File: DnaSequenceList.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (1032 lines) | stat: -rw-r--r-- 29,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
//*****************************************************************************
//
// File:    DnaSequenceList.java
// Package: edu.rit.compbio.phyl
// Unit:    Class edu.rit.compbio.phyl.DnaSequenceList
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.compbio.phyl;

import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;

import java.util.Arrays;
import java.util.Iterator;
import java.util.Scanner;

/**
 * Class DnaSequenceList provides a list of {@linkplain DnaSequence}s. Methods
 * for reading and writing textual files of DNA sequences are provided.
 * <P>
 * Each DNA sequence consists of a sequence of <B>sites</B>. Each site has a
 * <B>state,</B> which is a set of <B>bases</B>. The four bases are adenine,
 * cytosine, guanine, and thymine. For textual I/O, each state is represented by
 * a single character as follows:
 * <P>
 * <TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
 * <TR><TD><I>Char.</I></TD><TD WIDTH=20> </TD>
 * <TD><I>Meaning</I></TD><TD WIDTH=20> </TD>
 * <TD><I>Set</I></TD></TR>
 * <TR><TD>A</TD><TD WIDTH=20> </TD>
 * <TD>Adenine</TD><TD WIDTH=20> </TD>
 * <TD>(A)</TD></TR>
 * <TR><TD>C</TD><TD WIDTH=20> </TD>
 * <TD>Cytosine</TD><TD WIDTH=20> </TD>
 * <TD>(C)</TD></TR>
 * <TR><TD>G</TD><TD WIDTH=20> </TD>
 * <TD>Guanine</TD><TD WIDTH=20> </TD>
 * <TD>(G)</TD></TR>
 * <TR><TD>T</TD><TD WIDTH=20> </TD>
 * <TD>Thymine</TD><TD WIDTH=20> </TD>
 * <TD>(T)</TD></TR>
 * <TR><TD>Y</TD><TD WIDTH=20> </TD>
 * <TD>pYrimidine</TD><TD WIDTH=20> </TD>
 * <TD>(C or T)</TD></TR>
 * <TR><TD>R</TD><TD WIDTH=20> </TD>
 * <TD>puRine</TD><TD WIDTH=20> </TD>
 * <TD>(A or G)</TD></TR>
 * <TR><TD>W</TD><TD WIDTH=20> </TD>
 * <TD>"Weak"</TD><TD WIDTH=20> </TD>
 * <TD>(A or T)</TD></TR>
 * <TR><TD>S</TD><TD WIDTH=20> </TD>
 * <TD>"Strong"</TD><TD WIDTH=20> </TD>
 * <TD>(C or G)</TD></TR>
 * <TR><TD>K</TD><TD WIDTH=20> </TD>
 * <TD>"Keto"</TD><TD WIDTH=20> </TD>
 * <TD>(G or T)</TD></TR>
 * <TR><TD>M</TD><TD WIDTH=20> </TD>
 * <TD>"aMino"</TD><TD WIDTH=20> </TD>
 * <TD>(A or C)</TD></TR>
 * <TR><TD>B</TD><TD WIDTH=20> </TD>
 * <TD>not A</TD><TD WIDTH=20> </TD>
 * <TD>(C or G or T)</TD></TR>
 * <TR><TD>D</TD><TD WIDTH=20> </TD>
 * <TD>not C</TD><TD WIDTH=20> </TD>
 * <TD>(A or G or T)</TD></TR>
 * <TR><TD>H</TD><TD WIDTH=20> </TD>
 * <TD>not G</TD><TD WIDTH=20> </TD>
 * <TD>(A or C or T)</TD></TR>
 * <TR><TD>V</TD><TD WIDTH=20> </TD>
 * <TD>not T</TD><TD WIDTH=20> </TD>
 * <TD>(A or C or G)</TD></TR>
 * <TR><TD>X</TD><TD WIDTH=20> </TD>
 * <TD>unknown</TD><TD WIDTH=20> </TD>
 * <TD>(A or C or G or T)</TD></TR>
 * <TR><TD>-</TD><TD WIDTH=20> </TD>
 * <TD>deletion</TD><TD WIDTH=20> </TD>
 * <TD>()</TD></TR>
 * </TABLE>
 * <P>
 * The DNA sequence file format is that used by Joseph Felsenstein's Phylogeny
 * Inference Package (PHYLIP). While the file is a plain text file, it often has
 * the extension <TT>".phy"</TT> to indicate that it is in PHYLIP format. For
 * further information, see:
 * <UL>
 * <LI>
 * PHYLIP -- <A HREF="http://evolution.genetics.washington.edu/phylip/phylip.html" TARGET="_top">http://evolution.genetics.washington.edu/phylip/phylip.html</A>
 * <LI>
 * Input file format -- <A HREF="http://evolution.genetics.washington.edu/phylip/doc/sequence.html" TARGET="_top">http://evolution.genetics.washington.edu/phylip/doc/sequence.html</A>
 * </UL>
 * <P>
