1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
/**
* Date: Mar 9, 2003
* Time: 1:33:05 PM
*
* $Id: AbstractGraphics2D.java,v 1.3 2004/11/21 16:29:30 taqua Exp $
*/
package org.jfree.pixie;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.Paint;
import java.awt.Polygon;
import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.font.GlyphVector;
import java.awt.geom.AffineTransform;
import java.awt.geom.Arc2D;
import java.awt.geom.Area;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.image.BufferedImage;
import java.awt.image.BufferedImageOp;
import java.awt.image.ImageObserver;
import java.awt.image.renderable.RenderableImage;
import java.text.AttributedCharacterIterator;
/**
* Maps all the convinience methods to their root implementations.
*/
public abstract class AbstractGraphics2D extends Graphics2D
{
public AbstractGraphics2D ()
{
}
/**
* Renders a <code>BufferedImage</code> that is filtered with a {@link
* java.awt.image.BufferedImageOp}. The rendering attributes applied include the
* <code>Clip</code>, <code>Transform</code> and <code>Composite</code> attributes.
* This is equivalent to:
* <pre>
* img1 = op.filter(img, null);
* drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
* </pre>
*
* @param op the filter to be applied to the image before rendering
* @param img the <code>BufferedImage</code> to be rendered
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
*/
public void drawImage (final BufferedImage img,
final BufferedImageOp op,
final int x,
final int y)
{
BufferedImage result = op.createCompatibleDestImage(img, img.getColorModel());
result = op.filter(img, result);
drawImage(result, x, y, null);
}
/**
* Renders the text of the specified <code>String</code>, using the current
* <code>Font</code> and <code>Paint</code> attributes in the <code>Graphics2D</code>
* context. The baseline of the first character is at position (<i>x</i>, <i>y</i>)
* in the User Space. The rendering attributes applied include the <code>Clip</code>,
* <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
* <code>Composite</code> attributes. For characters in script systems such as Hebrew
* and Arabic, the glyphs can be rendered from right to left, in which case the
* coordinate supplied is the location of the leftmost character on the baseline.
*
* @param str the string to be rendered
* @param x the coordinates where the iterator's text is to be rendered
* @param y the coordinates where the iterator's text is to be rendered
* @throws NullPointerException if <code>str</code> is <code>null</code>
* @see java.awt.Graphics#drawBytes
* @see java.awt.Graphics#drawChars
* @since JDK1.0
*/
public void drawString (final String str, final int x, final int y)
{
drawString(str, (float) x, (float) y);
}
/**
* Renders the text of the specified iterator, using the <code>Graphics2D</code>
* context's current <code>Paint</code>. The iterator has to specify a font for each
* character. The baseline of the first character is at position
* (<i>x</i>, <i>y</i>) in the User Space. The rendering attributes applied include
* the <code>Clip</code>, <code>Transform</code>, <code>Paint</code>, and
* <code>Composite</code> attributes. For characters in script systems such as Hebrew
* and Arabic, the glyphs can be rendered from right to left, in which case the
* coordinate supplied is the location of the leftmost character on the baseline.
*
* @param iterator the iterator whose text is to be rendered
* @param x the coordinates where the iterator's text is to be rendered
* @param y the coordinates where the iterator's text is to be rendered
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #setTransform
* @see #setComposite
* @see #setClip
*/
public void drawString (final AttributedCharacterIterator iterator,
final int x, final int y)
{
drawString(iterator, (float) x, (float) y);
}
/**
* Renders the text of the specified iterator, using the <code>Graphics2D</code>
* context's current <code>Paint</code>. The iterator must specify a font for each
* character. The baseline of the first character is at position
* (<i>x</i>, <i>y</i>) in the User Space. The rendering attributes applied include
* the <code>Clip</code>, <code>Transform</code>, <code>Paint</code>, and
* <code>Composite</code> attributes. For characters in script systems such as Hebrew
* and Arabic, the glyphs can be rendered from right to left, in which case the
* coordinate supplied is the location of the leftmost character on the baseline.
