File: physfs.h

package info (click to toggle)
libphysfs 2.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 4,480 kB
  • ctags: 9,636
  • sloc: cpp: 30,944; ansic: 27,440; cs: 4,374; java: 3,077; makefile: 796; ruby: 461; perl: 59; sh: 8
file content (2395 lines) | stat: -rw-r--r-- 93,468 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
/**
 * \file physfs.h
 *
 * Main header file for PhysicsFS.
 */

/**
 * \mainpage PhysicsFS
 *
 * The latest version of PhysicsFS can be found at:
 *     http://icculus.org/physfs/
 *
 * PhysicsFS; a portable, flexible file i/o abstraction.
 *
 * This API gives you access to a system file system in ways superior to the
 *  stdio or system i/o calls. The brief benefits:
 *
 *   - It's portable.
 *   - It's safe. No file access is permitted outside the specified dirs.
 *   - It's flexible. Archives (.ZIP files) can be used transparently as
 *      directory structures.
 *
 * This system is largely inspired by Quake 3's PK3 files and the related
 *  fs_* cvars. If you've ever tinkered with these, then this API will be
 *  familiar to you.
 *
 * With PhysicsFS, you have a single writing directory and multiple
 *  directories (the "search path") for reading. You can think of this as a
 *  filesystem within a filesystem. If (on Windows) you were to set the
 *  writing directory to "C:\MyGame\MyWritingDirectory", then no PHYSFS calls
 *  could touch anything above this directory, including the "C:\MyGame" and
 *  "C:\" directories. This prevents an application's internal scripting
 *  language from piddling over c:\\config.sys, for example. If you'd rather
 *  give PHYSFS full access to the system's REAL file system, set the writing
 *  dir to "C:\", but that's generally A Bad Thing for several reasons.
 *
 * Drive letters are hidden in PhysicsFS once you set up your initial paths.
 *  The search path creates a single, hierarchical directory structure.
 *  Not only does this lend itself well to general abstraction with archives,
 *  it also gives better support to operating systems like MacOS and Unix.
 *  Generally speaking, you shouldn't ever hardcode a drive letter; not only
 *  does this hurt portability to non-Microsoft OSes, but it limits your win32
 *  users to a single drive, too. Use the PhysicsFS abstraction functions and
 *  allow user-defined configuration options, too. When opening a file, you
 *  specify it like it was on a Unix filesystem: if you want to write to
 *  "C:\MyGame\MyConfigFiles\game.cfg", then you might set the write dir to
 *  "C:\MyGame" and then open "MyConfigFiles/game.cfg". This gives an
 *  abstraction across all platforms. Specifying a file in this way is termed
 *  "platform-independent notation" in this documentation. Specifying a
 *  a filename in a form such as "C:\mydir\myfile" or
 *  "MacOS hard drive:My Directory:My File" is termed "platform-dependent
 *  notation". The only time you use platform-dependent notation is when
 *  setting up your write directory and search path; after that, all file
 *  access into those directories are done with platform-independent notation.
 *
 * All files opened for writing are opened in relation to the write directory,
 *  which is the root of the writable filesystem. When opening a file for
 *  reading, PhysicsFS goes through the search path. This is NOT the
 *  same thing as the PATH environment variable. An application using
 *  PhysicsFS specifies directories to be searched which may be actual
 *  directories, or archive files that contain files and subdirectories of
 *  their own. See the end of these docs for currently supported archive
 *  formats.
 *
 * Once the search path is defined, you may open files for reading. If you've
 *  got the following search path defined (to use a win32 example again):
 *
 *  - C:\\mygame
 *  - C:\\mygame\\myuserfiles
 *  - D:\\mygamescdromdatafiles
 *  - C:\\mygame\\installeddatafiles.zip
 *
 * Then a call to PHYSFS_openRead("textfiles/myfile.txt") (note the directory
 *  separator, lack of drive letter, and lack of dir separator at the start of
 *  the string; this is platform-independent notation) will check for
 *  C:\\mygame\\textfiles\\myfile.txt, then
 *  C:\\mygame\\myuserfiles\\textfiles\\myfile.txt, then
 *  D:\\mygamescdromdatafiles\\textfiles\\myfile.txt, then, finally, for
 *  textfiles\\myfile.txt inside of C:\\mygame\\installeddatafiles.zip.
 *  Remember that most archive types and platform filesystems store their
 *  filenames in a case-sensitive manner, so you should be careful to specify
 *  it correctly.
 *
 * Files opened through PhysicsFS may NOT contain "." or ".." or ":" as dir
 *  elements. Not only are these meaningless on MacOS Classic and/or Unix,
 *  they are a security hole. Also, symbolic links (which can be found in
 *  some archive types and directly in the filesystem on Unix platforms) are
 *  NOT followed until you call PHYSFS_permitSymbolicLinks(). That's left to
 *  your own discretion, as following a symlink can allow for access outside
 *  the write dir and search paths. For portability, there is no mechanism for
 *  creating new symlinks in PhysicsFS.
 *
 * The write dir is not included in the search path unless you specifically
 *  add it. While you CAN change the write dir as many times as you like,
 *  you should probably set it once and stick to it. Remember that your
 *  program will not have permission to write in every directory on Unix and
 *  NT systems.
 *
 * All files are opened in binary mode; there is no endline conversion for
 *  textfiles. Other than that, PhysicsFS has some convenience functions for
 *  platform-independence. There is a function to tell you the current
 *  platform's dir separator ("\\" on windows, "/" on Unix, ":" on MacOS),
 *  which is needed only to set up your search/write paths. There is a
 *  function to tell you what CD-ROM drives contain accessible discs, and a
 *  function to recommend a good search path, etc.
 *
 * A recommended order for the search path is the write dir, then the base dir,
 *  then the cdrom dir, then any archives discovered. Quake 3 does something
 *  like this, but moves the archives to the start of the search path. Build
 *  Engine games, like Duke Nukem 3D and Blood, place the archives last, and
 *  use the base dir for both searching and writing. There is a helper
 *  function (PHYSFS_setSaneConfig()) that puts together a basic configuration
 *  for you, based on a few parameters. Also see the comments on
 *  PHYSFS_getBaseDir(), and PHYSFS_getUserDir() for info on what those
 *  are and how they can help you determine an optimal search path.
 *
 * PhysicsFS 2.0 adds the concept of "mounting" archives to arbitrary points
 *  in the search path. If a zipfile contains "maps/level.map" and you mount
 *  that archive at "mods/mymod", then you would have to open
 *  "mods/mymod/maps/level.map" to access the file, even though "mods/mymod"
 *  isn't actually specified in the .zip file. Unlike the Unix mentality of
 *  mounting a filesystem, "mods/mymod" doesn't actually have to exist when
 *  mounting the zipfile. It's a "virtual" directory. The mounting mechanism
 *  allows the developer to seperate archives in the tree and avoid trampling
 *  over files when added new archives, such as including mod support in a
 *  game...keeping external content on a tight leash in this manner can be of
 *  utmost importance to some applications.
 *
 * PhysicsFS is mostly thread safe. The error messages returned by
 *  PHYSFS_getLastError are unique by thread, and library-state-setting
 *  functions are mutex'd. For efficiency, individual file accesses are 
 *  not locked, so you can not safely read/write/seek/close/etc the same 
 *  file from two threads at the same time. Other race conditions are bugs 
 *  that should be reported/patched.
 *
 * While you CAN use stdio/syscall file access in a program that has PHYSFS_*
 *  calls, doing so is not recommended, and you can not use system
 *  filehandles with PhysicsFS and vice versa.
 *
 * Note that archives need not be named as such: if you have a ZIP file and
 *  rename it with a .PKG extension, the file will still be recognized as a
 *  ZIP archive by PhysicsFS; the file's contents are used to determine its
 *  type where possible.
 *
 * Currently supported archive types:
 *   - .ZIP (pkZip/WinZip/Info-ZIP compatible)
 *   - .GRP (Build Engine groupfile archives)
 *   - .PAK (Quake I/II archive format)
 *   - .HOG (Descent I/II HOG file archives)
 *   - .MVL (Descent II movielib archives)
 *   - .WAD (DOOM engine archives)
 *
 *
 * String policy for PhysicsFS 2.0 and later:
 *
 * PhysicsFS 1.0 could only deal with null-terminated ASCII strings. All high
 *  ASCII chars resulted in undefined behaviour, and there was no Unicode
 *  support at all. PhysicsFS 2.0 supports Unicode without breaking binary
 *  compatibility with the 1.0 API by using UTF-8 encoding of all strings
 *  passed in and out of the library.
 *
 * All strings passed through PhysicsFS are in null-terminated UTF-8 format.
 *  This means that if all you care about is English (ASCII characters <= 127)
 *  then you just use regular C strings. If you care about Unicode (and you
 *  should!) then you need to figure out what your platform wants, needs, and
 *  offers. If you are on Windows and build with Unicode support, your TCHAR
 *  strings are two bytes per character (this is called "UCS-2 encoding"). You
 *  should convert them to UTF-8 before handing them to PhysicsFS with
 *  PHYSFS_utf8FromUcs2(). If you're using Unix or Mac OS X, your wchar_t
 *  strings are four bytes per character ("UCS-4 encoding"). Use
 *  PHYSFS_utf8FromUcs4(). Mac OS X can give you UTF-8 directly from a
 *  CFString, and many Unixes generally give you C strings in UTF-8 format
 *  everywhere. If you have a single-byte high ASCII charset, like so-many
 *  European "codepages" you may be out of luck. We'll convert from "Latin1"
 *  to UTF-8 only, and never back to Latin1. If you're above ASCII 127, all
 *  bets are off: move to Unicode or use your platform's facilities. Passing a
 *  C string with high-ASCII data that isn't UTF-8 encoded will NOT do what
 *  you expect!
 *
 * Naturally, there's also PHYSFS_utf8ToUcs2() and PHYSFS_utf8ToUcs4() to get
 *  data back into a format you like. Behind the scenes, PhysicsFS will use
 *  Unicode where possible: the UTF-8 strings on Windows will be converted
 *  and used with the multibyte Windows APIs, for example.
 *
 * PhysicsFS offers basic encoding conversion support, but not a whole string
 *  library. Get your stuff into whatever format you can work with.
 *
 * Some platforms and archivers don't offer full Unicode support behind the
 *  scenes. For example, OS/2 only offers "codepages" and the filesystem
 *  itself doesn't support multibyte encodings. We make an earnest effort to
 *  convert to/from the current locale here, but all bets are off if
 *  you want to hand an arbitrary Japanese character through to these systems.
 *  Modern OSes (Mac OS X, Linux, Windows, PocketPC, etc) should all be fine.
 *  Many game-specific archivers are seriously unprepared for Unicode (the
 *  Descent HOG/MVL and Build Engine GRP archivers, for example, only offer a
 *  DOS 8.3 filename, for example). Nothing can be done for these, but they
 *  tend to be legacy formats for existing content that was all ASCII (and
 *  thus, valid UTF-8) anyhow. Other formats, like .ZIP, don't explicitly
 *  offer Unicode support, but unofficially expect filenames to be UTF-8
 *  encoded, and thus Just Work. Most everything does the right thing without
 *  bothering you, but it's good to be aware of these nuances in case they
 *  don't.
 *
 *
 * Other stuff:
 *
 * Please see the file LICENSE.txt in the source's root directory for licensing
 *  and redistribution rights.
 *
 * Please see the file CREDITS.txt in the source's root directory for a more or
 *  less complete list of who's responsible for this.
 *
 *  \author Ryan C. Gordon.
 */