 * Here is an example of an input file:
 * <P>
 * <TABLE BORDER=1 CELLPADDING=4 CELLSPACING=0>
 * <TR>
 * <TD>
 * <PRE>  5    42
 * Turkey     AAGCTNGGGC ATTTCAGGGT 
 * Salmo gair AAGCCTTGGC AGTGCAGGGT 
 * H. Sapiens ACCGGTTGGC CGTTCAGGGT 
 * Chimp      AAACCCTTGC CGTTACGCTT 
 * Gorilla    AAACCCTTGC CGGTACGCTT 
 * 
 * GAGCCCGGGC AATACAGGGT AT
 * GAGCCGTGGC CGGGCACGGT AT
 * ACAGGTTGGC CGTTCAGGGT AA
 * AAACCGAGGC CGGGACACTC AT
 * AAACCATTGC CGGTACGCTT AA</PRE>
 * </TD>
 * </TR>
 * </TABLE>
 * <P>
 * The first line contains the number of species <I>S</I> and the number of
 * sites <I>N</I> in each sequence. <I>S</I> must be &gt;= 2. <I>N</I> must be
 * &gt;= 1.
 * <P>
 * The next <I>S</I> lines contain the initial data for each species. The first
 * ten characters contain the sequence name. This must be exactly ten
 * characters, padded with blanks if necessary. Then comes one character for
 * each site in the sequence. Uppercase and lowercase are considered the same.
 * Characters other than those for the states listed above are ignored. Often, a
 * blank is inserted every ten characters for readability, but this is not
 * necessary. After these <I>S</I> lines come zero or more blank lines for
 * readability, which are ignored. If there is more sequence data, the next
 * <I>S</I> lines give the states for the next sites in the sequences. This
 * continues for the rest of the file.
 * <P>
 * This is known as the "interleaved" file format. There is also a "sequential"
 * file format, but the sequential file format is not supported.
 * <P>
 * Thus, the complete sequence for each species in the example is:
 * <P>
 * <TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
 * <TR><TD><I>Species</I></TD><TD WIDTH=20> </TD>
 * <TD><I>Sequence</I></TD></TR>
 * <TR><TD>Turkey</TD><TD WIDTH=20> </TD>
 * <TD><TT>AAGCTNGGGCATTTCAGGGTGAGCCCGGGCAATACAGGGTAT</TT></TD></TR>
 * <TR><TD>Salmo gair</TD><TD WIDTH=20> </TD>
 * <TD><TT>AAGCCTTGGCAGTGCAGGGTGAGCCGTGGCCGGGCACGGTAT</TT></TD></TR>
 * <TR><TD>H. Sapiens</TD><TD WIDTH=20> </TD>
 * <TD><TT>ACCGGTTGGCCGTTCAGGGTACAGGTTGGCCGTTCAGGGTAA</TT></TD></TR>
 * <TR><TD>Chimp</TD><TD WIDTH=20> </TD>
 * <TD><TT>AAACCCTTGCCGTTACGCTTAAACCGAGGCCGGGACACTCAT</TT></TD></TR>
 * <TR><TD>Gorilla</TD><TD WIDTH=20> </TD>
 * <TD><TT>AAACCCTTGCCGGTACGCTTAAACCATTGCCGGTACGCTTAA</TT></TD></TR>
 * </TABLE>
 * <P>
 * In the input file, the following alternate characters can be used: X, N, and
 * ? all mean "unknown." O (capital letter O) and - (hyphen) both mean
 * "deletion." The character . (period) means "the same as the corresponding
 * site in the first species." Here is another input file with the same
 * sequences as the one above:
 * <P>
 * <TABLE BORDER=1 CELLPADDING=4 CELLSPACING=0>
 * <TR>
 * <TD>
 * <PRE>  5    42
 * Turkey     AAGCTNGGGC ATTTCAGGGT 
 * Salmo gair ..G.CTT... AG.G...... 
 * H. Sapiens .CCGGTT... .G........ 
 * Chimp      ..A.CCTT.. .G..AC.CT. 
 * Gorilla    ..A.CCTT.. .GG.AC.CT. 
 * 
 * GAGCCCGGGC AATACAGGGT AT
 * .....GT... CGGG..C... ..
 * ACAGGTT... CG.T...... .A
 * A.A..GA... CGGGACACTC ..
 * A.A..ATT.. CGGTAC.CT. .A</PRE>
 * </TD>
 * </TR>
 * </TABLE>
 * <P>
 * Here are some more example DNA sequence files:
 * <UL>
 * <LI><A HREF="doc-files/example.phy">example.phy</A>
 * <LI><A HREF="doc-files/iguana16.phy">iguana16.phy</A>
 * <LI><A HREF="doc-files/iguana18.phy">iguana18.phy</A>
 * </UL>
 *
 * @author  Alan Kaminsky
 * @version 20-Jul-2008
 */
public class DnaSequenceList
	implements Iterable<DnaSequence>
	{