*
* @param iterator the iterator whose text is to be rendered
* @param x the coordinates where the iterator's text is to be rendered
* @param y the coordinates where the iterator's text is to be rendered
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #setTransform
* @see #setComposite
* @see #setClip
*/
public void drawString (final AttributedCharacterIterator iterator,
final float x, final float y)
{
final StringBuffer sb = new StringBuffer();
char c = iterator.first();
while (c != AttributedCharacterIterator.DONE)
{
sb.append(c);
c = iterator.next();
}
drawString(sb.toString(), x, y);
}
/**
* Renders the text of the specified {@link java.awt.font.GlyphVector} using the
* <code>Graphics2D</code> context's rendering attributes. The rendering attributes
* applied include the <code>Clip</code>, <code>Transform</code>, <code>Paint</code>,
* and <code>Composite</code> attributes. The <code>GlyphVector</code> specifies
* individual glyphs from a {@link java.awt.Font}. The <code>GlyphVector</code> can also
* contain the glyph positions. This is the fastest way to render a set of characters to
* the screen.
*
* @param g the <code>GlyphVector</code> to be rendered
* @param x the position in User Space where the glyphs should be rendered
* @param y the position in User Space where the glyphs should be rendered
* @see java.awt.font.GlyphVector
* @see #setPaint
* @see java.awt.Graphics#setColor
* @see #setTransform
* @see #setComposite
* @see #setClip
*/
public void drawGlyphVector (final GlyphVector g, final float x, final float y)
{
fill(g.getOutline(x, y));
}
/**
* Checks whether or not the specified <code>Shape</code> intersects the specified
* {@link java.awt.Rectangle}, which is in device space. If <code>onStroke</code> is
* false, this method checks whether or not the interior of the specified
* <code>Shape</code> intersects the specified <code>Rectangle</code>. If
* <code>onStroke</code> is <code>true</code>, this method checks whether or not the
* <code>Stroke</code> of the specified <code>Shape</code> outline intersects the
* specified <code>Rectangle</code>. The rendering attributes taken into account include
* the <code>Clip</code>, <code>Transform</code>, and <code>Stroke</code> attributes.
*
* @param rect the area in device space to check for a hit
* @param s the <code>Shape</code> to check for a hit
* @param onStroke flag used to choose between testing the stroked or the filled shape.
* If the flag is <code>true</code>, the <code>Stroke</code> oultine is
* tested. If the flag is <code>false</code>, the filled
* <code>Shape</code> is tested.
* @return <code>true</code> if there is a hit; <code>false</code> otherwise.
*
* @see #setStroke
* @see #fill
* @see #draw
* @see #transform
* @see #setTransform
* @see #clip
* @see #setClip
*/
public boolean hit (final Rectangle rect,
Shape s,
final boolean onStroke)
{
if (onStroke)
{
s = getStroke().createStrokedShape(s);
}
s = getTransform().createTransformedShape(s);
final Area area = new Area(s);
if (getClip() != null)
{
area.intersect(new Area(getClip()));
}
return area.intersects(rect.x, rect.y, rect.width, rect.height);
}
/**
* Translates the origin of the <code>Graphics2D</code> context to the point
* (<i>x</i>, <i>y</i>) in the current coordinate system. Modifies the
* <code>Graphics2D</code> context so that its new origin corresponds to the point
* (<i>x</i>, <i>y</i>) in the <code>Graphics2D</code> context's former coordinate
* system. All coordinates used in subsequent rendering operations on this graphics
* context are relative to this new origin.
*
* @since JDK1.0
*/
public void translate (final int x, final int y)
{
translate((double) x, (double) y);
}
/**
* Concatenates the current <code>Graphics2D</code> <code>Transform</code> with a
* translation transform. Subsequent rendering is translated by the specified distance
* relative to the previous position. This is equivalent to calling transform(T), where
* T is an <code>AffineTransform</code> represented by the following matrix:
* <pre>
* [ 1 0 tx ]
* [ 0 1 ty ]
* [ 0 0 1 ]
* </pre>
*
* @param tx the distance to translate along the x-axis
* @param ty the distance to translate along the y-axis
*/
public void translate (final double tx, final double ty)
{
transform(AffineTransform.getTranslateInstance(tx, ty));
}
/**
* Concatenates the current <code>Graphics2D</code> <code>Transform</code> with a
* rotation transform. Subsequent rendering is rotated by the specified radians relative
* to the previous origin. This is equivalent to calling <code>transform(R)</code>,
* where R is an <code>AffineTransform</code> represented by the following matrix:
* <pre>
* [ cos(theta) -sin(theta) 0 ]
* [ sin(theta) cos(theta) 0 ]
* [ 0 0 1 ]
* </pre>
* Rotating with a positive angle theta rotates points on the positive x axis toward the
* positive y axis.