#ifndef _INCLUDE_PHYSFS_H_
#define _INCLUDE_PHYSFS_H_

#ifdef __cplusplus
extern "C" {
#endif

#ifndef DOXYGEN_SHOULD_IGNORE_THIS
#if (defined _MSC_VER)
#define __EXPORT__ __declspec(dllexport)
#elif (__GNUC__ >= 3)
#define __EXPORT__ __attribute__((visibility("default")))
#else
#define __EXPORT__
#endif
#endif  /* DOXYGEN_SHOULD_IGNORE_THIS */

/**
 * \typedef PHYSFS_uint8
 * \brief An unsigned, 8-bit integer type.
 */
typedef unsigned char         PHYSFS_uint8;

/**
 * \typedef PHYSFS_sint8
 * \brief A signed, 8-bit integer type.
 */
typedef signed char           PHYSFS_sint8;

/**
 * \typedef PHYSFS_uint16
 * \brief An unsigned, 16-bit integer type.
 */
typedef unsigned short        PHYSFS_uint16;

/**
 * \typedef PHYSFS_sint16
 * \brief A signed, 16-bit integer type.
 */
typedef signed short          PHYSFS_sint16;

/**
 * \typedef PHYSFS_uint32
 * \brief An unsigned, 32-bit integer type.
 */
typedef unsigned int          PHYSFS_uint32;

/**
 * \typedef PHYSFS_sint32
 * \brief A signed, 32-bit integer type.
 */
typedef signed int            PHYSFS_sint32;

/**
 * \typedef PHYSFS_uint64
 * \brief An unsigned, 64-bit integer type.
 * \warning on platforms without any sort of 64-bit datatype, this is
 *           equivalent to PHYSFS_uint32!
 */

/**
 * \typedef PHYSFS_sint64
 * \brief A signed, 64-bit integer type.
 * \warning on platforms without any sort of 64-bit datatype, this is
 *           equivalent to PHYSFS_sint32!
 */


#if (defined PHYSFS_NO_64BIT_SUPPORT)  /* oh well. */
typedef PHYSFS_uint32         PHYSFS_uint64;
typedef PHYSFS_sint32         PHYSFS_sint64;
#elif (defined _MSC_VER)
typedef signed __int64        PHYSFS_sint64;
typedef unsigned __int64      PHYSFS_uint64;
#else
typedef unsigned long long    PHYSFS_uint64;
typedef signed long long      PHYSFS_sint64;
#endif


#ifndef DOXYGEN_SHOULD_IGNORE_THIS
/* Make sure the types really have the right sizes */
#define PHYSFS_COMPILE_TIME_ASSERT(name, x)               \
       typedef int PHYSFS_dummy_ ## name[(x) * 2 - 1]

PHYSFS_COMPILE_TIME_ASSERT(uint8, sizeof(PHYSFS_uint8) == 1);
PHYSFS_COMPILE_TIME_ASSERT(sint8, sizeof(PHYSFS_sint8) == 1);
PHYSFS_COMPILE_TIME_ASSERT(uint16, sizeof(PHYSFS_uint16) == 2);
PHYSFS_COMPILE_TIME_ASSERT(sint16, sizeof(PHYSFS_sint16) == 2);
PHYSFS_COMPILE_TIME_ASSERT(uint32, sizeof(PHYSFS_uint32) == 4);
PHYSFS_COMPILE_TIME_ASSERT(sint32, sizeof(PHYSFS_sint32) == 4);

#ifndef PHYSFS_NO_64BIT_SUPPORT
PHYSFS_COMPILE_TIME_ASSERT(uint64, sizeof(PHYSFS_uint64) == 8);
PHYSFS_COMPILE_TIME_ASSERT(sint64, sizeof(PHYSFS_sint64) == 8);
#endif

#undef PHYSFS_COMPILE_TIME_ASSERT

#endif  /* DOXYGEN_SHOULD_IGNORE_THIS */


/**
 * \struct PHYSFS_File
 * \brief A PhysicsFS file handle.
 *
 * You get a pointer to one of these when you open a file for reading,
 *  writing, or appending via PhysicsFS.
 *
 * As you can see from the lack of meaningful fields, you should treat this
 *  as opaque data. Don't try to manipulate the file handle, just pass the
 *  pointer you got, unmolested, to various PhysicsFS APIs.
 *
 * \sa PHYSFS_openRead
 * \sa PHYSFS_openWrite
 * \sa PHYSFS_openAppend
 * \sa PHYSFS_close
 * \sa PHYSFS_read
 * \sa PHYSFS_write
 * \sa PHYSFS_seek
 * \sa PHYSFS_tell
 * \sa PHYSFS_eof
 * \sa PHYSFS_setBuffer
 * \sa PHYSFS_flush
 */
typedef struct PHYSFS_File
{
    void *opaque;  /**< That's all you get. Don't touch. */
} PHYSFS_File;


/**
 * \def PHYSFS_file
 * \brief 1.0 API compatibility define.
 *
 * PHYSFS_file is identical to PHYSFS_File. This #define is here for backwards
 *  compatibility with the 1.0 API, which had an inconsistent capitalization
 *  convention in this case. New code should use PHYSFS_File, as this #define
 *  may go away someday.
 *
 * \sa PHYSFS_File
 */
#define PHYSFS_file PHYSFS_File


/**
 * \struct PHYSFS_ArchiveInfo
 * \brief Information on various PhysicsFS-supported archives.
 *
 * This structure gives you details on what sort of archives are supported
 *  by this implementation of PhysicsFS. Archives tend to be things like
 *  ZIP files and such.
 *
 * \warning Not all binaries are created equal! PhysicsFS can be built with
 *          or without support for various archives. You can check with
 *          PHYSFS_supportedArchiveTypes() to see if your archive type is
 *          supported.
 *
 * \sa PHYSFS_supportedArchiveTypes
 */
typedef struct PHYSFS_ArchiveInfo
{
    const char *extension;   /**< Archive file extension: "ZIP", for example. */
    const char *description; /**< Human-readable archive description. */
    const char *author;      /**< Person who did support for this archive. */
    const char *url;         /**< URL related to this archive */
} PHYSFS_ArchiveInfo;


/**
 * \struct PHYSFS_Version
 * \brief Information the version of PhysicsFS in use.
 *
 * Represents the library's version as three levels: major revision
 *  (increments with massive changes, additions, and enhancements),
 *  minor revision (increments with backwards-compatible changes to the
 *  major revision), and patchlevel (increments with fixes to the minor
 *  revision).
 *
 * \sa PHYSFS_VERSION
 * \sa PHYSFS_getLinkedVersion
 */
typedef struct PHYSFS_Version
{
    PHYSFS_uint8 major; /**< major revision */
    PHYSFS_uint8 minor; /**< minor revision */
    PHYSFS_uint8 patch; /**< patchlevel */
} PHYSFS_Version;

#ifndef DOXYGEN_SHOULD_IGNORE_THIS
#define PHYSFS_VER_MAJOR 2
#define PHYSFS_VER_MINOR 0
#define PHYSFS_VER_PATCH 1
#endif  /* DOXYGEN_SHOULD_IGNORE_THIS */


/* PhysicsFS state stuff ... */

/**
 * \def PHYSFS_VERSION(x)
 * \brief Macro to determine PhysicsFS version program was compiled against.
 *
 * This macro fills in a PHYSFS_Version structure with the version of the
 *  library you compiled against. This is determined by what header the
 *  compiler uses. Note that if you dynamically linked the library, you might
 *  have a slightly newer or older version at runtime. That version can be
 *  determined with PHYSFS_getLinkedVersion(), which, unlike PHYSFS_VERSION,
 *  is not a macro.
 *
 * \param x A pointer to a PHYSFS_Version struct to initialize.
 *
 * \sa PHYSFS_Version
 * \sa PHYSFS_getLinkedVersion
 */
#define PHYSFS_VERSION(x) \
{ \
    (x)->major = PHYSFS_VER_MAJOR; \
    (x)->minor = PHYSFS_VER_MINOR; \
    (x)->patch = PHYSFS_VER_PATCH; \
}


/**
 * \fn void PHYSFS_getLinkedVersion(PHYSFS_Version *ver)
 * \brief Get the version of PhysicsFS that is linked against your program.
 *
 * If you are using a shared library (DLL) version of PhysFS, then it is
 *  possible that it will be different than the version you compiled against.
 *
 * This is a real function; the macro PHYSFS_VERSION tells you what version
 *  of PhysFS you compiled against:
 *
 * \code
 * PHYSFS_Version compiled;
 * PHYSFS_Version linked;
 *
 * PHYSFS_VERSION(&compiled);
 * PHYSFS_getLinkedVersion(&linked);
 * printf("We compiled against PhysFS version %d.%d.%d ...\n",
 *           compiled.major, compiled.minor, compiled.patch);
 * printf("But we linked against PhysFS version %d.%d.%d.\n",
 *           linked.major, linked.minor, linked.patch);
 * \endcode
 *
 * This function may be called safely at any time, even before PHYSFS_init().
 *
 * \sa PHYSFS_VERSION
 */
__EXPORT__ void PHYSFS_getLinkedVersion(PHYSFS_Version *ver);


/**
 * \fn int PHYSFS_init(const char *argv0)
 * \brief Initialize the PhysicsFS library.
 *
 * This must be called before any other PhysicsFS function.
 *
 * This should be called prior to any attempts to change your process's
 *  current working directory.
 *
 *   \param argv0 the argv[0] string passed to your program's mainline.
 *          This may be NULL on most platforms (such as ones without a
 *          standard main() function), but you should always try to pass
 *          something in here. Unix-like systems such as Linux _need_ to
 *          pass argv[0] from main() in here.
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_deinit
 * \sa PHYSFS_isInit
 */
__EXPORT__ int PHYSFS_init(const char *argv0);