// Hidden data members.

	// DNA sequences.
	DnaSequence[] mySequence;

	// Mapping from site (index) to whether site is informative (true/false). If
	// null, must be recomputed.
	private boolean[] isInformative;

	// Number of informative sites.
	private int nInformative;

	// Number of state changes in uninformative sites.
	private int nChanges;

// Hidden constructors.

	/**
	 * Construct a new DNA sequence list.
	 */
	DnaSequenceList()
		{
		}

	/**
	 * Construct a new DNA sequence list that is a copy of the given DNA
	 * sequence list.
	 * <P>
	 * <I>Note:</I> The DNA sequences in the new list are copies of (not
	 * references to) the DNA sequences in the given list.
	 *
	 * @param  list  DNA sequence list to copy.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>list</TT> is null.
	 */
	public DnaSequenceList
		(DnaSequenceList list)
		{
		int N = list.mySequence.length;
		this.mySequence = new DnaSequence [N];
		for (int i = 0; i < N; ++ i)
			{
			this.mySequence[i] = new DnaSequence (list.mySequence[i]);
			}
		if (list.isInformative != null)
			{
			this.isInformative = (boolean[]) list.isInformative.clone();
			}
		this.nInformative = list.nInformative;
		this.nChanges = list.nChanges;
		}

// Exported operations.

	/**
	 * Obtain this DNA sequence list's length.
	 *
	 * @return  Length <I>N</I> (number of DNA sequences).
	 */
	public int length()
		{
		return mySequence.length;
		}

	/**
	 * Get the DNA sequence at the given index in this DNA sequence list.
	 *
	 * @param  i  Index, 0 &le; <TT>i</TT> &le; <I>N</I>&minus;1.
	 *
	 * @return  DNA sequence.
	 *
	 * @exception  ArrayIndexOutOfBoundsException
	 *     (unchecked exception) Thrown if <TT>i</TT> is out of bounds.
	 */
	public DnaSequence seq
		(int i)
		{
		return mySequence[i];
		}

	/**
	 * Read a DNA sequence list from the given input file. The input file must
	 * be in interleaved PHYLIP format.
	 * <P>
	 * The DNA sequences' sites and names are read from the input file. The DNA
	 * sequences' scores are set to 0.
	 *
	 * @param  file  File.
	 *
	 * @return  DNA sequence list.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>file</TT> is null.
	 * @exception  IOException
	 *     Thrown if an I/O error occurred. Thrown if the input file's contents
	 *     were invalid.
	 */
	public static DnaSequenceList read
		(File file)
		throws IOException
		{
		Scanner filescanner = new Scanner (file);
		Scanner linescanner;
		int S, N;
		DnaSequenceList list;
		int[] sitecount;
		String line;

		try
			{
			// Read number of species and number of sites from first line.
			if (! filescanner.hasNextLine())
				{
				throw new IOException
					("DnaSequenceList.read(\"" + file + "\"): " +
					 "Empty file");
				}
			linescanner = new Scanner (filescanner.nextLine());
			if (! linescanner.hasNextInt())
				{
				throw new IOException
					("DnaSequenceList.read(\"" + file + "\"): " +
					 "Number of species invalid or missing");
				}
			S = linescanner.nextInt();
			if (S < 2)
				{
				throw new IOException
					("DnaSequenceList.read(\"" + file + "\"): " +
					 "Number of species must be >= 2");
				}
			if (! linescanner.hasNextInt())
				{
				throw new IOException
					("DnaSequenceList.read(\"" + file + "\"): " +
					 "Number of sites invalid or missing");
				}
			N = linescanner.nextInt();
			if (N < 1)
				{
				throw new IOException
					("DnaSequenceList.read(\"" + file + "\"): " +
					 "Number of sites must be >= 1");
				}