*
* @param theta the angle of rotation in radians
*/
public void rotate (final double theta)
{
transform(AffineTransform.getRotateInstance(theta));
}
/**
* Concatenates the current <code>Graphics2D</code> <code>Transform</code> with a
* translated rotation transform. Subsequent rendering is transformed by a transform
* which is constructed by translating to the specified location, rotating by the
* specified radians, and translating back by the same amount as the original
* translation. This is equivalent to the following sequence of calls:
* <pre>
* translate(x, y);
* rotate(theta);
* translate(-x, -y);
* </pre>
* Rotating with a positive angle theta rotates points on the positive x axis toward the
* positive y axis.
*
* @param theta the angle of rotation in radians
*/
public void rotate (final double theta, final double x, final double y)
{
transform(AffineTransform.getRotateInstance(theta, x, y));
}
/**
* Concatenates the current <code>Graphics2D</code> <code>Transform</code> with a
* scaling transformation Subsequent rendering is resized according to the specified
* scaling factors relative to the previous scaling. This is equivalent to calling
* <code>transform(S)</code>, where S is an <code>AffineTransform</code> represented by
* the following matrix:
* <pre>
* [ sx 0 0 ]
* [ 0 sy 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param sx the amount by which X coordinates in subsequent rendering operations are
* multiplied relative to previous rendering operations.
* @param sy the amount by which Y coordinates in subsequent rendering operations are
* multiplied relative to previous rendering operations.
*/
public void scale (final double sx, final double sy)
{
transform(AffineTransform.getScaleInstance(sx, sy));
}
/**
* Concatenates the current <code>Graphics2D</code> <code>Transform</code> with a
* shearing transform. Subsequent renderings are sheared by the specified multiplier
* relative to the previous position. This is equivalent to calling
* <code>transform(SH)</code>, where SH is an <code>AffineTransform</code> represented
* by the following matrix:
* <pre>
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
* </pre>
*
* @param shx the multiplier by which coordinates are shifted in the positive X axis
* direction as a function of their Y coordinate
* @param shy the multiplier by which coordinates are shifted in the positive Y axis
* direction as a function of their X coordinate
*/
public void shear (final double shx, final double shy)
{
transform(AffineTransform.getShearInstance(shx, shy));
}
/**
* Composes an <code>AffineTransform</code> object with the <code>Transform</code> in
* this <code>Graphics2D</code> according to the rule last-specified-first-applied. If
* the current <code>Transform</code> is Cx, the result of composition with Tx is a new
* <code>Transform</code> Cx'. Cx' becomes the current <code>Transform</code> for this
* <code>Graphics2D</code>. Transforming a point p by the updated <code>Transform</code>
* Cx' is equivalent to first transforming p by Tx and then transforming the result by
* the original <code>Transform</code> Cx. In other words, Cx'(p) = Cx(Tx(p)). A copy
* of the Tx is made, if necessary, so further modifications to Tx do not affect
* rendering.
*
* @param Tx the <code>AffineTransform</code> object to be composed with the current
* <code>Transform</code>
* @see #setTransform
* @see java.awt.geom.AffineTransform
*/
public void transform (final AffineTransform Tx)
{
final AffineTransform transform = new AffineTransform(getTransform());
transform.concatenate(Tx);
setTransform(transform);
}
/**
* Gets this graphics context's current color.
*
* @return this graphics context's current color.
*
* @see java.awt.Color
* @see java.awt.Graphics#setColor
*/
public Color getColor ()
{
final Paint p = getPaint();
if (p instanceof Color)
{
return (Color) p;
}
return null;
}
/**
* Sets this graphics context's current color to the specified color. All subsequent
* graphics operations using this graphics context use this specified color.
*
* @param c the new rendering color.
* @see java.awt.Color
* @see java.awt.Graphics#getColor
*/
public void setColor (final Color c)
{
setPaint(c);
}
/**
* Returns the bounding rectangle of the current clipping area. This method refers to
* the user clip, which is independent of the clipping associated with device bounds and
* window visibility. If no clip has previously been set, or if the clip has been
* cleared using <code>setClip(null)</code>, this method returns <code>null</code>. The
* coordinates in the rectangle are relative to the coordinate system origin of this
* graphics context.
*
* @return the bounding rectangle of the current clipping area, or <code>null</code> if
* no clip is set.
