File: LeastSquaresBranchLengths.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (301 lines) | stat: -rw-r--r-- 9,402 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//******************************************************************************
//
// File:    LeastSquaresBranchLengths.java
// Package: edu.rit.compbio.phyl
// Unit:    Class edu.rit.compbio.phyl.LeastSquaresBranchLengths
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.compbio.phyl;

import edu.rit.numeric.NonNegativeLeastSquares;

/**
 * Class LeastSquaresBranchLengths provides methods for computing least squares
 * branch lengths in a {@linkplain DnaSequenceTree}.
 *
 * @author  Alan Kaminsky
 * @version 23-Jul-2008
 */
public class LeastSquaresBranchLengths
	{

// Prevent construction.

	private LeastSquaresBranchLengths()
		{
		}

// Exported operations.

	/**
	 * Compute the squared error in the given DNA sequence tree's branch
	 * lengths. When <TT>squaredError()</TT> is called:
	 * <UL>
	 * <LI>
	 * Every tip node in the <TT>tree</TT> must be associated with a DNA
	 * sequence of the same length.
	 * <LI>
	 * Every node in the <TT>tree</TT> either is associated with a branch
	 * length, or is assumed to have a branch length of 0 if not associated with
	 * a branch length.
	 * </UL>
	 * <P>
	 * This method computes the distance between each pair of DNA sequences
	 * using the given <TT>dcalc</TT> object (the "direct distance"); computes
	 * the distance between each pair of DNA sequences by adding up the branch
	 * lengths along the path through the tree between the sequences (the "tree
	 * distance"); and returns the sum of the squares of the differences between
	 * the direct distance and the tree distance for each pair of DNA sequences.
	 *
	 * @param  tree   DNA sequence tree.
	 * @param  dcalc  Object to calculate distances between DNA sequences.
	 *
	 * @return  Squared error.
	 */
	public static double squaredError
		(DnaSequenceTree tree,
		 Distance dcalc)
		{
		// Get tree information.
		double[] brlen = getBranchLengths (tree);
		int[] tip = getTipNodes (tree);
		boolean[][] rootPath = getRootPaths (tree, tip);
		int N = tip.length;

		// Scan all pairs of DNA sequences and compute squared error.
		double sqrerr = 0.0;
		for (int i = 0; i < N-1; ++ i)
			{
			DnaSequence seq_i = tree.seq (tip[i]);
			for (int j = i+1; j < N; ++ j)
				{
				DnaSequence seq_j = tree.seq (tip[j]);
				double d_direct = dcalc.distance (seq_i, seq_j);
				double d_tree = treeDistance (i, j, brlen, rootPath);
				double err = d_direct - d_tree;
				sqrerr += err*err;
				}
			}

		return sqrerr;
		}

	/**
	 * Find the least squares branch lengths for the given DNA sequence tree.
	 * When <TT>squaredError()</TT> is called, every tip node in the
	 * <TT>tree</TT> must be associated with a DNA sequence of the same length.
	 * <P>
	 * This method calculates the branch lengths such that the squared error, as
	 * defined in the <TT>squaredError()</TT> method, is minimized. Each node of
	 * the tree is associated with the calculated branch length. The squared
	 * error is returned.
	 * <P>
	 * This method uses a nonnegative linear least squares solver (class
	 * {@linkplain edu.rit.numeric.NonNegativeLeastSquares
	 * edu.rit.numeric.NonNegativeLeastSquares}) to calculate the branch
	 * lengths. Thus, all branch lengths will be nonnegative; some may be 0.
	 *
	 * @param  tree   DNA sequence tree.
	 * @param  dcalc  Object to calculate distances between DNA sequences.
	 *
	 * @return  Squared error.
	 */
	public static double solve
		(DnaSequenceTree tree,
		 Distance dcalc)
		{
		// Get tree information.
		double[] brlen = getBranchLengths (tree);
		int[] tip = getTipNodes (tree);
		boolean[][] rootPath = getRootPaths (tree, tip);
		int L = brlen.length;
		int N = tip.length;
		int P = N*(N - 1)/2;

		// Set up nonnegative least squares solver. Number of rows = number of
		// pairs of DNA sequences (P). Number of columns = number of branch
		// lengths (L).
		NonNegativeLeastSquares solver = new NonNegativeLeastSquares (P, L);