			// Set up DNA sequence list and site count array.
			list = new DnaSequenceList();
			list.mySequence = new DnaSequence [S];
			sitecount = new int [S];

			// Read sequence data from groups of S lines until EOF.
			fileloop: for (;;)
				{
				speciesloop: for (int s = 0; s < S; ++ s)
					{
					// Get a line of sequence data for species s.
					if (filescanner.hasNextLine())
						{
						}
					else if (s != 0 || sitecount[s] == 0)
						{
						throw new IOException
							("DnaSequenceList.read(\"" + file + "\"): " +
							 "Missing a line of sequence data for species " +
							 (s+1));
						}
					else
						{
						break fileloop;
						}
					line = filescanner.nextLine();

					// Ignore blank lines.
					if (line.trim().equals (""))
						{
						-- s;
						continue;
						}

					// The first time, extract sequence name and create
					// DnaSequence object.
					if (sitecount[s] == 0)
						{
						if (line.length() < 10)
							{
							throw new IOException
								("DnaSequenceList.read(\"" + file + "\"): " +
								 "Name must be 10 characters for species " +
								 (s+1));
							}
						list.mySequence[s] =
							new DnaSequence
								(N, 0, line.substring (0, 10) .trim());
						line = line.substring (10);
						}

					// Parse characters in sequence data.
					int len = line.length();
					byte[] seq = list.mySequence[s].mySites;
					byte[] seq0 = list.mySequence[0].mySites;
					int count = sitecount[s];
					for (int i = 0; i < len; ++ i)
						{
						switch (line.charAt(i))
							{
							case 'O': case 'o': case '-':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  0; // ----
								++ count;
								break;
							case 'A': case 'a':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  1; // ---A
								++ count;
								break;
							case 'C': case 'c':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  2; // --C-
								++ count;
								break;
							case 'M': case 'm':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  3; // --CA
								++ count;
								break;
							case 'G': case 'g':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  4; // -G--
								++ count;
								break;
							case 'R': case 'r':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  5; // -G-A
								++ count;
								break;
							case 'S': case 's':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  6; // -GC-
								++ count;
								break;
							case 'V': case 'v':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  7; // -GCA
								++ count;
								break;
							case 'T': case 't':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  8; // T---
								++ count;
								break;
							case 'W': case 'w':
								verifyCount (count, N, file, s);
								seq[count] = (byte)  9; // T--A
								++ count;
								break;
							case 'Y': case 'y':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 10; // T-C-
								++ count;
								break;
							case 'H': case 'h':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 11; // T-CA
								++ count;
								break;
							case 'K': case 'k':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 12; // TG--
								++ count;
								break;
							case 'D': case 'd':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 13; // TG-A
								++ count;
								break;
							case 'B': case 'b':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 14; // TGC-
								++ count;
								break;
							case 'X': case 'x': case 'N': case 'n': case '?':
								verifyCount (count, N, file, s);
								seq[count] = (byte) 15; // TGCA
								++ count;
								break;
							case '.':
								verifyCount (count, N, file, s);
								if (s == 0)
									{
									throw new IOException
										("DnaSequenceList.read(\"" + file +
										 "\"): " +
										 "'.' not allowed in species 1");
									}
								if (count >= sitecount[0])
									{
									throw new IOException
										("DnaSequenceList.read(\"" + file +
										 "\"): " +
										 "'.' in species " + (s+1) +
										 " has no corresponding site in species 1");
									}
								seq[count] = seq0[count];
								++ count;
								break;
							}
						}
					sitecount[s] = count;
					}
				}