*
* @see java.awt.Graphics#getClip
* @see java.awt.Graphics#clipRect
* @see java.awt.Graphics#setClip(int, int, int, int)
* @see java.awt.Graphics#setClip(Shape)
* @since JDK1.1
*/
public Rectangle getClipBounds ()
{
if (getClip() == null)
{
return null;
}
return getClip().getBounds();
}
/**
* Intersects the current clip with the specified rectangle. The resulting clipping area
* is the intersection of the current clipping area and the specified rectangle. If
* there is no current clipping area, either because the clip has never been set, or the
* clip has been cleared using <code>setClip(null)</code>, the specified rectangle
* becomes the new clip. This method sets the user clip, which is independent of the
* clipping associated with device bounds and window visibility. This method can only be
* used to make the current clip smaller. To set the current clip larger, use any of the
* setClip methods. Rendering operations have no effect outside of the clipping area.
*
* @param x the x coordinate of the rectangle to intersect the clip with
* @param y the y coordinate of the rectangle to intersect the clip with
* @param width the width of the rectangle to intersect the clip with
* @param height the height of the rectangle to intersect the clip with
* @see #setClip(int, int, int, int)
* @see #setClip(Shape)
*/
public void clipRect (final int x, final int y, final int width, final int height)
{
clip(new Rectangle2D.Float(x, y, width, height));
}
/**
* Sets the current clip to the rectangle specified by the given coordinates. This
* method sets the user clip, which is independent of the clipping associated with
* device bounds and window visibility. Rendering operations have no effect outside of
* the clipping area.
*
* @param x the <i>x</i> coordinate of the new clip rectangle.
* @param y the <i>y</i> coordinate of the new clip rectangle.
* @param width the width of the new clip rectangle.
* @param height the height of the new clip rectangle.
* @see java.awt.Graphics#clipRect
* @see java.awt.Graphics#setClip(Shape)
* @since JDK1.1
*/
public void setClip (final int x, final int y, final int width, final int height)
{
setClip(new Rectangle2D.Float(x, y, width, height));
}
/**
* Draws a line, using the current color, between the points <code>(x1, y1)</code>
* and <code>(x2, y2)</code> in this graphics context's coordinate system.
*
* @param x1 the first point's <i>x</i> coordinate.
* @param y1 the first point's <i>y</i> coordinate.
* @param x2 the second point's <i>x</i> coordinate.
* @param y2 the second point's <i>y</i> coordinate.
*/
public void drawLine (final int x1, final int y1, final int x2, final int y2)
{
draw(new Line2D.Float(x1, y1, x2, y2));
}
/**
* Fills the specified rectangle. The left and right edges of the rectangle are at
* <code>x</code> and <code>x + width - 1</code>. The top and bottom
* edges are at <code>y</code> and <code>y + height - 1</code>. The
* resulting rectangle covers an area <code>width</code> pixels wide by
* <code>height</code> pixels tall. The rectangle is filled using the graphics context's
* current color.
*
* @param x the <i>x</i> coordinate of the rectangle to be filled.
* @param y the <i>y</i> coordinate of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @see java.awt.Graphics#clearRect
* @see java.awt.Graphics#drawRect
*/
public void fillRect (final int x, final int y, final int width, final int height)
{
fill(new Rectangle2D.Float(x, y, width, height));
}
/**
* Clears the specified rectangle by filling it with the background color of the current
* drawing surface. This operation does not use the current paint mode.
* <p/>
* Beginning with Java 1.1, the background color of offscreen images may be system
* dependent. Applications should use <code>setColor</code> followed by
* <code>fillRect</code> to ensure that an offscreen image is cleared to a specific
* color.
*
* @param x the <i>x</i> coordinate of the rectangle to clear.
* @param y the <i>y</i> coordinate of the rectangle to clear.
* @param width the width of the rectangle to clear.
* @param height the height of the rectangle to clear.
* @see java.awt.Graphics#fillRect(int, int, int, int)
* @see java.awt.Graphics#drawRect
* @see java.awt.Graphics#setColor(Color)
* @see java.awt.Graphics#setPaintMode
* @see java.awt.Graphics#setXORMode(Color)
*/
public void clearRect (final int x, final int y, final int width, final int height)
{
final Paint oldPaint = getPaint();
setPaint(getBackground());
fillRect(x, y, width, height);
setPaint(oldPaint);
}
/**
* Draws an outlined round-cornered rectangle using this graphics context's current
* color. The left and right edges of the rectangle are at <code>x</code> and
* <code>x + width</code>, respectively. The top and bottom edges of the
* rectangle are at <code>y</code> and <code>y + height</code>.
*
* @param x the <i>x</i> coordinate of the rectangle to be drawn.
* @param y the <i>y</i> coordinate of the rectangle to be drawn.
* @param width the width of the rectangle to be drawn.
* @param height the height of the rectangle to be drawn.
* @param arcWidth the horizontal diameter of the arc at the four corners.