/**
 * \fn int PHYSFS_deinit(void)
 * \brief Deinitialize the PhysicsFS library.
 *
 * This closes any files opened via PhysicsFS, blanks the search/write paths,
 *  frees memory, and invalidates all of your file handles.
 *
 * Note that this call can FAIL if there's a file open for writing that
 *  refuses to close (for example, the underlying operating system was
 *  buffering writes to network filesystem, and the fileserver has crashed,
 *  or a hard drive has failed, etc). It is usually best to close all write
 *  handles yourself before calling this function, so that you can gracefully
 *  handle a specific failure.
 *
 * Once successfully deinitialized, PHYSFS_init() can be called again to
 *  restart the subsystem. All default API states are restored at this
 *  point, with the exception of any custom allocator you might have
 *  specified, which survives between initializations.
 *
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError(). If failure, state of PhysFS is
 *          undefined, and probably badly screwed up.
 *
 * \sa PHYSFS_init
 * \sa PHYSFS_isInit
 */
__EXPORT__ int PHYSFS_deinit(void);


/**
 * \fn const PHYSFS_ArchiveInfo **PHYSFS_supportedArchiveTypes(void)
 * \brief Get a list of supported archive types.
 *
 * Get a list of archive types supported by this implementation of PhysicFS.
 *  These are the file formats usable for search path entries. This is for
 *  informational purposes only. Note that the extension listed is merely
 *  convention: if we list "ZIP", you can open a PkZip-compatible archive
 *  with an extension of "XYZ", if you like.
 *
 * The returned value is an array of pointers to PHYSFS_ArchiveInfo structures,
 *  with a NULL entry to signify the end of the list:
 *
 * \code
 * PHYSFS_ArchiveInfo **i;
 *
 * for (i = PHYSFS_supportedArchiveTypes(); *i != NULL; i++)
 * {
 *     printf("Supported archive: [%s], which is [%s].\n",
 *              (*i)->extension, (*i)->description);
 * }
 * \endcode
 *
 * The return values are pointers to static internal memory, and should
 *  be considered READ ONLY, and never freed.
 *
 *   \return READ ONLY Null-terminated array of READ ONLY structures.
 */
__EXPORT__ const PHYSFS_ArchiveInfo **PHYSFS_supportedArchiveTypes(void);


/**
 * \fn void PHYSFS_freeList(void *listVar)
 * \brief Deallocate resources of lists returned by PhysicsFS.
 *
 * Certain PhysicsFS functions return lists of information that are
 *  dynamically allocated. Use this function to free those resources.
 *
 *   \param listVar List of information specified as freeable by this function.
 *
 * \sa PHYSFS_getCdRomDirs
 * \sa PHYSFS_enumerateFiles
 * \sa PHYSFS_getSearchPath
 */
__EXPORT__ void PHYSFS_freeList(void *listVar);


/**
 * \fn const char *PHYSFS_getLastError(void)
 * \brief Get human-readable error information.
 *
 * Get the last PhysicsFS error message as a human-readable, null-terminated
 *  string. This will be NULL if there's been no error since the last call to
 *  this function. The pointer returned by this call points to an internal
 *  buffer. Each thread has a unique error state associated with it, but each
 *  time a new error message is set, it will overwrite the previous one
 *  associated with that thread. It is safe to call this function at anytime,
 *  even before PHYSFS_init().
 *
 * It is not wise to expect a specific string of characters here, since the
 *  error message may be localized into an unfamiliar language. These strings
 *  are meant to be passed on directly to the user.
 *
 *   \return READ ONLY string of last error message.
 */
__EXPORT__ const char *PHYSFS_getLastError(void);


/**
 * \fn const char *PHYSFS_getDirSeparator(void)
 * \brief Get platform-dependent dir separator string.
 *
 * This returns "\\" on win32, "/" on Unix, and ":" on MacOS. It may be more
 *  than one character, depending on the platform, and your code should take
 *  that into account. Note that this is only useful for setting up the
 *  search/write paths, since access into those dirs always use '/'
 *  (platform-independent notation) to separate directories. This is also
 *  handy for getting platform-independent access when using stdio calls.
 *
 *   \return READ ONLY null-terminated string of platform's dir separator.
 */
__EXPORT__ const char *PHYSFS_getDirSeparator(void);


/**
 * \fn void PHYSFS_permitSymbolicLinks(int allow)
 * \brief Enable or disable following of symbolic links.
 *
 * Some physical filesystems and archives contain files that are just pointers
 *  to other files. On the physical filesystem, opening such a link will
 *  (transparently) open the file that is pointed to.
 *
 * By default, PhysicsFS will check if a file is really a symlink during open
 *  calls and fail if it is. Otherwise, the link could take you outside the
 *  write and search paths, and compromise security.
 *
 * If you want to take that risk, call this function with a non-zero parameter.
 *  Note that this is more for sandboxing a program's scripting language, in
 *  case untrusted scripts try to compromise the system. Generally speaking,
 *  a user could very well have a legitimate reason to set up a symlink, so
 *  unless you feel there's a specific danger in allowing them, you should
 *  permit them.
 *
 * Symlinks are only explicitly checked when dealing with filenames
 *  in platform-independent notation. That is, when setting up your
 *  search and write paths, etc, symlinks are never checked for.
 *
 * Symbolic link permission can be enabled or disabled at any time after
 *  you've called PHYSFS_init(), and is disabled by default.
 *
 *   \param allow nonzero to permit symlinks, zero to deny linking.
 *
 * \sa PHYSFS_symbolicLinksPermitted
 */
__EXPORT__ void PHYSFS_permitSymbolicLinks(int allow);


/* !!! FIXME: const this? */
/**
 * \fn char **PHYSFS_getCdRomDirs(void)
 * \brief Get an array of paths to available CD-ROM drives.
 *
 * The dirs returned are platform-dependent ("D:\" on Win32, "/cdrom" or
 *  whatnot on Unix). Dirs are only returned if there is a disc ready and
 *  accessible in the drive. So if you've got two drives (D: and E:), and only
 *  E: has a disc in it, then that's all you get. If the user inserts a disc
 *  in D: and you call this function again, you get both drives. If, on a
 *  Unix box, the user unmounts a disc and remounts it elsewhere, the next
 *  call to this function will reflect that change.
 *
 * This function refers to "CD-ROM" media, but it really means "inserted disc
 *  media," such as DVD-ROM, HD-DVD, CDRW, and Blu-Ray discs. It looks for
 *  filesystems, and as such won't report an audio CD, unless there's a
 *  mounted filesystem track on it.
 *
 * The returned value is an array of strings, with a NULL entry to signify the
 *  end of the list:
 *
 * \code
 * char **cds = PHYSFS_getCdRomDirs();
 * char **i;
 *
 * for (i = cds; *i != NULL; i++)
 *     printf("cdrom dir [%s] is available.\n", *i);
 *
 * PHYSFS_freeList(cds);
 * \endcode
 *
 * This call may block while drives spin up. Be forewarned.
 *
 * When you are done with the returned information, you may dispose of the
 *  resources by calling PHYSFS_freeList() with the returned pointer.
 *
 *   \return Null-terminated array of null-terminated strings.
 *
 * \sa PHYSFS_getCdRomDirsCallback
 */
__EXPORT__ char **PHYSFS_getCdRomDirs(void);


/**
 * \fn const char *PHYSFS_getBaseDir(void)
 * \brief Get the path where the application resides.
 *
 * Helper function.
 *
 * Get the "base dir". This is the directory where the application was run
 *  from, which is probably the installation directory, and may or may not
 *  be the process's current working directory.
 *
 * You should probably use the base dir in your search path.
 *
 *  \return READ ONLY string of base dir in platform-dependent notation.
 *
 * \sa PHYSFS_getUserDir
 */
__EXPORT__ const char *PHYSFS_getBaseDir(void);


/**
 * \fn const char *PHYSFS_getUserDir(void)
 * \brief Get the path where user's home directory resides.
 *
 * Helper function.
 *
 * Get the "user dir". This is meant to be a suggestion of where a specific
 *  user of the system can store files. On Unix, this is her home directory.
 *  On systems with no concept of multiple home directories (MacOS, win95),
 *  this will default to something like "C:\mybasedir\users\username"
 *  where "username" will either be the login name, or "default" if the
 *  platform doesn't support multiple users, either.
 *
 * You should probably use the user dir as the basis for your write dir, and
 *  also put it near the beginning of your search path.
 *
 *  \return READ ONLY string of user dir in platform-dependent notation.
 *
 * \sa PHYSFS_getBaseDir
 */
__EXPORT__ const char *PHYSFS_getUserDir(void);


/**
 * \fn const char *PHYSFS_getWriteDir(void)
 * \brief Get path where PhysicsFS will allow file writing.
 *
 * Get the current write dir. The default write dir is NULL.
 *
 *  \return READ ONLY string of write dir in platform-dependent notation,
 *           OR NULL IF NO WRITE PATH IS CURRENTLY SET.
 *
 * \sa PHYSFS_setWriteDir
 */
__EXPORT__ const char *PHYSFS_getWriteDir(void);


/**
 * \fn int PHYSFS_setWriteDir(const char *newDir)
 * \brief Tell PhysicsFS where it may write files.
 *
 * Set a new write dir. This will override the previous setting.
 *
 * This call will fail (and fail to change the write dir) if the current
 *  write dir still has files open in it.
 *
 *   \param newDir The new directory to be the root of the write dir,
 *                   specified in platform-dependent notation. Setting to NULL
 *                   disables the write dir, so no files can be opened for
 *                   writing via PhysicsFS.
 *  \return non-zero on success, zero on failure. All attempts to open a file
 *           for writing via PhysicsFS will fail until this call succeeds.
 *           Specifics of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_getWriteDir
 */
__EXPORT__ int PHYSFS_setWriteDir(const char *newDir);


/**
 * \fn int PHYSFS_addToSearchPath(const char *newDir, int appendToPath)
 * \brief Add an archive or directory to the search path.
 *
 * This is a legacy call in PhysicsFS 2.0, equivalent to:
 *     PHYSFS_mount(newDir, NULL, appendToPath);
 *
 * You must use this and not PHYSFS_mount if binary compatibility with
 *  PhysicsFS 1.0 is important (which it may not be for many people).
 *
 * \sa PHYSFS_mount
 * \sa PHYSFS_removeFromSearchPath
 * \sa PHYSFS_getSearchPath
 */
__EXPORT__ int PHYSFS_addToSearchPath(const char *newDir, int appendToPath);