			// Verify correct site count for all species.
			for (int s = 0; s < S; ++ s)
				{
				if (sitecount[s] < N)
					{
					throw new IOException
						("DnaSequenceList.read(\"" + file + "\"): " +
						 "Too few sites for species " + (s+1));
					}
				else if (sitecount[s] > N)
					{
					throw new IOException
						("DnaSequenceList.read(\"" + file + "\"): " +
						 "Too many sites for species " + (s+1));
					}
				}

			// Return DNA sequence list.
			return list;
			}

		finally
			{
			filescanner.close();
			}
		}

	private static void verifyCount
		(int count,
		 int N,
		 File file,
		 int s)
		throws IOException
		{
		if (count >= N)
			{
			throw new IOException
				("DnaSequenceList.read(\"" + file + "\"): " +
				 "Too many sites for species " + (s+1));
			}
		}

	/**
	 * Write this DNA sequence list to the given output file. The output file is
	 * in interleaved PHYLIP format. There are 70 sites on each output line.
	 * Periods are not used. Informative sites are not marked in bold.
	 *
	 * @param  file  File.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>file</TT> is null.
	 * @exception  IOException
	 *     Thrown if an I/O error occurred.
	 */
	public void write
		(File file)
		throws IOException
		{
		write (file, 70, false, false);
		}

	/**
	 * Write this DNA sequence list to the given output file. The output file is
	 * in interleaved PHYLIP format.
	 *
	 * @param  file     File.
	 * @param  sites    Number of sites per output line.
	 * @param  periods  True to use periods, false not to use periods.
	 * @param  bold     True to mark informative sites in bold, false not to.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>file</TT> is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>sites</TT> &lt;= 10.
	 * @exception  IOException
	 *     Thrown if an I/O error occurred.
	 */
	public void write
		(File file,
		 int sites,
		 boolean periods,
		 boolean bold)
		throws IOException
		{
		PrintStream ps =
			new PrintStream
				(new BufferedOutputStream
					(new FileOutputStream (file)));
		try
			{
			write (ps, sites, periods, bold);
			}
		finally
			{
			ps.close();
			}
		}

	/**
	 * Write this DNA sequence list to the given print stream in interleaved
	 * PHYLIP format.
	 *
	 * @param  ps       Print stream.
	 * @param  sites    Number of sites per output line.
	 * @param  periods  True to use periods, false not to.
	 * @param  bold     True to mark informative sites in bold, false not to.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>ps</TT> is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>sites</TT> &lt;= 10.
	 * @exception  IOException
	 *     Thrown if an I/O error occurred.
	 */
	public void write
		(PrintStream ps,
		 int sites,
		 boolean periods,
		 boolean bold)
		throws IOException
		{
		if (sites <= 10)
			{
			throw new IllegalArgumentException
				("DnaSequenceList.write(): sites = " + sites + " illegal");
			}

		// Determine informative sites if necessary.
		if (bold) computeInformativeSites();

		// Print number of species and number of sites.
		int S = mySequence.length;
		int N = mySequence[0].myLength;
		ps.print (S);
		ps.print (' ');
		ps.print (N);
		ps.println();

		// Print groups of sites for each species. On the first line, print
		// sequence name, padded or truncated to 10 characters.
		int lb = 0;
		int ub = Math.min (sites-10, N);
		byte[] seq0 = mySequence[0].mySites;
		while (lb < N)
			{
			for (int s = 0; s < S; ++ s)
				{
				byte[] seq = mySequence[s].mySites;
				if (lb == 0) ps.print (padName (mySequence[s].myName));
				for (int i = lb; i < ub; ++ i)
					{
					if ((lb == 0 || i > lb) && i % 10 == 0)
						{
						ps.print (' ');
						}
					if (periods && s > 0 && seq[i] == seq0[i])
						{
						printSite (ps, i, '.', bold);
						}
					else
						{
						printSite
							(ps, i, DnaSequence.state2char[seq[i]], bold);
						}
					}
				ps.println();
				}
			ps.println();
			lb = ub;
			ub = Math.min (ub+sites, N);
			}