* @param arcHeight the vertical diameter of the arc at the four corners.
* @see java.awt.Graphics#fillRoundRect
*/
public void drawRoundRect (final int x, final int y, final int width, final int height,
final int arcWidth, final int arcHeight)
{
draw(new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight));
}
/**
* Fills the specified rounded corner rectangle with the current color. The left and
* right edges of the rectangle are at <code>x</code> and <code>x + width - 1</code>,
* respectively. The top and bottom edges of the rectangle are at <code>y</code> and
* <code>y + height - 1</code>.
*
* @param x the <i>x</i> coordinate of the rectangle to be filled.
* @param y the <i>y</i> coordinate of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @param arcWidth the horizontal diameter of the arc at the four corners.
* @param arcHeight the vertical diameter of the arc at the four corners.
* @see java.awt.Graphics#drawRoundRect
*/
public void fillRoundRect (final int x, final int y, final int width, final int height,
final int arcWidth, final int arcHeight)
{
fill(new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight));
}
/**
* Draws the outline of an oval. The result is a circle or ellipse that fits within the
* rectangle specified by the <code>x</code>, <code>y</code>, <code>width</code>, and
* <code>height</code> arguments.
* <p/>
* The oval covers an area that is <code>width + 1</code> pixels wide and
* <code>height + 1</code> pixels tall.
*
* @param x the <i>x</i> coordinate of the upper left corner of the oval to be
* drawn.
* @param y the <i>y</i> coordinate of the upper left corner of the oval to be
* drawn.
* @param width the width of the oval to be drawn.
* @param height the height of the oval to be drawn.
* @see java.awt.Graphics#fillOval
*/
public void drawOval (final int x, final int y, final int width, final int height)
{
draw(new Ellipse2D.Float(x, y, width, height));
}
/**
* Fills an oval bounded by the specified rectangle with the current color.
*
* @param x the <i>x</i> coordinate of the upper left corner of the oval to be
* filled.
* @param y the <i>y</i> coordinate of the upper left corner of the oval to be
* filled.
* @param width the width of the oval to be filled.
* @param height the height of the oval to be filled.
* @see java.awt.Graphics#drawOval
*/
public void fillOval (final int x, final int y, final int width, final int height)
{
fill(new Ellipse2D.Float(x, y, width, height));
}
/**
* Draws the outline of a circular or elliptical arc covering the specified rectangle.
* <p/>
* The resulting arc begins at <code>startAngle</code> and extends for
* <code>arcAngle</code> degrees, using the current color. Angles are interpreted such
* that 0 degrees is at the 3 o'clock position. A positive value indicates a
* counter-clockwise rotation while a negative value indicates a clockwise rotation.
* <p/>
* The center of the arc is the center of the rectangle whose origin is
* (<i>x</i>, <i>y</i>) and whose size is specified by the <code>width</code> and
* <code>height</code> arguments.
* <p/>
* The resulting arc covers an area <code>width + 1</code> pixels wide by
* <code>height + 1</code> pixels tall.
* <p/>
* The angles are specified relative to the non-square extents of the bounding rectangle
* such that 45 degrees always falls on the line from the center of the ellipse to the
* upper right corner of the bounding rectangle. As a result, if the bounding rectangle
* is noticeably longer in one axis than the other, the angles to the start and end of
* the arc segment will be skewed farther along the longer axis of the bounds.
*
* @param x the <i>x</i> coordinate of the upper-left corner of the arc to be
* drawn.
* @param y the <i>y</i> coordinate of the upper-left corner of the arc to be
* drawn.
* @param width the width of the arc to be drawn.
* @param height the height of the arc to be drawn.
* @param startAngle the beginning angle.
* @param arcAngle the angular extent of the arc, relative to the start angle.
* @see java.awt.Graphics#fillArc
*/
public void drawArc (final int x, final int y, final int width, final int height,
final int startAngle, final int arcAngle)
{
draw(new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.OPEN));
}
/**
* Fills a circular or elliptical arc covering the specified rectangle.
* <p/>
* The resulting arc begins at <code>startAngle</code> and extends for
* <code>arcAngle</code> degrees. Angles are interpreted such that 0 degrees is at
* the 3 o'clock position. A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p/>
* The center of the arc is the center of the rectangle whose origin is
* (<i>x</i>, <i>y</i>) and whose size is specified by the <code>width</code> and
* <code>height</code> arguments.
* <p/>
* The resulting arc covers an area <code>width + 1</code> pixels wide by
* <code>height + 1</code> pixels tall.
