1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
//******************************************************************************
//
// File: FloydSeq.c
//
// This C source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This source file is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option) any
// later version.
//
// This source file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html or by writing to the Free
// Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
//******************************************************************************
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <mpi.h>
/**
* Class FloydClu is a cluster parallel program that runs Floyd's Algorithm. The
* program runs the algorithm on an all-zero matrix of a given size, solely to
* measure the running time.
* <P>
* Usage: mprun -np <I>K</I> FloydClu <I>n</I>
* <BR><I>K</I> = Number of parallel processes
* <BR><I>n</I> = Distance matrix size
*
* @author Alan Kaminsky
* @version 30-Jul-2008
*/
// Shared variables.
// World communicator.
static MPI_Comm world;
static int size;
static int rank;
// Number of nodes.
static int n;
// Storage for distance matrix. This is one big block of n*n doubles. The
// matrix elements are stored in row major order.
static double *d_storage;
// Distance matrix. This is an array of pointers to the first element in
// each row of d_storage.
static double **d;
// Row slice lower bounds, upper bounds, and lengths, indexed by rank.
// These are in terms of rows.
static int *slicelb;
static int *sliceub;
static int *slicelength;
// This process's row slice lower bound, upper bound, and length.
static int mylb;
static int myub;
static int mylength;
// Row broadcast from another process.
static double *row_i;
// Hidden operations.
/**
* Print a usage message and exit.
*/
static void usage(void)
{
fprintf (stderr, "Usage: mprun -np <K> FloydSeq <n>\n");
fprintf (stderr, "<K> = Number of parallel processes\n");
fprintf (stderr, "<n> = Distance matrix size\n");
exit (1);
}
/**
* Returns the current wall clock time in milliseconds.
* Java equivalent: java.lang.System.currentTimeMillis()
*/
static long long int currentTimeMillis(void)
{
struct timeval tv;
long long int result;
gettimeofday (&tv, NULL);
result = tv.tv_sec;
result *= 1000;
result += tv.tv_usec / 1000;
return result;
}
/**
* Returns the minimum of x and y.
* Java equivalent: java.lang.Math.min()
*/
static double min
(double x,
double y)
{
return x < y ? x : y;
}
/**
* Compute the row slice ranges based on size, rank, and n.
*/
static void computeRanges()
{
int i;
int sublen = n / size;
int subrem = n % size;
int x = 0;
slicelb = (int *) malloc (size * sizeof(int));
sliceub = (int *) malloc (size * sizeof(int));
slicelength = (int *) malloc (size * sizeof(int));
++ sublen;
for (i = 0; i < subrem; ++ i)
{
slicelb[i] = x;
x += sublen;
sliceub[i] = x - 1;
slicelength[i] = sublen;
}
-- sublen;
for (i = subrem; i < size; ++ i)
{
slicelb[i] = x;
x += sublen;
sliceub[i] = x - 1;
slicelength[i] = sublen;
}
mylb = slicelb[rank];
myub = sliceub[rank];
mylength = slicelength[rank];
}
/**
* Allocate storage for the distance matrix based on n, mylb, and myub.
*/
static void allocateDistanceMatrix()
{
int i, r;
int n_len = n*mylength;
d_storage = (double *) malloc (n_len * sizeof(double));
for (i = 0; i < n_len; ++ i)
{
d_storage[i] = 0.0;
}
d = (double**) malloc (n * sizeof(double*));
for (r = 0; r < mylb; ++ r)
{
d[r] = NULL;
}
for (r = mylb; r <= myub; ++ r)
{
d[r] = d_storage + n*(r - mylb);
}
for (r = myub+1; r < n; ++ r)
{
d[r] = NULL;
}
}
/**
* Abort due to an array index out of bounds.
*/
static void outOfBounds()
{
fprintf (stderr, "ArrayIndexOutOfBoundsException\n");
exit (1);
}
// Main program.
/**
* Main program.
*/
int main
(int argc,
char **argv)
{
int i, r, c, i_root;
long long int t1, t2;
// Initialize MPI middleware.
MPI_Init (&argc, &argv);
world = MPI_COMM_WORLD;
MPI_Comm_size (world, &size);
MPI_Comm_rank (world, &rank);
// Parse command line arguments.
if (argc != 2) usage();
sscanf (argv[1], "%d", &n);
// Divide distance matrix into equal row slices.
computeRanges();
// Allocate just this process's row slice of the distance matrix.
allocateDistanceMatrix();
// Allocate storage for row broadcast from another process.
row_i = (double *) malloc (n * sizeof(double));
// Run Floyd's Algorithm.
// for i = 0 to N-1
// for r = 0 to N-1
// for c = 0 to N-1
// D[r,c] = min (D[r,c], D[r,i] + D[i,c])
t1 = currentTimeMillis();
i_root = 0;
for (i = 0; i < n; ++ i)
{
double *d_i;
int slicelb_i_root, sliceub_i_root;
if (i < 0 || i >= n) outOfBounds();
d_i = d[i];
// Determine which process owns row i.
if (i_root < 0 || i_root >= size) outOfBounds();
slicelb_i_root = slicelb[i_root];
if (i_root < 0 || i_root >= size) outOfBounds();
sliceub_i_root = sliceub[i_root];
if (slicelb_i_root > i || i > sliceub_i_root) ++ i_root;
// Broadcast row i from owner process to all processes.
if (rank == i_root)
{
MPI_Bcast
(/*buffer */ d_i,
/*count */ n,
/*datatype*/ MPI_DOUBLE,
/*root */ i_root,
/*comm */ world);
}
else
{
MPI_Bcast
(/*buffer */ row_i,
/*count */ n,
/*datatype*/ MPI_DOUBLE,
/*root */ i_root,
/*comm */ world);
d_i = row_i;
}
// Inner loops over rows in my slice and over all columns.
for (r = mylb; r <= myub; ++ r)
{
double *d_r;
if (r < 0 || r >= n) outOfBounds();
d_r = d[r];
for (c = 0; c < n; ++ c)
{
double d_r_c, d_r_i, d_i_c;
if (c < 0 || c >= n) outOfBounds();
d_r_c = d_r[c];
if (i < 0 || i >= n) outOfBounds();
d_r_i = d_r[i];
if (c < 0 || c >= n) outOfBounds();
d_i_c = d_i[c];
if (c < 0 || c >= n) outOfBounds();
d_r[c] = min (d_r_c, d_r_i + d_i_c);
}
}
}
t2 = currentTimeMillis();
// Print running time.
printf ("%lld msec %d\n", t2-t1, rank);
// Finalize MPI middleware.
MPI_Finalize();
}
|