		// Check for I/O errors.
		if (ps.checkError())
			{
			throw new IOException ("DnaSequenceList.write(): I/O error");
			}
		}

	private static String padName
		(String name)
		{
		if (name == null) return "<unnamed> ";
		int len = name.length();
		if (len == 10)
			{
			return name;
			}
		else if (len > 10)
			{
			return name.substring (0, 10);
			}
		else
			{
			return name + padding[len];
			}
		}

	private static String[] padding = new String[]
		{/*0*/ "          ",
		 /*1*/ "         ",
		 /*2*/ "        ",
		 /*3*/ "       ",
		 /*4*/ "      ",
		 /*5*/ "     ",
		 /*6*/ "    ",
		 /*7*/ "   ",
		 /*8*/ "  ",
		 /*9*/ " "};

	private void printSite
		(PrintStream ps,
		 int i,
		 char c,
		 boolean bold)
		{
		if (bold && isInformative[i])
			{
			ps.print ("<B>");
			ps.print (c);
			ps.print ("</B>");
			}
		else
			{
			ps.print (c);
			}
		}

	/**
	 * Truncate this DNA sequence list to the given length. If this list is
	 * already shorter than <TT>len</TT>, the <TT>truncate()</TT> method does
	 * nothing.
	 *
	 * @param  len  Length.
	 *
	 * @exception  NegativeArraySizeException
	 *     (unchecked exception) Thrown if <TT>len</TT> &lt; 0.
	 */
	public void truncate
		(int len)
		{
		if (len < mySequence.length)
			{
			DnaSequence[] newSequence = new DnaSequence [len];
			System.arraycopy (mySequence, 0, newSequence, 0, len);
			mySequence = newSequence;
			}
		}

	/**
	 * Excise uninformative sites from the DNA sequences in this DNA sequence
	 * list.
	 * <P>
	 * Each site in the DNA sequences is either "uninformative" or
	 * "informative," defined as follows:
	 * <UL>
	 * <LI>
	 * If the site has the same state (A, C, G, or T) in all sequences, the
	 * site is uninformative. This site will contribute no state changes to the
	 * parsimony score in every possible phylogenetic tree.
	 * <P><LI>
	 * If the site has the same state in all sequences, except for one or more
	 * sequences that have a unique state at that site (i.e., a state that
	 * appears in no other sequences at that site), the site is uninformative.
	 * The site will contribute the same number of state changes to the
	 * parsimony score in every possible phylogenetic tree, namely the number of
	 * different states that appear at that site, minus 1.
	 * <P><LI>
	 * Otherwise, the site is informative. There are at least two different
	 * states at that site, and each state appears in at least two different
	 * sequences. The site will contribute a different number of state changes
	 * to the parsimony score, depending on where the sequences appear in the
	 * phylogenetic tree.
	 * </UL>
	 * <P>
	 * Since the uninformative sites do not affect the outcome of a maximum
	 * parsimony phylogenetic tree search, the uninformative sites can be
	 * omitted from the tree scoring process to save time. The informative sites
	 * do affect the outcome and must be included in the tree scoring process.
	 * <P>
	 * The <TT>exciseUninformativeSites()</TT> removes the uninformative sites
	 * from the DNA sequences in this list. The DNA sequences' scores and names
	 * are unchanged.
	 *
	 * @return  Number of state changes the (excised) uninformative sites
	 *          contribute to the parsimony score.
	 */
	public int exciseUninformativeSites()
		{
		int S = mySequence.length;
		int N = mySequence[0].length();

		// Determine which sites are informative.
		computeInformativeSites();

		// Excise uninformative sites from sequences.
		for (int s = 0; s < S; ++ s)
			{
			byte[] oldSites = mySequence[s].mySites;
			mySequence[s] =
				new DnaSequence
					(nInformative,
					 mySequence[s].myScore,
					 mySequence[s].myName);
			byte[] excSites = mySequence[s].mySites;
			int j = 0;
			for (int i = 0; i < N; ++ i)
				{
				if (isInformative[i])
					{
					excSites[j++] = oldSites[i];
					}
				}
			}

		// Mark all sites as informative.
		isInformative = new boolean [nInformative];
		Arrays.fill (isInformative, true);

		// Return number of state changes.
		return nChanges;
		}

	/**
	 * Returns the number of informative sites in this DNA sequence list.
	 *
	 * @return  Number of informative sites.
	 */
	public int informativeSiteCount()
		{
		computeInformativeSites();
		return nInformative;
		}