* <p/>
* The angles are specified relative to the non-square extents of the bounding rectangle
* such that 45 degrees always falls on the line from the center of the ellipse to the
* upper right corner of the bounding rectangle. As a result, if the bounding rectangle
* is noticeably longer in one axis than the other, the angles to the start and end of
* the arc segment will be skewed farther along the longer axis of the bounds.
*
* @param x the <i>x</i> coordinate of the upper-left corner of the arc to be
* filled.
* @param y the <i>y</i> coordinate of the upper-left corner of the arc to be
* filled.
* @param width the width of the arc to be filled.
* @param height the height of the arc to be filled.
* @param startAngle the beginning angle.
* @param arcAngle the angular extent of the arc, relative to the start angle.
* @see java.awt.Graphics#drawArc
*/
public void fillArc (final int x, final int y, final int width, final int height,
final int startAngle, final int arcAngle)
{
fill(new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.OPEN));
}
/**
* Draws a sequence of connected lines defined by arrays of <i>x</i> and <i>y</i>
* coordinates. Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point. The
* figure is not closed if the first point differs from the last point.
*
* @param xPoints an array of <i>x</i> points
* @param yPoints an array of <i>y</i> points
* @param nPoints the total number of points
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
* @since JDK1.1
*/
public void drawPolyline (final int[] xPoints, final int[] yPoints,
final int nPoints)
{
final Line2D line = new Line2D.Double(xPoints[0], yPoints[0], xPoints[0], yPoints[0]);
for (int i = 1; i < nPoints; i++)
{
line.setLine(line.getX2(), line.getY2(), xPoints[i], yPoints[i]);
draw(line);
}
}
/**
* Draws a closed polygon defined by arrays of <i>x</i> and <i>y</i> coordinates. Each
* pair of (<i>x</i>, <i>y</i>) coordinates defines a point.
* <p/>
* This method draws the polygon defined by <code>nPoint</code> line segments, where the
* first <code>nPoint - 1</code> line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code> to
* <code>(xPoints[i], yPoints[i])</code>, for 1 ≤ <i>i</i> ≤ <code>nPoints</code>.
* The figure is automatically closed by drawing a line connecting the final point to
* the first point, if those points are different.
*
* @param xPoints a an array of <code>x</code> coordinates.
* @param yPoints a an array of <code>y</code> coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon (final int[] xPoints, final int[] yPoints,
final int nPoints)
{
final Polygon poly = new Polygon();
for (int i = 0; i < nPoints; i++)
{
poly.addPoint(xPoints[i], yPoints[i]);
}
draw(poly);
}
/**
* Fills a closed polygon defined by arrays of <i>x</i> and <i>y</i> coordinates.
* <p/>
* This method draws the polygon defined by <code>nPoint</code> line segments, where the
* first <code>nPoint - 1</code> line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code> to
* <code>(xPoints[i], yPoints[i])</code>, for 1 ≤ <i>i</i> ≤ <code>nPoints</code>.
* The figure is automatically closed by drawing a line connecting the final point to
* the first point, if those points are different.
* <p/>
* The area inside the polygon is defined using an even-odd fill rule, also known as the
* alternating rule.
*
* @param xPoints a an array of <code>x</code> coordinates.
* @param yPoints a an array of <code>y</code> coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
*/
public void fillPolygon (final int[] xPoints, final int[] yPoints,
final int nPoints)
{
final Polygon poly = new Polygon();
for (int i = 0; i < nPoints; i++)
{
poly.addPoint(xPoints[i], yPoints[i]);
}
fill(poly);
}
/**
* Draws as much of the specified image as is currently available. The image is drawn
* with its top-left corner at (<i>x</i>, <i>y</i>) in this graphics context's
* coordinate space. Transparent pixels in the image do not affect whatever pixels are
* already there.
* <p/>
* This method returns immediately in all cases, even if the complete image has not yet
* been loaded, and it has not been dithered and converted for the current output
* device.
* <p/>
* If the image has not yet been completely loaded, then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the specified image observer.
*
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param observer object to be notified as more of the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
*/
public boolean drawImage (final Image img, final int x, final int y,
final ImageObserver observer)
{
return drawImage(img, x, y, null, observer);
}
/**
* Draws as much of the specified image as has already been scaled to fit inside the
* specified rectangle.
* <p/>
* The image is drawn inside the specified rectangle of this graphics context's
* coordinate space, and is scaled if necessary. Transparent pixels do not affect
* whatever pixels are already there.