/**
 * \fn int PHYSFS_removeFromSearchPath(const char *oldDir)
 * \brief Remove a directory or archive from the search path.
 *
 * This must be a (case-sensitive) match to a dir or archive already in the
 *  search path, specified in platform-dependent notation.
 *
 * This call will fail (and fail to remove from the path) if the element still
 *  has files open in it.
 *
 *    \param oldDir dir/archive to remove.
 *   \return nonzero on success, zero on failure.
 *            Specifics of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_addToSearchPath
 * \sa PHYSFS_getSearchPath
 */
__EXPORT__ int PHYSFS_removeFromSearchPath(const char *oldDir);


/**
 * \fn char **PHYSFS_getSearchPath(void)
 * \brief Get the current search path.
 *
 * The default search path is an empty list.
 *
 * The returned value is an array of strings, with a NULL entry to signify the
 *  end of the list:
 *
 * \code
 * char **i;
 *
 * for (i = PHYSFS_getSearchPath(); *i != NULL; i++)
 *     printf("[%s] is in the search path.\n", *i);
 * \endcode
 *
 * When you are done with the returned information, you may dispose of the
 *  resources by calling PHYSFS_freeList() with the returned pointer.
 *
 *   \return Null-terminated array of null-terminated strings. NULL if there
 *            was a problem (read: OUT OF MEMORY).
 *
 * \sa PHYSFS_getSearchPathCallback
 * \sa PHYSFS_addToSearchPath
 * \sa PHYSFS_removeFromSearchPath
 */
__EXPORT__ char **PHYSFS_getSearchPath(void);


/**
 * \fn int PHYSFS_setSaneConfig(const char *organization, const char *appName, const char *archiveExt, int includeCdRoms, int archivesFirst)
 * \brief Set up sane, default paths.
 *
 * Helper function.
 *
 * The write dir will be set to "userdir/.organization/appName", which is
 *  created if it doesn't exist.
 *
 * The above is sufficient to make sure your program's configuration directory
 *  is separated from other clutter, and platform-independent. The period
 *  before "mygame" even hides the directory on Unix systems.
 *
 *  The search path will be:
 *
 *    - The Write Dir (created if it doesn't exist)
 *    - The Base Dir (PHYSFS_getBaseDir())
 *    - All found CD-ROM dirs (optionally)
 *
 * These directories are then searched for files ending with the extension
 *  (archiveExt), which, if they are valid and supported archives, will also
 *  be added to the search path. If you specified "PKG" for (archiveExt), and
 *  there's a file named data.PKG in the base dir, it'll be checked. Archives
 *  can either be appended or prepended to the search path in alphabetical
 *  order, regardless of which directories they were found in.
 *
 * All of this can be accomplished from the application, but this just does it
 *  all for you. Feel free to add more to the search path manually, too.
 *
 *    \param organization Name of your company/group/etc to be used as a
 *                         dirname, so keep it small, and no-frills.
 *
 *    \param appName Program-specific name of your program, to separate it
 *                   from other programs using PhysicsFS.
 *
 *    \param archiveExt File extension used by your program to specify an
 *                      archive. For example, Quake 3 uses "pk3", even though
 *                      they are just zipfiles. Specify NULL to not dig out
 *                      archives automatically. Do not specify the '.' char;
 *                      If you want to look for ZIP files, specify "ZIP" and
 *                      not ".ZIP" ... the archive search is case-insensitive.
 *
 *    \param includeCdRoms Non-zero to include CD-ROMs in the search path, and
 *                         (if (archiveExt) != NULL) search them for archives.
 *                         This may cause a significant amount of blocking
 *                         while discs are accessed, and if there are no discs
 *                         in the drive (or even not mounted on Unix systems),
 *                         then they may not be made available anyhow. You may
 *                         want to specify zero and handle the disc setup
 *                         yourself.
 *
 *    \param archivesFirst Non-zero to prepend the archives to the search path.
 *                          Zero to append them. Ignored if !(archiveExt).
 *
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_setSaneConfig(const char *organization,
                                    const char *appName,
                                    const char *archiveExt,
                                    int includeCdRoms,
                                    int archivesFirst);


/* Directory management stuff ... */

/**
 * \fn int PHYSFS_mkdir(const char *dirName)
 * \brief Create a directory.
 *
 * This is specified in platform-independent notation in relation to the
 *  write dir. All missing parent directories are also created if they
 *  don't exist.
 *
 * So if you've got the write dir set to "C:\mygame\writedir" and call
 *  PHYSFS_mkdir("downloads/maps") then the directories
 *  "C:\mygame\writedir\downloads" and "C:\mygame\writedir\downloads\maps"
 *  will be created if possible. If the creation of "maps" fails after we
 *  have successfully created "downloads", then the function leaves the
 *  created directory behind and reports failure.
 *
 *   \param dirName New dir to create.
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_delete
 */
__EXPORT__ int PHYSFS_mkdir(const char *dirName);


/**
 * \fn int PHYSFS_delete(const char *filename)
 * \brief Delete a file or directory.
 *
 * (filename) is specified in platform-independent notation in relation to the
 *  write dir.
 *
 * A directory must be empty before this call can delete it.
 *
 * Deleting a symlink will remove the link, not what it points to, regardless
 *  of whether you "permitSymLinks" or not.
 *
 * So if you've got the write dir set to "C:\mygame\writedir" and call
 *  PHYSFS_delete("downloads/maps/level1.map") then the file
 *  "C:\mygame\writedir\downloads\maps\level1.map" is removed from the
 *  physical filesystem, if it exists and the operating system permits the
 *  deletion.
 *
 * Note that on Unix systems, deleting a file may be successful, but the
 *  actual file won't be removed until all processes that have an open
 *  filehandle to it (including your program) close their handles.
 *
 * Chances are, the bits that make up the file still exist, they are just
 *  made available to be written over at a later point. Don't consider this
 *  a security method or anything.  :)
 *
 *   \param filename Filename to delete.
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_delete(const char *filename);


/**
 * \fn const char *PHYSFS_getRealDir(const char *filename)
 * \brief Figure out where in the search path a file resides.
 *
 * The file is specified in platform-independent notation. The returned
 *  filename will be the element of the search path where the file was found,
 *  which may be a directory, or an archive. Even if there are multiple
 *  matches in different parts of the search path, only the first one found
 *  is used, just like when opening a file.
 *
 * So, if you look for "maps/level1.map", and C:\\mygame is in your search
 *  path and C:\\mygame\\maps\\level1.map exists, then "C:\mygame" is returned.
 *
 * If a any part of a match is a symbolic link, and you've not explicitly
 *  permitted symlinks, then it will be ignored, and the search for a match
 *  will continue.
 *
 * If you specify a fake directory that only exists as a mount point, it'll
 *  be associated with the first archive mounted there, even though that
 *  directory isn't necessarily contained in a real archive.
 *
 *     \param filename file to look for.
 *    \return READ ONLY string of element of search path containing the
 *             the file in question. NULL if not found.
 */
__EXPORT__ const char *PHYSFS_getRealDir(const char *filename);


/**
 * \fn char **PHYSFS_enumerateFiles(const char *dir)
 * \brief Get a file listing of a search path's directory.
 *
 * Matching directories are interpolated. That is, if "C:\mydir" is in the
 *  search path and contains a directory "savegames" that contains "x.sav",
 *  "y.sav", and "z.sav", and there is also a "C:\userdir" in the search path
 *  that has a "savegames" subdirectory with "w.sav", then the following code:
 *
 * \code
 * char **rc = PHYSFS_enumerateFiles("savegames");
 * char **i;
 *
 * for (i = rc; *i != NULL; i++)
 *     printf(" * We've got [%s].\n", *i);
 *
 * PHYSFS_freeList(rc);
 * \endcode
 *
 *  \...will print:
 *
 * \verbatim
 * We've got [x.sav].
 * We've got [y.sav].
 * We've got [z.sav].
 * We've got [w.sav].\endverbatim
 *
 * Feel free to sort the list however you like. We only promise there will
 *  be no duplicates, but not what order the final list will come back in.
 *
 * Don't forget to call PHYSFS_freeList() with the return value from this
 *  function when you are done with it.
 *
 *    \param dir directory in platform-independent notation to enumerate.
 *   \return Null-terminated array of null-terminated strings.
 *
 * \sa PHYSFS_enumerateFilesCallback
 */
__EXPORT__ char **PHYSFS_enumerateFiles(const char *dir);


/**
 * \fn int PHYSFS_exists(const char *fname)
 * \brief Determine if a file exists in the search path.
 *
 * Reports true if there is an entry anywhere in the search path by the
 *  name of (fname).
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, so you
 *  might end up further down in the search path than expected.
 *
 *    \param fname filename in platform-independent notation.
 *   \return non-zero if filename exists. zero otherwise.
 *
 * \sa PHYSFS_isDirectory
 * \sa PHYSFS_isSymbolicLink
 */
__EXPORT__ int PHYSFS_exists(const char *fname);


/**
 * \fn int PHYSFS_isDirectory(const char *fname)
 * \brief Determine if a file in the search path is really a directory.
 *
 * Determine if the first occurence of (fname) in the search path is
 *  really a directory entry.
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, so you
 *  might end up further down in the search path than expected.
 *
 *    \param fname filename in platform-independent notation.
 *   \return non-zero if filename exists and is a directory.  zero otherwise.
 *
 * \sa PHYSFS_exists
 * \sa PHYSFS_isSymbolicLink
 */
__EXPORT__ int PHYSFS_isDirectory(const char *fname);


/**
 * \fn int PHYSFS_isSymbolicLink(const char *fname)
 * \brief Determine if a file in the search path is really a symbolic link.
 *
 * Determine if the first occurence of (fname) in the search path is
 *  really a symbolic link.
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, and as such,
 *  this function will always return 0 in that case.
 *
 *    \param fname filename in platform-independent notation.
 *   \return non-zero if filename exists and is a symlink.  zero otherwise.
 *
 * \sa PHYSFS_exists
 * \sa PHYSFS_isDirectory
 */
__EXPORT__ int PHYSFS_isSymbolicLink(const char *fname);


/**
 * \fn PHYSFS_sint64 PHYSFS_getLastModTime(const char *filename)
 * \brief Get the last modification time of a file.
 *
 * The modtime is returned as a number of seconds since the epoch
 *  (Jan 1, 1970). The exact derivation and accuracy of this time depends on
 *  the particular archiver. If there is no reasonable way to obtain this
 *  information for a particular archiver, or there was some sort of error,
 *  this function returns (-1).
 *
 *   \param filename filename to check, in platform-independent notation.
 *  \return last modified time of the file. -1 if it can't be determined.
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_getLastModTime(const char *filename);