	/**
	 * Determine the number of absent states after adding each sequence in this
	 * DNA sequence list to a tree. The return value <I>A</I> is an
	 * <I>N</I>-element array, where <I>N</I> is the length of this DNA sequence
	 * list. As sequences from this list are added to a tree in order from
	 * <I>i</I> = 0 to <I>N</I>&minus;1, <I>A</I>[<I>i</I>] is the number of
	 * character states that do not yet appear in the tree. Thus, the number of
	 * state changes in the tree must increase by at least <I>A</I>[<I>i</I>]
	 * when the sequences after sequence <I>i</I> are added to the tree. This
	 * can be used to prune a branch-and-bound search.
	 *
	 * @return  Array <I>A</I>.
	 */
	public int[] countAbsentStates()
		{
		int N = mySequence.length;
		int L = mySequence[0].length();
		int[] A = new int [N];

		// Compute the union of all the DNA sequences.
		byte[] sites = new byte [L];
		for (int i = 0; i < N; ++ i)
			{
			byte[] mysites_i = mySequence[i].mySites;
			for (int j = 0; j < L; ++ j)
				{
				sites[j] |= mysites_i[j];
				}
			}

		// Subtract each sequence from the union, count and record states.
		for (int i = 0; i < N; ++ i)
			{
			byte[] mysites_i = mySequence[i].mySites;
			int count = 0;
			for (int j = 0; j < L; ++ j)
				{
				sites[j] &= ~ mysites_i[j];
				count += DnaSequence.state2bitCount [sites[j]];
				}
			A[i] = count;
			}

		return A;
		}

	/**
	 * Create a DNA sequence tree from this DNA sequence list and the given tree
	 * signature. The tree signature is an array of indexes of length <I>N</I>,
	 * where <I>N</I> is the length of this list. To construct the tree, for all
	 * <I>i</I> from 0 to <I>N</I>&minus;1, the DNA sequence at index <I>i</I>
	 * in this list is added to the tree at index <TT>signature[i]</TT> using
	 * the <TT>DnaSequenceTree.add()</TT> method. For all <I>i</I>,
	 * <TT>signature[i]</TT> must be in the range 0 ..
	 * 2(<I>i</I>&nbsp;&minus;&nbsp;1), except <TT>signature[0]</TT> is 0.
	 * <P>
	 * <I>Note:</I> The returned tree has references to (not copies of) the DNA
	 * sequences in this list.
	 *
	 * @param  signature  Tree signature (array of tree indexes).
	 *
	 * @return  Tree.
	 */
	public DnaSequenceTree toTree
		(int[] signature)
		{
		int N = mySequence.length;
		DnaSequenceTree tree = new DnaSequenceTree (2*N - 1);
		for (int i = 0; i < N; ++ i)
			{
			tree.add (signature[i], mySequence[i]);
			}
		return tree;
		}

	/**
	 * Returns an iterator for the DNA sequences in this list.
	 *
	 * @return  Iterator.
	 */
	public Iterator<DnaSequence> iterator()
		{
		return new Iterator<DnaSequence>()
			{
			int i = 0;

			public boolean hasNext()
				{
				return i < mySequence.length;
				}

			public DnaSequence next()
				{
				return mySequence[i++];
				}

			public void remove()
				{
				throw new UnsupportedOperationException();
				}
			};
		}

// Hidden operations.

	/**
	 * Compute information about informative sites.
	 */
	private void computeInformativeSites()
		{
		if (isInformative != null) return;

		int S = mySequence.length;
		int N = mySequence[0].length();

		// Allocate storage to remember each site's category: true =
		// informative, false = uninformative. Also count number of informative
		// sites and number of state changes in uninformative sites.
		isInformative = new boolean [N];
		nInformative = 0;
		nChanges = 0;

		// Allocate storage to count states at each site.
		int[] stateCount = new int [16];

		// Examine all sites.
		for (int i = 0; i < N; ++ i)
			{
			Arrays.fill (stateCount, 0);

			// Examine current site in all sequences.
			for (int s = 0; s < S; ++ s)
				{
				++ stateCount[mySequence[s].mySites[i]];
				}

			// Count how many values in stateCount are 2 or greater.
			int x = 0;
			for (int j = 0; j < 16; ++ j)
				{
				if (stateCount[j] >= 2) ++ x;
				}

			// Categorize current site.
			if (x >= 2)
				{
				// Informative site.
				isInformative[i] = true;
				++ nInformative;
				}
			else
				{
				// Uninformative site. Increase number of state changes by
				// (number of different states - 1).
				isInformative[i] = false;
				for (int j = 0; j < 16; ++ j)
					{
					if (stateCount[j] > 0) ++ nChanges;
					}
				-- nChanges;
				}
			}
		}

	}