* <p/>
* This method returns immediately in all cases, even if the entire image has not yet
* been scaled, dithered, and converted for the current output device. If the current
* output representation is not yet complete, then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the image observer by calling its <code>imageUpdate</code>
* method.
* <p/>
* A scaled version of an image will not necessarily be available immediately just
* because an unscaled version of the image has been constructed for this output device.
* Each size of the image may be cached separately and generated from the original data
* in a separate image production sequence.
*
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param observer object to be notified as more of the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
*/
public boolean drawImage (final Image img, final int x, final int y,
final int width, final int height,
final ImageObserver observer)
{
return drawImage(img, x, y, width, height, null, observer);
}
/**
* Draws as much of the specified image as is currently available. The image is drawn
* with its top-left corner at (<i>x</i>, <i>y</i>) in this graphics context's
* coordinate space. Transparent pixels are drawn in the specified background color.
* <p/>
* This operation is equivalent to filling a rectangle of the width and height of the
* specified image with the given color and then drawing the image on top of it, but
* possibly more efficient.
* <p/>
* This method returns immediately in all cases, even if the complete image has not yet
* been loaded, and it has not been dithered and converted for the current output
* device.
* <p/>
* If the image has not yet been completely loaded, then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the specified image observer.
*
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param bgcolor the background color to paint under the non-opaque portions of the
* image.
* @param observer object to be notified as more of the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
*/
public boolean drawImage (final Image img, final int x, final int y,
final Color bgcolor,
final ImageObserver observer)
{
return drawImage(img, x, y, img.getWidth(observer), img.getHeight(observer), bgcolor, observer);
}
/**
* Draws as much of the specified image as has already been scaled to fit inside the
* specified rectangle.
* <p/>
* The image is drawn inside the specified rectangle of this graphics context's
* coordinate space, and is scaled if necessary. Transparent pixels are drawn in the
* specified background color. This operation is equivalent to filling a rectangle of
* the width and height of the specified image with the given color and then drawing the
* image on top of it, but possibly more efficient.
* <p/>
* This method returns immediately in all cases, even if the entire image has not yet
* been scaled, dithered, and converted for the current output device. If the current
* output representation is not yet complete then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the specified image observer.
* <p/>
* A scaled version of an image will not necessarily be available immediately just
* because an unscaled version of the image has been constructed for this output device.
* Each size of the image may be cached separately and generated from the original data
* in a separate image production sequence.
*
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param bgcolor the background color to paint under the non-opaque portions of the
* image.
* @param observer object to be notified as more of the image is converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
*/
public boolean drawImage (final Image img, final int x, final int y,
final int width, final int height,
final Color bgcolor,
final ImageObserver observer)
{
final double scalex = width / (double) img.getWidth(observer);
final double scaley = height / (double) img.getHeight(observer);
final AffineTransform tx = AffineTransform.getTranslateInstance(x, y);
tx.scale(scalex, scaley);
// draw the background ...
final Paint bgPaint = getPaint();
setPaint(bgcolor);
final Rectangle2D bg = new Rectangle2D.Float(x, y, width, height);
fill(bg);
// restore the orinal paint ...
setPaint(bgPaint);
// finally paint the image ...
return drawImage(img, tx, observer);
}
/**
* Draws as much of the specified area of the specified image as is currently available,
* scaling it on the fly to fit inside the specified area of the destination drawable
* surface. Transparent pixels do not affect whatever pixels are already there.
* <p/>
* This method returns immediately in all cases, even if the image area to be drawn has
* not yet been scaled, dithered, and converted for the current output device. If the
* current output representation is not yet complete then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the specified image observer.
* <p/>
* This method always uses the unscaled version of the image to render the scaled
* rectangle and performs the required scaling on the fly. It does not use a cached,
* scaled version of the image for this operation. Scaling of the image from source to
* destination is performed such that the first coordinate of the source rectangle is
* mapped to the first coordinate of the destination rectangle, and the second source
* coordinate is mapped to the second destination coordinate. The subimage is scaled and
* flipped as needed to preserve those mappings.
*
* @param img the specified image to be drawn
* @param dx1 the <i>x</i> coordinate of the first corner of the destination
* rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the destination
* rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the destination
* rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the destination
* rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the source
* rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the source
* rectangle.
* @param observer object to be notified as more of the image is scaled and converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
* @since JDK1.1
*/
public boolean drawImage (final Image img,
final int dx1, final int dy1, final int dx2, final int dy2,
final int sx1, final int sy1, final int sx2, final int sy2,
final ImageObserver observer)
{
return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null, observer);
}
/**
* Draws as much of the specified area of the specified image as is currently available,
* scaling it on the fly to fit inside the specified area of the destination drawable
* surface.
