1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
//******************************************************************************
//
// File: PiSeq.c
//
// This C source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This C source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <mpi.h>
#include "Random.h"
/**
* PiSeq is a sequential program that calculates an approximate value for
* π using a Monte Carlo technique. The program generates a number of random
* points in the unit square (0,0) to (1,1) and counts how many of them lie
* within a circle of radius 1 centered at the origin. The fraction of the
* points within the circle is approximately π/4.
* <P>
* Usage: PiSeq <I>seed</I> <I>N</I>
* <BR><I>seed</I> = Random seed
* <BR><I>N</I> = Number of random points
* <P>
* The computation is performed sequentially in a single processor. The program
* uses class edu.rit.util.Random for its pseudorandom number generator. The
* program measures the computation's running time. This establishes a benchmark
* for measuring the computation's running time on a parallel processor.
*
* @author Alan Kaminsky
* @version 11-Aug-2008
*/
// Program shared variables.
// World communicator.
static MPI_Comm world;
static int size;
static int rank;
// Command line arguments.
static long long int seed;
static long long int N;
// Pseudorandom number generator.
static Random prng;
// Number of points within the unit circle.
static long long int count;
// Hidden operations.
/**
* Print a usage message and exit.
*/
static void usage(void)
{
fprintf (stderr, "Usage: PiSeq <seed> <N>\n");
fprintf (stderr, "<seed> = Random seed\n");
fprintf (stderr, "<N> = Number of random points\n");
exit (1);
}
/**
* Returns the current wall clock time in milliseconds.
* Java equivalent: java.lang.System.currentTimeMillis()
*/
static long long int currentTimeMillis(void)
{
struct timeval tv;
long long int result;
gettimeofday (&tv, NULL);
result = tv.tv_sec;
result *= 1000;
result += tv.tv_usec / 1000;
return result;
}
// Main program.
/**
* Main program.
*/
int main
(int argc,
char **argv)
{
long long int time, i;
double x, y;
// Start timing.
time = -currentTimeMillis();
// Initialize MPI middleware.
MPI_Init (&argc, &argv);
world = MPI_COMM_WORLD;
MPI_Comm_size (world, &size);
MPI_Comm_rank (world, &rank);
// Validate command line arguments.
if (argc != 3) usage();
sscanf (argv[1], "%lld", &seed);
sscanf (argv[2], "%lld", &N);
// Set up PRNG.
setSeed (&prng, seed);
// Generate n random points in the unit square, count how many are in
// the unit circle.
count = 0;
for (i = 0; i < N; ++ i)
{
x = nextDouble (&prng);
y = nextDouble (&prng);
if (x*x + y*y <= 1.0) ++ count;
}
// Stop timing.
time += currentTimeMillis();
// Print results.
printf ("pi = 4 * %lld / %lld = %.20f\n", count, N, 4.0 * count / N);
printf ("%lld msec\n", time);
// Finalize MPI middleware.
MPI_Finalize();
}
|