off)
select t1.ten, sum(x) from
tenk1 t1 left join lateral (
select t1.ten + t2.ten as x, t2.fivethous from tenk1 t2
) ss on t1.unique1 = ss.fivethous
group by t1.ten
order by t1.ten;
select t1.ten, sum(x) from
tenk1 t1 left join lateral (
select t1.ten + t2.ten as x, t2.fivethous from tenk1 t2
) ss on t1.unique1 = ss.fivethous
group by t1.ten
order by t1.ten;
explain (verbose, costs off)
select t1.q1, x from
int8_tbl t1 left join
(int8_tbl t2 left join
lateral (select t2.q1+t3.q1 as x, * from int8_tbl t3) t3 on t2.q2 = t3.q2)
on t1.q2 = t2.q2
order by 1, 2;
select t1.q1, x from
int8_tbl t1 left join
(int8_tbl t2 left join
lateral (select t2.q1+t3.q1 as x, * from int8_tbl t3) t3 on t2.q2 = t3.q2)
on t1.q2 = t2.q2
order by 1, 2;
--
-- Tests for CTE inlining behavior
--
-- Basic subquery that can be inlined
explain (verbose, costs off)
with x as (select * from (select f1 from subselect_tbl) ss)
select * from x where f1 = 1;
-- Explicitly request materialization
explain (verbose, costs off)
with x as materialized (select * from (select f1 from subselect_tbl) ss)
select * from x where f1 = 1;
-- Stable functions are safe to inline
explain (verbose, costs off)
with x as (select * from (select f1, now() from subselect_tbl) ss)
select * from x where f1 = 1;
-- Volatile functions prevent inlining
explain (verbose, costs off)
with x as (select * from (select f1, random() from subselect_tbl) ss)
select * from x where f1 = 1;
-- SELECT FOR UPDATE cannot be inlined
explain (verbose, costs off)
with x as (select * from (select f1 from subselect_tbl for update) ss)
select * from x where f1 = 1;
-- Multiply-referenced CTEs are inlined only when requested
explain (verbose, costs off)
with x as (select * from (select f1, now() as n from subselect_tbl) ss)
select * from x, x x2 where x.n = x2.n;
explain (verbose, costs off)
with x as not materialized (select * from (select f1, now() as n from subselect_tbl) ss)
select * from x, x x2 where x.n = x2.n;
-- Multiply-referenced CTEs can't be inlined if they contain outer self-refs
explain (verbose, costs off)
with recursive x(a) as
((values ('a'), ('b'))
union all
(with z as not materialized (select * from x)
select z.a || z1.a as a from z cross join z as z1
where length(z.a || z1.a) < 5))
select * from x;
with recursive x(a) as
((values ('a'), ('b'))
union all
(with z as not materialized (select * from x)
select z.a || z1.a as a from z cross join z as z1
where length(z.a || z1.a) < 5))
select * from x;
explain (verbose, costs off)
with recursive x(a) as
((values ('a'), ('b'))
union all
(with z as not materialized (select * from x)
select z.a || z.a as a from z
where length(z.a || z.a) < 5))
select * from x;
with recursive x(a) as
((values ('a'), ('b'))
union all
(with z as not materialized (select * from x)
select z.a || z.a as a from z
where length(z.a || z.a) < 5))
select * from x;
-- Check handling of outer references
explain (verbose, costs off)
with x as (select * from int4_tbl)
select * from (with y as (select * from x) select * from y) ss;
explain (verbose, costs off)
with x as materialized (select * from int4_tbl)
select * from (with y as (select * from x) select * from y) ss;
-- Ensure that we inline the correct CTE when there are
-- multiple CTEs with the same name
explain (verbose, costs off)
with x as (select 1 as y)
select * from (with x as (select 2 as y) select * from x) ss;
-- Row marks are not pushed into CTEs
explain (verbose, costs off)
with x as (select * from subselect_tbl)
select * from x for update;
-- Pull up direct-correlated ANY_SUBLINKs
explain (costs off)
select * from tenk1 A where hundred in (select hundred from tenk2 B where B.odd = A.odd);
explain (costs off)
select * from tenk1 A where exists
(select 1 from tenk2 B
where A.hundred in (select C.hundred FROM tenk2 C
WHERE c.odd = b.odd));
-- we should only try to pull up the sublink into RHS of a left join
-- but a.hundred is not available.
explain (costs off)
SELECT * FROM tenk1 A LEFT JOIN tenk2 B
ON A.hundred in (SELECT c.hundred FROM tenk2 C WHERE c.odd = b.odd);
-- we should only try to pull up the sublink into RHS of a left join
-- but a.odd is not available for this.
explain (costs off)
SELECT * FROM tenk1 A LEFT JOIN tenk2 B
ON B.hundred in (SELECT c.hundred FROM tenk2 C WHERE c.odd = a.odd);
-- should be able to pull up since all the references are available.
explain (costs off)
SELECT * FROM tenk1 A LEFT JOIN tenk2 B
ON B.hundred in (SELECT c.hundred FROM tenk2 C WHERE c.odd = b.odd);
-- we can pull up the sublink into the inner JoinExpr.
explain (costs off)
SELECT * FROM tenk1 A INNER JOIN tenk2 B
ON A.hundred in (SELECT c.hundred FROM tenk2 C WHERE c.odd = b.odd)
WHERE a.thousand < 750;
-- we can pull up the aggregate sublink into RHS of a left join.
explain (costs off)
SELECT * FROM tenk1 A LEFT JOIN tenk2 B
ON B.hundred in (SELECT min(c.hundred) FROM tenk2 C WHERE c.odd = b.odd);
|