* <p/>
* Transparent pixels are drawn in the specified background color. This operation is
* equivalent to filling a rectangle of the width and height of the specified image with
* the given color and then drawing the image on top of it, but possibly more
* efficient.
* <p/>
* This method returns immediately in all cases, even if the image area to be drawn has
* not yet been scaled, dithered, and converted for the current output device. If the
* current output representation is not yet complete then <code>drawImage</code> returns
* <code>false</code>. As more of the image becomes available, the process that draws
* the image notifies the specified image observer.
* <p/>
* This method always uses the unscaled version of the image to render the scaled
* rectangle and performs the required scaling on the fly. It does not use a cached,
* scaled version of the image for this operation. Scaling of the image from source to
* destination is performed such that the first coordinate of the source rectangle is
* mapped to the first coordinate of the destination rectangle, and the second source
* coordinate is mapped to the second destination coordinate. The subimage is scaled and
* flipped as needed to preserve those mappings.
*
* @param img the specified image to be drawn
* @param dx1 the <i>x</i> coordinate of the first corner of the destination
* rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the destination
* rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the destination
* rectangle.
* @param dy2 the <i>y</i> coordinate of the second corner of the destination
* rectangle.
* @param sx1 the <i>x</i> coordinate of the first corner of the source rectangle.
* @param sy1 the <i>y</i> coordinate of the first corner of the source rectangle.
* @param sx2 the <i>x</i> coordinate of the second corner of the source
* rectangle.
* @param sy2 the <i>y</i> coordinate of the second corner of the source
* rectangle.
* @param bgcolor the background color to paint under the non-opaque portions of the
* image.
* @param observer object to be notified as more of the image is scaled and converted.
* @see java.awt.Image
* @see java.awt.image.ImageObserver
* @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int,
* int)
* @since JDK1.1
*/
public boolean drawImage (final Image img,
final int dx1, final int dy1, final int dx2, final int dy2,
final int sx1, final int sy1, final int sx2, final int sy2,
final Color bgcolor,
final ImageObserver observer)
{
final double dwidth = (double) dx2 - dx1;
final double dheight = (double) dy2 - dy1;
final double swidth = (double) sx2 - sx1;
final double sheight = (double) sy2 - sy1;
//if either width or height is 0, then there is nothing to draw
if (dwidth == 0 || dheight == 0 || swidth == 0 || sheight == 0)
{
return true;
}
final double scalex = dwidth / swidth;
final double scaley = dheight / sheight;
final double transx = sx1 * scalex;
final double transy = sy1 * scaley;
final AffineTransform tx = AffineTransform.getTranslateInstance(dx1 - transx, dy1 - transy);
tx.scale(scalex, scaley);
// draw the background ...
final Paint bgPaint = getPaint();
setPaint(bgcolor);
final Rectangle2D bg = new Rectangle2D.Double(dx1, dy1, dwidth, dheight);
fill(bg);
// restore the orinal paint ...
setPaint(bgPaint);
// finally paint the image ...
drawImage(img, tx, observer);
return true;
}
/**
* Renders a {@link java.awt.image.renderable.RenderableImage}, applying a transform
* from image space into user space before drawing. The transformation from user space
* into device space is done with the current <code>Transform</code> in the
* <code>Graphics2D</code>. The specified transformation is applied to the image before
* the transform attribute in the <code>Graphics2D</code> context is applied. The
* rendering attributes applied include the <code>Clip</code>, <code>Transform</code>,
* and <code>Composite</code> attributes. Note that no rendering is done if the
* specified transform is noninvertible.
* <p/>
* Rendering hints set on the <code>Graphics2D</code> object might be used in rendering
* the <code>RenderableImage</code>. If explicit control is required over specific hints
* recognized by a specific <code>RenderableImage</code>, or if knowledge of which hints
* are used is required, then a <code>RenderedImage</code> should be obtained directly
* from the <code>RenderableImage</code> and rendered using {@link
* #drawRenderedImage(java.awt.image.RenderedImage, AffineTransform)
* drawRenderedImage}.
*
* @param img the image to be rendered
* @param xform the transformation from image space into user space
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
* @see #setClip
* @see #drawRenderedImage
*/
public void drawRenderableImage (final RenderableImage img,
final AffineTransform xform)
{
drawRenderedImage(img.createDefaultRendering(), xform);
}
}
|