/* i/o stuff... */

/**
 * \fn PHYSFS_File *PHYSFS_openWrite(const char *filename)
 * \brief Open a file for writing.
 *
 * Open a file for writing, in platform-independent notation and in relation
 *  to the write dir as the root of the writable filesystem. The specified
 *  file is created if it doesn't exist. If it does exist, it is truncated to
 *  zero bytes, and the writing offset is set to the start.
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a
 *  symlink with this function will fail in such a case.
 *
 *   \param filename File to open.
 *  \return A valid PhysicsFS filehandle on success, NULL on error. Specifics
 *           of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_openRead
 * \sa PHYSFS_openAppend
 * \sa PHYSFS_write
 * \sa PHYSFS_close
 */
__EXPORT__ PHYSFS_File *PHYSFS_openWrite(const char *filename);


/**
 * \fn PHYSFS_File *PHYSFS_openAppend(const char *filename)
 * \brief Open a file for appending.
 *
 * Open a file for writing, in platform-independent notation and in relation
 *  to the write dir as the root of the writable filesystem. The specified
 *  file is created if it doesn't exist. If it does exist, the writing offset
 *  is set to the end of the file, so the first write will be the byte after
 *  the end.
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a
 *  symlink with this function will fail in such a case.
 *
 *   \param filename File to open.
 *  \return A valid PhysicsFS filehandle on success, NULL on error. Specifics
 *           of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_openRead
 * \sa PHYSFS_openWrite
 * \sa PHYSFS_write
 * \sa PHYSFS_close
 */
__EXPORT__ PHYSFS_File *PHYSFS_openAppend(const char *filename);


/**
 * \fn PHYSFS_File *PHYSFS_openRead(const char *filename)
 * \brief Open a file for reading.
 *
 * Open a file for reading, in platform-independent notation. The search path
 *  is checked one at a time until a matching file is found, in which case an
 *  abstract filehandle is associated with it, and reading may be done.
 *  The reading offset is set to the first byte of the file.
 *
 * Note that entries that are symlinks are ignored if
 *  PHYSFS_permitSymbolicLinks(1) hasn't been called, and opening a
 *  symlink with this function will fail in such a case.
 *
 *   \param filename File to open.
 *  \return A valid PhysicsFS filehandle on success, NULL on error. Specifics
 *           of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_openWrite
 * \sa PHYSFS_openAppend
 * \sa PHYSFS_read
 * \sa PHYSFS_close
 */
__EXPORT__ PHYSFS_File *PHYSFS_openRead(const char *filename);


/**
 * \fn int PHYSFS_close(PHYSFS_File *handle)
 * \brief Close a PhysicsFS filehandle.
 *
 * This call is capable of failing if the operating system was buffering
 *  writes to the physical media, and, now forced to write those changes to
 *  physical media, can not store the data for some reason. In such a case,
 *  the filehandle stays open. A well-written program should ALWAYS check the
 *  return value from the close call in addition to every writing call!
 *
 *   \param handle handle returned from PHYSFS_open*().
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_openRead
 * \sa PHYSFS_openWrite
 * \sa PHYSFS_openAppend
 */
__EXPORT__ int PHYSFS_close(PHYSFS_File *handle);


/**
 * \fn PHYSFS_sint64 PHYSFS_read(PHYSFS_File *handle, void *buffer, PHYSFS_uint32 objSize, PHYSFS_uint32 objCount)
 * \brief Read data from a PhysicsFS filehandle
 *
 * The file must be opened for reading.
 *
 *   \param handle handle returned from PHYSFS_openRead().
 *   \param buffer buffer to store read data into.
 *   \param objSize size in bytes of objects being read from (handle).
 *   \param objCount number of (objSize) objects to read from (handle).
 *  \return number of objects read. PHYSFS_getLastError() can shed light on
 *           the reason this might be < (objCount), as can PHYSFS_eof().
 *            -1 if complete failure.
 *
 * \sa PHYSFS_eof
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_read(PHYSFS_File *handle,
                                     void *buffer,
                                     PHYSFS_uint32 objSize,
                                     PHYSFS_uint32 objCount);

/**
 * \fn PHYSFS_sint64 PHYSFS_write(PHYSFS_File *handle, const void *buffer, PHYSFS_uint32 objSize, PHYSFS_uint32 objCount)
 * \brief Write data to a PhysicsFS filehandle
 *
 * The file must be opened for writing.
 *
 *   \param handle retval from PHYSFS_openWrite() or PHYSFS_openAppend().
 *   \param buffer buffer to store read data into.
 *   \param objSize size in bytes of objects being read from (handle).
 *   \param objCount number of (objSize) objects to read from (handle).
 *  \return number of objects written. PHYSFS_getLastError() can shed light on
 *           the reason this might be < (objCount). -1 if complete failure.
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_write(PHYSFS_File *handle,
                                      const void *buffer,
                                      PHYSFS_uint32 objSize,
                                      PHYSFS_uint32 objCount);


/* File position stuff... */

/**
 * \fn int PHYSFS_eof(PHYSFS_File *handle)
 * \brief Check for end-of-file state on a PhysicsFS filehandle.
 *
 * Determine if the end of file has been reached in a PhysicsFS filehandle.
 *
 *   \param handle handle returned from PHYSFS_openRead().
 *  \return nonzero if EOF, zero if not.
 *
 * \sa PHYSFS_read
 * \sa PHYSFS_tell
 */
__EXPORT__ int PHYSFS_eof(PHYSFS_File *handle);


/**
 * \fn PHYSFS_sint64 PHYSFS_tell(PHYSFS_File *handle)
 * \brief Determine current position within a PhysicsFS filehandle.
 *
 *   \param handle handle returned from PHYSFS_open*().
 *  \return offset in bytes from start of file. -1 if error occurred.
 *           Specifics of the error can be gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_seek
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_tell(PHYSFS_File *handle);


/**
 * \fn int PHYSFS_seek(PHYSFS_File *handle, PHYSFS_uint64 pos)
 * \brief Seek to a new position within a PhysicsFS filehandle.
 *
 * The next read or write will occur at that place. Seeking past the
 *  beginning or end of the file is not allowed, and causes an error.
 *
 *   \param handle handle returned from PHYSFS_open*().
 *   \param pos number of bytes from start of file to seek to.
 *  \return nonzero on success, zero on error. Specifics of the error can be
 *          gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_tell
 */
__EXPORT__ int PHYSFS_seek(PHYSFS_File *handle, PHYSFS_uint64 pos);


/**
 * \fn PHYSFS_sint64 PHYSFS_fileLength(PHYSFS_File *handle)
 * \brief Get total length of a file in bytes.
 *
 * Note that if the file size can't be determined (since the archive is
 *  "streamed" or whatnot) than this will report (-1). Also note that if
 *  another process/thread is writing to this file at the same time, then
 *  the information this function supplies could be incorrect before you
 *  get it. Use with caution, or better yet, don't use at all.
 *
 *   \param handle handle returned from PHYSFS_open*().
 *  \return size in bytes of the file. -1 if can't be determined.
 *
 * \sa PHYSFS_tell
 * \sa PHYSFS_seek
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_fileLength(PHYSFS_File *handle);


/* Buffering stuff... */

/**
 * \fn int PHYSFS_setBuffer(PHYSFS_File *handle, PHYSFS_uint64 bufsize)
 * \brief Set up buffering for a PhysicsFS file handle.
 *
 * Define an i/o buffer for a file handle. A memory block of (bufsize) bytes
 *  will be allocated and associated with (handle).
 *
 * For files opened for reading, up to (bufsize) bytes are read from (handle)
 *  and stored in the internal buffer. Calls to PHYSFS_read() will pull
 *  from this buffer until it is empty, and then refill it for more reading.
 *  Note that compressed files, like ZIP archives, will decompress while
 *  buffering, so this can be handy for offsetting CPU-intensive operations.
 *  The buffer isn't filled until you do your next read.
 *
 * For files opened for writing, data will be buffered to memory until the
 *  buffer is full or the buffer is flushed. Closing a handle implicitly
 *  causes a flush...check your return values!
 *
 * Seeking, etc transparently accounts for buffering.
 *
 * You can resize an existing buffer by calling this function more than once
 *  on the same file. Setting the buffer size to zero will free an existing
 *  buffer.
 *
 * PhysicsFS file handles are unbuffered by default.
 *
 * Please check the return value of this function! Failures can include
 *  not being able to seek backwards in a read-only file when removing the
 *  buffer, not being able to allocate the buffer, and not being able to
 *  flush the buffer to disk, among other unexpected problems.
 *
 *   \param handle handle returned from PHYSFS_open*().
 *   \param bufsize size, in bytes, of buffer to allocate.
 *  \return nonzero if successful, zero on error.
 *
 * \sa PHYSFS_flush
 * \sa PHYSFS_read
 * \sa PHYSFS_write
 * \sa PHYSFS_close
 */
__EXPORT__ int PHYSFS_setBuffer(PHYSFS_File *handle, PHYSFS_uint64 bufsize);


/**
 * \fn int PHYSFS_flush(PHYSFS_File *handle)
 * \brief Flush a buffered PhysicsFS file handle.
 *
 * For buffered files opened for writing, this will put the current contents
 *  of the buffer to disk and flag the buffer as empty if possible.
 *
 * For buffered files opened for reading or unbuffered files, this is a safe
 *  no-op, and will report success.
 *
 *   \param handle handle returned from PHYSFS_open*().
 *  \return nonzero if successful, zero on error.
 *
 * \sa PHYSFS_setBuffer
 * \sa PHYSFS_close
 */
__EXPORT__ int PHYSFS_flush(PHYSFS_File *handle);


/* Byteorder stuff... */

/**
 * \fn PHYSFS_sint16 PHYSFS_swapSLE16(PHYSFS_sint16 val)
 * \brief Swap littleendian signed 16 to platform's native byte order.
 *
 * Take a 16-bit signed value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_sint16 PHYSFS_swapSLE16(PHYSFS_sint16 val);


/**
 * \fn PHYSFS_uint16 PHYSFS_swapULE16(PHYSFS_uint16 val)
 * \brief Swap littleendian unsigned 16 to platform's native byte order.
 *
 * Take a 16-bit unsigned value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_uint16 PHYSFS_swapULE16(PHYSFS_uint16 val);