		// Scan all pairs of DNA sequences. For every pair of sequences p:
		// - Input vector b[p] = distance between the pair of sequences as
		//   returned by dcalc.distance().
		// - For every branch k:
		//   - Input matrix a[p][k] = 1 if the branch is on the path between the
		//     pair of sequences, = 0 otherwise.
		int p = 0;
		double[] a_p;
		for (int i = 0; i < N-1; ++ i)
			{
			DnaSequence seq_i = tree.seq (tip[i]);
			boolean[] rootPath_i = rootPath[i];
			for (int j = i+1; j < N; ++ j)
				{
				DnaSequence seq_j = tree.seq (tip[j]);
				boolean[] rootPath_j = rootPath[j];
				solver.b[p] = dcalc.distance (seq_i, seq_j);
				a_p = solver.a[p];
				for (int k = 0; k < L; ++ k)
					{
					a_p[k] = rootPath_i[k] ^ rootPath_j[k] ? 1.0 : 0.0;
					}
				++ p;
				}
			}

		// Find the solution.
		solver.solve();

		// Store branch lengths back in tree (except root has no branch length).
		for (int i = 0; i < L; ++ i)
			{
			tree.branchLength (i, solver.x[i]);
			}
		tree.branchLength (tree.root(), null);

		// Return squared error.
		return solver.normsqr;
		}

// Hidden operations.

	/**
	 * Get the branch lengths from the given tree.
	 *
	 * @param  tree  DNA sequence tree.
	 *
	 * @return  Array of branch lengths, indexed by tree node index.
	 */
	private static double[] getBranchLengths
		(DnaSequenceTree tree)
		{
		int L = tree.length();
		double[] brlen = new double [L];
		for (int i = 0; i < L; ++ i)
			{
			Double b = tree.branchLength(i);
			if (b != null) brlen[i] = b;
			}
		return brlen;
		}

	/**
	 * Get the indexes of the tip nodes in the given tree.
	 *
	 * @param  tree  DNA sequence tree.
	 *
	 * @return  Array of tip node indexes.
	 */
	private static int[] getTipNodes
		(DnaSequenceTree tree)
		{
		int L = tree.length();
		int N = (L + 1)/2;
		int[] tip = new int [N];
		int j = 0;
		for (int i = 0; i < L; ++ i)
			{
			if (tree.child1(i) == -1)
				{
				tip[j++] = i;
				}
			}
		return tip;
		}

	/**
	 * Get the paths from the tip nodes to the root node in the given tree.
	 *
	 * @param  tree  DNA sequence tree.
	 * @param  tip   Array of tip node indexes.
	 *
	 * @return  Array of paths. First index is tip node number. Second index is
	 *          branch number. The element at indexes <TT>[t,b]</TT> is true if
	 *          branch <TT>b</TT> is on the path from tip number <TT>t</TT> to
	 *          the root, false otherwise.
	 */
	private static boolean[][] getRootPaths
		(DnaSequenceTree tree,
		 int[] tip)
		{
		int L = tree.length();
		int N = tip.length;
		boolean[][] rootPath = new boolean [N] [L];
		for (int i = 0; i < N; ++ i)
			{
			boolean[] rootPath_i = rootPath[i];
			int j = tip[i];
			while (j != -1)
				{
				rootPath_i[j] = true;
				j = tree.parent(j);
				}
			}
		return rootPath;
		}

	/**
	 * Compute the tree distance between the given tip nodes.
	 *
	 * @param  tip1      First tip node number.
	 * @param  tip2      Second tip node number.
	 * @param  brlen     Array of branch lengths.
	 * @param  rootPath  Array of paths from tips to root.
	 *
	 * @return  Tree distance.
	 */
	private static double treeDistance
		(int tip1,
		 int tip2,
		 double[] brlen,
		 boolean[][] rootPath)
		{
		boolean[] rootPath1 = rootPath[tip1];
		boolean[] rootPath2 = rootPath[tip2];

		// For each branch that is the path from tip1 to root or the path from
		// tip2 to root but not both, add up the branch lengths.
		int L = rootPath[0].length;
		double d = 0.0;
		for (int i = 0; i < L; ++ i)
			{
			if (rootPath1[i] ^ rootPath2[i]) d += brlen[i];
			}

		return d;
		}

	}