/**
 * \fn PHYSFS_sint32 PHYSFS_swapSLE32(PHYSFS_sint32 val)
 * \brief Swap littleendian signed 32 to platform's native byte order.
 *
 * Take a 32-bit signed value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_sint32 PHYSFS_swapSLE32(PHYSFS_sint32 val);


/**
 * \fn PHYSFS_uint32 PHYSFS_swapULE32(PHYSFS_uint32 val)
 * \brief Swap littleendian unsigned 32 to platform's native byte order.
 *
 * Take a 32-bit unsigned value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_uint32 PHYSFS_swapULE32(PHYSFS_uint32 val);

/**
 * \fn PHYSFS_sint64 PHYSFS_swapSLE64(PHYSFS_sint64 val)
 * \brief Swap littleendian signed 64 to platform's native byte order.
 *
 * Take a 64-bit signed value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_swapSLE64(PHYSFS_sint64 val);


/**
 * \fn PHYSFS_uint64 PHYSFS_swapULE64(PHYSFS_uint64 val)
 * \brief Swap littleendian unsigned 64 to platform's native byte order.
 *
 * Take a 64-bit unsigned value in littleendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ PHYSFS_uint64 PHYSFS_swapULE64(PHYSFS_uint64 val);


/**
 * \fn PHYSFS_sint16 PHYSFS_swapSBE16(PHYSFS_sint16 val)
 * \brief Swap bigendian signed 16 to platform's native byte order.
 *
 * Take a 16-bit signed value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_sint16 PHYSFS_swapSBE16(PHYSFS_sint16 val);


/**
 * \fn PHYSFS_uint16 PHYSFS_swapUBE16(PHYSFS_uint16 val)
 * \brief Swap bigendian unsigned 16 to platform's native byte order.
 *
 * Take a 16-bit unsigned value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_uint16 PHYSFS_swapUBE16(PHYSFS_uint16 val);

/**
 * \fn PHYSFS_sint32 PHYSFS_swapSBE32(PHYSFS_sint32 val)
 * \brief Swap bigendian signed 32 to platform's native byte order.
 *
 * Take a 32-bit signed value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_sint32 PHYSFS_swapSBE32(PHYSFS_sint32 val);


/**
 * \fn PHYSFS_uint32 PHYSFS_swapUBE32(PHYSFS_uint32 val)
 * \brief Swap bigendian unsigned 32 to platform's native byte order.
 *
 * Take a 32-bit unsigned value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 */
__EXPORT__ PHYSFS_uint32 PHYSFS_swapUBE32(PHYSFS_uint32 val);


/**
 * \fn PHYSFS_sint64 PHYSFS_swapSBE64(PHYSFS_sint64 val)
 * \brief Swap bigendian signed 64 to platform's native byte order.
 *
 * Take a 64-bit signed value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ PHYSFS_sint64 PHYSFS_swapSBE64(PHYSFS_sint64 val);


/**
 * \fn PHYSFS_uint64 PHYSFS_swapUBE64(PHYSFS_uint64 val)
 * \brief Swap bigendian unsigned 64 to platform's native byte order.
 *
 * Take a 64-bit unsigned value in bigendian format and convert it to
 *  the platform's native byte order.
 *
 *    \param val value to convert
 *   \return converted value.
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ PHYSFS_uint64 PHYSFS_swapUBE64(PHYSFS_uint64 val);


/**
 * \fn int PHYSFS_readSLE16(PHYSFS_File *file, PHYSFS_sint16 *val)
 * \brief Read and convert a signed 16-bit littleendian value.
 *
 * Convenience function. Read a signed 16-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_readSLE16(PHYSFS_File *file, PHYSFS_sint16 *val);


/**
 * \fn int PHYSFS_readULE16(PHYSFS_File *file, PHYSFS_uint16 *val)
 * \brief Read and convert an unsigned 16-bit littleendian value.
 *
 * Convenience function. Read an unsigned 16-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 */
__EXPORT__ int PHYSFS_readULE16(PHYSFS_File *file, PHYSFS_uint16 *val);


/**
 * \fn int PHYSFS_readSBE16(PHYSFS_File *file, PHYSFS_sint16 *val)
 * \brief Read and convert a signed 16-bit bigendian value.
 *
 * Convenience function. Read a signed 16-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_readSBE16(PHYSFS_File *file, PHYSFS_sint16 *val);


/**
 * \fn int PHYSFS_readUBE16(PHYSFS_File *file, PHYSFS_uint16 *val)
 * \brief Read and convert an unsigned 16-bit bigendian value.
 *
 * Convenience function. Read an unsigned 16-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 */
__EXPORT__ int PHYSFS_readUBE16(PHYSFS_File *file, PHYSFS_uint16 *val);


/**
 * \fn int PHYSFS_readSLE32(PHYSFS_File *file, PHYSFS_sint32 *val)
 * \brief Read and convert a signed 32-bit littleendian value.
 *
 * Convenience function. Read a signed 32-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_readSLE32(PHYSFS_File *file, PHYSFS_sint32 *val);


/**
 * \fn int PHYSFS_readULE32(PHYSFS_File *file, PHYSFS_uint32 *val)
 * \brief Read and convert an unsigned 32-bit littleendian value.
 *
 * Convenience function. Read an unsigned 32-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 */
__EXPORT__ int PHYSFS_readULE32(PHYSFS_File *file, PHYSFS_uint32 *val);


/**
 * \fn int PHYSFS_readSBE32(PHYSFS_File *file, PHYSFS_sint32 *val)
 * \brief Read and convert a signed 32-bit bigendian value.
 *
 * Convenience function. Read a signed 32-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_readSBE32(PHYSFS_File *file, PHYSFS_sint32 *val);


/**
 * \fn int PHYSFS_readUBE32(PHYSFS_File *file, PHYSFS_uint32 *val)
 * \brief Read and convert an unsigned 32-bit bigendian value.
 *
 * Convenience function. Read an unsigned 32-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 */
__EXPORT__ int PHYSFS_readUBE32(PHYSFS_File *file, PHYSFS_uint32 *val);


/**
 * \fn int PHYSFS_readSLE64(PHYSFS_File *file, PHYSFS_sint64 *val)
 * \brief Read and convert a signed 64-bit littleendian value.
 *
 * Convenience function. Read a signed 64-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_sint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_readSLE64(PHYSFS_File *file, PHYSFS_sint64 *val);


/**
 * \fn int PHYSFS_readULE64(PHYSFS_File *file, PHYSFS_uint64 *val)
 * \brief Read and convert an unsigned 64-bit littleendian value.
 *
 * Convenience function. Read an unsigned 64-bit littleendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_readULE64(PHYSFS_File *file, PHYSFS_uint64 *val);


/**
 * \fn int PHYSFS_readSBE64(PHYSFS_File *file, PHYSFS_sint64 *val)
 * \brief Read and convert a signed 64-bit bigendian value.
 *
 * Convenience function. Read a signed 64-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_sint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_readSBE64(PHYSFS_File *file, PHYSFS_sint64 *val);


/**
 * \fn int PHYSFS_readUBE64(PHYSFS_File *file, PHYSFS_uint64 *val)
 * \brief Read and convert an unsigned 64-bit bigendian value.
 *
 * Convenience function. Read an unsigned 64-bit bigendian value from a
 *  file and convert it to the platform's native byte order.
 *
 *    \param file PhysicsFS file handle from which to read.
 *    \param val pointer to where value should be stored.
 *   \return zero on failure, non-zero on success. If successful, (*val) will
 *           store the result. On failure, you can find out what went wrong
 *           from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_readUBE64(PHYSFS_File *file, PHYSFS_uint64 *val);


/**
 * \fn int PHYSFS_writeSLE16(PHYSFS_File *file, PHYSFS_sint16 val)
 * \brief Convert and write a signed 16-bit littleendian value.
 *
 * Convenience function. Convert a signed 16-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeSLE16(PHYSFS_File *file, PHYSFS_sint16 val);


/**
 * \fn int PHYSFS_writeULE16(PHYSFS_File *file, PHYSFS_uint16 val)
 * \brief Convert and write an unsigned 16-bit littleendian value.
 *
 * Convenience function. Convert an unsigned 16-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeULE16(PHYSFS_File *file, PHYSFS_uint16 val);


/**
 * \fn int PHYSFS_writeSBE16(PHYSFS_File *file, PHYSFS_sint16 val)
 * \brief Convert and write a signed 16-bit bigendian value.
 *
 * Convenience function. Convert a signed 16-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeSBE16(PHYSFS_File *file, PHYSFS_sint16 val);


/**
 * \fn int PHYSFS_writeUBE16(PHYSFS_File *file, PHYSFS_uint16 val)
 * \brief Convert and write an unsigned 16-bit bigendian value.
 *
 * Convenience function. Convert an unsigned 16-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeUBE16(PHYSFS_File *file, PHYSFS_uint16 val);


/**
 * \fn int PHYSFS_writeSLE32(PHYSFS_File *file, PHYSFS_sint32 val)
 * \brief Convert and write a signed 32-bit littleendian value.
 *
 * Convenience function. Convert a signed 32-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeSLE32(PHYSFS_File *file, PHYSFS_sint32 val);


/**
 * \fn int PHYSFS_writeULE32(PHYSFS_File *file, PHYSFS_uint32 val)
 * \brief Convert and write an unsigned 32-bit littleendian value.
 *
 * Convenience function. Convert an unsigned 32-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeULE32(PHYSFS_File *file, PHYSFS_uint32 val);


/**
 * \fn int PHYSFS_writeSBE32(PHYSFS_File *file, PHYSFS_sint32 val)
 * \brief Convert and write a signed 32-bit bigendian value.
 *
 * Convenience function. Convert a signed 32-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeSBE32(PHYSFS_File *file, PHYSFS_sint32 val);


/**
 * \fn int PHYSFS_writeUBE32(PHYSFS_File *file, PHYSFS_uint32 val)
 * \brief Convert and write an unsigned 32-bit bigendian value.
 *
 * Convenience function. Convert an unsigned 32-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 */
__EXPORT__ int PHYSFS_writeUBE32(PHYSFS_File *file, PHYSFS_uint32 val);


/**
 * \fn int PHYSFS_writeSLE64(PHYSFS_File *file, PHYSFS_sint64 val)
 * \brief Convert and write a signed 64-bit littleendian value.
 *
 * Convenience function. Convert a signed 64-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_writeSLE64(PHYSFS_File *file, PHYSFS_sint64 val);


/**
 * \fn int PHYSFS_writeULE64(PHYSFS_File *file, PHYSFS_uint64 val)
 * \brief Convert and write an unsigned 64-bit littleendian value.
 *
 * Convenience function. Convert an unsigned 64-bit value from the platform's
 *  native byte order to littleendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_writeULE64(PHYSFS_File *file, PHYSFS_uint64 val);


/**
 * \fn int PHYSFS_writeSBE64(PHYSFS_File *file, PHYSFS_sint64 val)
 * \brief Convert and write a signed 64-bit bigending value.
 *
 * Convenience function. Convert a signed 64-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_writeSBE64(PHYSFS_File *file, PHYSFS_sint64 val);


/**
 * \fn int PHYSFS_writeUBE64(PHYSFS_File *file, PHYSFS_uint64 val)
 * \brief Convert and write an unsigned 64-bit bigendian value.
 *
 * Convenience function. Convert an unsigned 64-bit value from the platform's
 *  native byte order to bigendian and write it to a file.
 *
 *    \param file PhysicsFS file handle to which to write.
 *    \param val Value to convert and write.
 *   \return zero on failure, non-zero on success. On failure, you can
 *           find out what went wrong from PHYSFS_getLastError().
 *
 * \warning Remember, PHYSFS_uint64 is only 32 bits on platforms without
 *          any sort of 64-bit support.
 */
__EXPORT__ int PHYSFS_writeUBE64(PHYSFS_File *file, PHYSFS_uint64 val);


/* Everything above this line is part of the PhysicsFS 1.0 API. */

/**
 * \fn int PHYSFS_isInit(void)
 * \brief Determine if the PhysicsFS library is initialized.
 *
 * Once PHYSFS_init() returns successfully, this will return non-zero.
 *  Before a successful PHYSFS_init() and after PHYSFS_deinit() returns
 *  successfully, this will return zero. This function is safe to call at
 *  any time.
 *
 *  \return non-zero if library is initialized, zero if library is not.
 *
 * \sa PHYSFS_init
 * \sa PHYSFS_deinit
 */
__EXPORT__ int PHYSFS_isInit(void);


/**
 * \fn int PHYSFS_symbolicLinksPermitted(void)
 * \brief Determine if the symbolic links are permitted.
 *
 * This reports the setting from the last call to PHYSFS_permitSymbolicLinks().
 *  If PHYSFS_permitSymbolicLinks() hasn't been called since the library was
 *  last initialized, symbolic links are implicitly disabled.
 *
 *  \return non-zero if symlinks are permitted, zero if not.
 *
 * \sa PHYSFS_permitSymbolicLinks
 */
__EXPORT__ int PHYSFS_symbolicLinksPermitted(void);


/**
 * \struct PHYSFS_Allocator
 * \brief PhysicsFS allocation function pointers.
 *
 * (This is for limited, hardcore use. If you don't immediately see a need
 *  for it, you can probably ignore this forever.)
 *
 * You create one of these structures for use with PHYSFS_setAllocator.
 *  Allocators are assumed to be reentrant by the caller; please mutex
 *  accordingly.
 *
 * Allocations are always discussed in 64-bits, for future expansion...we're
 *  on the cusp of a 64-bit transition, and we'll probably be allocating 6
 *  gigabytes like it's nothing sooner or later, and I don't want to change
 *  this again at that point. If you're on a 32-bit platform and have to
 *  downcast, it's okay to return NULL if the allocation is greater than
 *  4 gigabytes, since you'd have to do so anyhow.
 *
 * \sa PHYSFS_setAllocator
 */
typedef struct PHYSFS_Allocator
{
    int (*Init)(void);   /**< Initialize. Can be NULL. Zero on failure. */
    void (*Deinit)(void);  /**< Deinitialize your allocator. Can be NULL. */
    void *(*Malloc)(PHYSFS_uint64);  /**< Allocate like malloc(). */
    void *(*Realloc)(void *, PHYSFS_uint64); /**< Reallocate like realloc(). */
    void (*Free)(void *); /**< Free memory from Malloc or Realloc. */
} PHYSFS_Allocator;


/**
 * \fn int PHYSFS_setAllocator(const PHYSFS_Allocator *allocator)
 * \brief Hook your own allocation routines into PhysicsFS.
 *
 * (This is for limited, hardcore use. If you don't immediately see a need
 *  for it, you can probably ignore this forever.)
 *
 * By default, PhysicsFS will use whatever is reasonable for a platform
 *  to manage dynamic memory (usually ANSI C malloc/realloc/calloc/free, but
 *  some platforms might use something else), but in some uncommon cases, the
 *  app might want more control over the library's memory management. This
 *  lets you redirect PhysicsFS to use your own allocation routines instead.
 *  You can only call this function before PHYSFS_init(); if the library is
 *  initialized, it'll reject your efforts to change the allocator mid-stream.
 *  You may call this function after PHYSFS_deinit() if you are willing to
 *  shut down the library and restart it with a new allocator; this is a safe
 *  and supported operation. The allocator remains intact between deinit/init
 *  calls. If you want to return to the platform's default allocator, pass a
 *  NULL in here.
 *
 * If you aren't immediately sure what to do with this function, you can
 *  safely ignore it altogether.
 *
 *    \param allocator Structure containing your allocator's entry points.
 *   \return zero on failure, non-zero on success. This call only fails
 *           when used between PHYSFS_init() and PHYSFS_deinit() calls.
 */
__EXPORT__ int PHYSFS_setAllocator(const PHYSFS_Allocator *allocator);


/**
 * \fn int PHYSFS_mount(const char *newDir, const char *mountPoint, int appendToPath)
 * \brief Add an archive or directory to the search path.
 *
 * If this is a duplicate, the entry is not added again, even though the
 *  function succeeds. You may not add the same archive to two different
 *  mountpoints: duplicate checking is done against the archive and not the
 *  mountpoint.
 *
 * When you mount an archive, it is added to a virtual file system...all files
 *  in all of the archives are interpolated into a single hierachical file
 *  tree. Two archives mounted at the same place (or an archive with files
 *  overlapping another mountpoint) may have overlapping files: in such a case,
 *  the file earliest in the search path is selected, and the other files are
 *  inaccessible to the application. This allows archives to be used to
 *  override previous revisions; you can use the mounting mechanism to place
 *  archives at a specific point in the file tree and prevent overlap; this
 *  is useful for downloadable mods that might trample over application data
 *  or each other, for example.
 *
 * The mountpoint does not need to exist prior to mounting, which is different
 *  than those familiar with the Unix concept of "mounting" may not expect.
 *  As well, more than one archive can be mounted to the same mountpoint, or
 *  mountpoints and archive contents can overlap...the interpolation mechanism
 *  still functions as usual.
 *
 *   \param newDir directory or archive to add to the path, in
 *                   platform-dependent notation.
 *   \param mountPoint Location in the interpolated tree that this archive
 *                     will be "mounted", in platform-independent notation.
 *                     NULL or "" is equivalent to "/".
 *   \param appendToPath nonzero to append to search path, zero to prepend.
 *  \return nonzero if added to path, zero on failure (bogus archive, dir
 *                   missing, etc). Specifics of the error can be
 *                   gleaned from PHYSFS_getLastError().
 *
 * \sa PHYSFS_removeFromSearchPath
 * \sa PHYSFS_getSearchPath
 * \sa PHYSFS_getMountPoint
 */
__EXPORT__ int PHYSFS_mount(const char *newDir, const char *mountPoint, int appendToPath);

/**
 * \fn int PHYSFS_getMountPoint(const char *dir)
 * \brief Determine a mounted archive's mountpoint.
 *
 * You give this function the name of an archive or dir you successfully
 *  added to the search path, and it reports the location in the interpolated
 *  tree where it is mounted. Files mounted with a NULL mountpoint or through
 *  PHYSFS_addToSearchPath() will report "/". The return value is READ ONLY
 *  and valid until the archive is removed from the search path.
 *
 *   \param dir directory or archive previously added to the path, in
 *              platform-dependent notation. This must match the string
 *              used when adding, even if your string would also reference
 *              the same file with a different string of characters.
 *  \return READ-ONLY string of mount point if added to path, NULL on failure
 *          (bogus archive, etc) Specifics of the error can be gleaned from
 *          PHYSFS_getLastError().
 *
 * \sa PHYSFS_removeFromSearchPath
 * \sa PHYSFS_getSearchPath
 * \sa PHYSFS_getMountPoint
 */
__EXPORT__ const char *PHYSFS_getMountPoint(const char *dir);


/**
 * \typedef PHYSFS_StringCallback
 * \brief Function signature for callbacks that report strings.
 *
 * These are used to report a list of strings to an original caller, one
 *  string per callback. All strings are UTF-8 encoded. Functions should not
 *  try to modify or free the string's memory.
 *
 * These callbacks are used, starting in PhysicsFS 1.1, as an alternative to
 *  functions that would return lists that need to be cleaned up with
 *  PHYSFS_freeList(). The callback means that the library doesn't need to
 *  allocate an entire list and all the strings up front.
 *
 * Be aware that promises data ordering in the list versions are not
 *  necessarily so in the callback versions. Check the documentation on
 *  specific APIs, but strings may not be sorted as you expect.
 *
 *    \param data User-defined data pointer, passed through from the API
 *                that eventually called the callback.
 *    \param str The string data about which the callback is meant to inform.
 *
 * \sa PHYSFS_getCdRomDirsCallback
 * \sa PHYSFS_getSearchPathCallback
 */
typedef void (*PHYSFS_StringCallback)(void *data, const char *str);


/**
 * \typedef PHYSFS_EnumFilesCallback
 * \brief Function signature for callbacks that enumerate files.
 *
 * These are used to report a list of directory entries to an original caller,
 *  one file/dir/symlink per callback. All strings are UTF-8 encoded.
 *  Functions should not try to modify or free any string's memory.
 *
 * These callbacks are used, starting in PhysicsFS 1.1, as an alternative to
 *  functions that would return lists that need to be cleaned up with
 *  PHYSFS_freeList(). The callback means that the library doesn't need to
 *  allocate an entire list and all the strings up front.
 *
 * Be aware that promises data ordering in the list versions are not
 *  necessarily so in the callback versions. Check the documentation on
 *  specific APIs, but strings may not be sorted as you expect.
 *
 *    \param data User-defined data pointer, passed through from the API
 *                that eventually called the callback.
 *    \param origdir A string containing the full path, in platform-independent
 *                   notation, of the directory containing this file. In most
 *                   cases, this is the directory on which you requested
 *                   enumeration, passed in the callback for your convenience.
 *    \param fname The filename that is being enumerated. It may not be in
 *                 alphabetical order compared to other callbacks that have
 *                 fired, and it will not contain the full path. You can
 *                 recreate the fullpath with $origdir/$fname ... The file
 *                 can be a subdirectory, a file, a symlink, etc.
 *
 * \sa PHYSFS_enumerateFilesCallback
 */
typedef void (*PHYSFS_EnumFilesCallback)(void *data, const char *origdir,
                                         const char *fname);


/**
 * \fn void PHYSFS_getCdRomDirsCallback(PHYSFS_StringCallback c, void *d)
 * \brief Enumerate CD-ROM directories, using an application-defined callback.
 *
 * Internally, PHYSFS_getCdRomDirs() just calls this function and then builds
 *  a list before returning to the application, so functionality is identical
 *  except for how the information is represented to the application.
 *
 * Unlike PHYSFS_getCdRomDirs(), this function does not return an array.
 *  Rather, it calls a function specified by the application once per
 *  detected disc:
 *
 * \code
 *
 * static void foundDisc(void *data, const char *cddir)
 * {
 *     printf("cdrom dir [%s] is available.\n", cddir);
 * }
 *
 * // ...
 * PHYSFS_getCdRomDirsCallback(foundDisc, NULL);
 * \endcode
 *
 * This call may block while drives spin up. Be forewarned.
 *
 *    \param c Callback function to notify about detected drives.
 *    \param d Application-defined data passed to callback. Can be NULL.
 *
 * \sa PHYSFS_StringCallback
 * \sa PHYSFS_getCdRomDirs
 */
__EXPORT__ void PHYSFS_getCdRomDirsCallback(PHYSFS_StringCallback c, void *d);


/**
 * \fn void PHYSFS_getSearchPathCallback(PHYSFS_StringCallback c, void *d)
 * \brief Enumerate the search path, using an application-defined callback.
 *
 * Internally, PHYSFS_getSearchPath() just calls this function and then builds
 *  a list before returning to the application, so functionality is identical
 *  except for how the information is represented to the application.
 *
 * Unlike PHYSFS_getSearchPath(), this function does not return an array.
 *  Rather, it calls a function specified by the application once per
 *  element of the search path:
 *
 * \code
 *
 * static void printSearchPath(void *data, const char *pathItem)
 * {
 *     printf("[%s] is in the search path.\n", pathItem);
 * }
 *
 * // ...
 * PHYSFS_getSearchPathCallback(printSearchPath, NULL);
 * \endcode
 *
 * Elements of the search path are reported in order search priority, so the
 *  first archive/dir that would be examined when looking for a file is the
 *  first element passed through the callback.
 *
 *    \param c Callback function to notify about search path elements.
 *    \param d Application-defined data passed to callback. Can be NULL.
 *
 * \sa PHYSFS_StringCallback
 * \sa PHYSFS_getSearchPath
 */
__EXPORT__ void PHYSFS_getSearchPathCallback(PHYSFS_StringCallback c, void *d);


/**
 * \fn void PHYSFS_enumerateFilesCallback(const char *dir, PHYSFS_EnumFilesCallback c, void *d)
 * \brief Get a file listing of a search path's directory, using an application-defined callback.
 *
 * Internally, PHYSFS_enumerateFiles() just calls this function and then builds
 *  a list before returning to the application, so functionality is identical
 *  except for how the information is represented to the application.
 *
 * Unlike PHYSFS_enumerateFiles(), this function does not return an array.
 *  Rather, it calls a function specified by the application once per
 *  element of the search path:
 *
 * \code
 *
 * static void printDir(void *data, const char *origdir, const char *fname)
 * {
 *     printf(" * We've got [%s] in [%s].\n", fname, origdir);
 * }
 *
 * // ...
 * PHYSFS_enumerateFilesCallback("/some/path", printDir, NULL);
 * \endcode
 *
 * Items sent to the callback are not guaranteed to be in any order whatsoever.
 *  There is no sorting done at this level, and if you need that, you should
 *  probably use PHYSFS_enumerateFiles() instead, which guarantees
 *  alphabetical sorting. This form reports whatever is discovered in each
 *  archive before moving on to the next. Even within one archive, we can't
 *  guarantee what order it will discover data. <em>Any sorting you find in
 *  these callbacks is just pure luck. Do not rely on it.</em>
 *
 *    \param dir Directory, in platform-independent notation, to enumerate.
 *    \param c Callback function to notify about search path elements.
 *    \param d Application-defined data passed to callback. Can be NULL.
 *
 * \sa PHYSFS_EnumFilesCallback
 * \sa PHYSFS_enumerateFiles
 */
__EXPORT__ void PHYSFS_enumerateFilesCallback(const char *dir,
                                              PHYSFS_EnumFilesCallback c,
                                              void *d);

/**
 * \fn void PHYSFS_utf8FromUcs4(const PHYSFS_uint32 *src, char *dst, PHYSFS_uint64 len)
 * \brief Convert a UCS-4 string to a UTF-8 string.
 *
 * UCS-4 strings are 32-bits per character: \c wchar_t on Unix.
 *
 * To ensure that the destination buffer is large enough for the conversion,
 *  please allocate a buffer that is the same size as the source buffer. UTF-8
 *  never uses more than 32-bits per character, so while it may shrink a UCS-4
 *  string, it will never expand it.
 *
 * Strings that don't fit in the destination buffer will be truncated, but
 *  will always be null-terminated and never have an incomplete UTF-8
 *  sequence at the end.
 *
 *   \param src Null-terminated source string in UCS-4 format.
 *   \param dst Buffer to store converted UTF-8 string.
 *   \param len Size, in bytes, of destination buffer.
 */
__EXPORT__ void PHYSFS_utf8FromUcs4(const PHYSFS_uint32 *src, char *dst,
                                    PHYSFS_uint64 len);

/**
 * \fn void PHYSFS_utf8ToUcs4(const char *src, PHYSFS_uint32 *dst, PHYSFS_uint64 len)
 * \brief Convert a UTF-8 string to a UCS-4 string.
 *
 * UCS-4 strings are 32-bits per character: \c wchar_t on Unix.
 *
 * To ensure that the destination buffer is large enough for the conversion,
 *  please allocate a buffer that is four times the size of the source buffer.
 *  UTF-8 uses from one to four bytes per character, but UCS-4 always uses
 *  four, so an entirely low-ASCII string will quadruple in size!
 *
 * Strings that don't fit in the destination buffer will be truncated, but
 *  will always be null-terminated and never have an incomplete UCS-4
 *  sequence at the end.
 *
 *   \param src Null-terminated source string in UTF-8 format.
 *   \param dst Buffer to store converted UCS-4 string.
 *   \param len Size, in bytes, of destination buffer.
 */
__EXPORT__ void PHYSFS_utf8ToUcs4(const char *src, PHYSFS_uint32 *dst,
                                  PHYSFS_uint64 len);

/**
 * \fn void PHYSFS_utf8FromUcs2(const PHYSFS_uint16 *src, char *dst, PHYSFS_uint64 len)
 * \brief Convert a UCS-2 string to a UTF-8 string.
 *
 * UCS-2 strings are 16-bits per character: \c TCHAR on Windows, when building
 *  with Unicode support.
 *
 * To ensure that the destination buffer is large enough for the conversion,
 *  please allocate a buffer that is double the size of the source buffer.
 *  UTF-8 never uses more than 32-bits per character, so while it may shrink
 *  a UCS-2 string, it may also expand it.
 *
 * Strings that don't fit in the destination buffer will be truncated, but
 *  will always be null-terminated and never have an incomplete UTF-8
 *  sequence at the end.
 *
 * Please note that UCS-2 is not UTF-16; we do not support the "surrogate"
 *  values at this time.
 *
 *   \param src Null-terminated source string in UCS-2 format.
 *   \param dst Buffer to store converted UTF-8 string.
 *   \param len Size, in bytes, of destination buffer.
 */
__EXPORT__ void PHYSFS_utf8FromUcs2(const PHYSFS_uint16 *src, char *dst,
                                    PHYSFS_uint64 len);

/**
 * \fn PHYSFS_utf8ToUcs2(const char *src, PHYSFS_uint16 *dst, PHYSFS_uint64 len)
 * \brief Convert a UTF-8 string to a UCS-2 string.
 *
 * UCS-2 strings are 16-bits per character: \c TCHAR on Windows, when building
 *  with Unicode support.
 *
 * To ensure that the destination buffer is large enough for the conversion,
 *  please allocate a buffer that is double the size of the source buffer.
 *  UTF-8 uses from one to four bytes per character, but UCS-2 always uses
 *  two, so an entirely low-ASCII string will double in size!
 *
 * Strings that don't fit in the destination buffer will be truncated, but
 *  will always be null-terminated and never have an incomplete UCS-2
 *  sequence at the end.
 *
 * Please note that UCS-2 is not UTF-16; we do not support the "surrogate"
 *  values at this time.
 *
 *   \param src Null-terminated source string in UTF-8 format.
 *   \param dst Buffer to store converted UCS-2 string.
 *   \param len Size, in bytes, of destination buffer.
 */
__EXPORT__ void PHYSFS_utf8ToUcs2(const char *src, PHYSFS_uint16 *dst,
                                  PHYSFS_uint64 len);

/**
 * \fn void PHYSFS_utf8FromLatin1(const char *src, char *dst, PHYSFS_uint64 len)
 * \brief Convert a UTF-8 string to a Latin1 string.
 *
 * Latin1 strings are 8-bits per character: a popular "high ASCII"
 *  encoding.
 *
 * To ensure that the destination buffer is large enough for the conversion,
 *  please allocate a buffer that is double the size of the source buffer.
 *  UTF-8 expands latin1 codepoints over 127 from 1 to 2 bytes, so the string
 *  may grow in some cases.
 *
 * Strings that don't fit in the destination buffer will be truncated, but
 *  will always be null-terminated and never have an incomplete UTF-8
 *  sequence at the end.
 *
 * Please note that we do not supply a UTF-8 to Latin1 converter, since Latin1
 *  can't express most Unicode codepoints. It's a legacy encoding; you should
 *  be converting away from it at all times.
 *
 *   \param src Null-terminated source string in Latin1 format.
 *   \param dst Buffer to store converted UTF-8 string.
 *   \param len Size, in bytes, of destination buffer.
 */
__EXPORT__ void PHYSFS_utf8FromLatin1(const char *src, char *dst,
                                  PHYSFS_uint64 len);

/* Everything above this line is part of the PhysicsFS 2.0 API. */


#ifdef __cplusplus
}
#endif

#endif  /* !defined _INCLUDE_PHYSFS_H_ */

/* end of physfs.h ... */