1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
//******************************************************************************
//
// File: LeastSquaresBranchLengths.java
// Package: edu.rit.compbio.phyl
// Unit: Class edu.rit.compbio.phyl.LeastSquaresBranchLengths
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.compbio.phyl;
import edu.rit.numeric.NonNegativeLeastSquares;
/**
* Class LeastSquaresBranchLengths provides methods for computing least squares
* branch lengths in a {@linkplain DnaSequenceTree}.
*
* @author Alan Kaminsky
* @version 23-Jul-2008
*/
public class LeastSquaresBranchLengths
{
// Prevent construction.
private LeastSquaresBranchLengths()
{
}
// Exported operations.
/**
* Compute the squared error in the given DNA sequence tree's branch
* lengths. When <TT>squaredError()</TT> is called:
* <UL>
* <LI>
* Every tip node in the <TT>tree</TT> must be associated with a DNA
* sequence of the same length.
* <LI>
* Every node in the <TT>tree</TT> either is associated with a branch
* length, or is assumed to have a branch length of 0 if not associated with
* a branch length.
* </UL>
* <P>
* This method computes the distance between each pair of DNA sequences
* using the given <TT>dcalc</TT> object (the "direct distance"); computes
* the distance between each pair of DNA sequences by adding up the branch
* lengths along the path through the tree between the sequences (the "tree
* distance"); and returns the sum of the squares of the differences between
* the direct distance and the tree distance for each pair of DNA sequences.
*
* @param tree DNA sequence tree.
* @param dcalc Object to calculate distances between DNA sequences.
*
* @return Squared error.
*/
public static double squaredError
(DnaSequenceTree tree,
Distance dcalc)
{
// Get tree information.
double[] brlen = getBranchLengths (tree);
int[] tip = getTipNodes (tree);
boolean[][] rootPath = getRootPaths (tree, tip);
int N = tip.length;
// Scan all pairs of DNA sequences and compute squared error.
double sqrerr = 0.0;
for (int i = 0; i < N-1; ++ i)
{
DnaSequence seq_i = tree.seq (tip[i]);
for (int j = i+1; j < N; ++ j)
{
DnaSequence seq_j = tree.seq (tip[j]);
double d_direct = dcalc.distance (seq_i, seq_j);
double d_tree = treeDistance (i, j, brlen, rootPath);
double err = d_direct - d_tree;
sqrerr += err*err;
}
}
return sqrerr;
}
/**
* Find the least squares branch lengths for the given DNA sequence tree.
* When <TT>squaredError()</TT> is called, every tip node in the
* <TT>tree</TT> must be associated with a DNA sequence of the same length.
* <P>
* This method calculates the branch lengths such that the squared error, as
* defined in the <TT>squaredError()</TT> method, is minimized. Each node of
* the tree is associated with the calculated branch length. The squared
* error is returned.
* <P>
* This method uses a nonnegative linear least squares solver (class
* {@linkplain edu.rit.numeric.NonNegativeLeastSquares
* edu.rit.numeric.NonNegativeLeastSquares}) to calculate the branch
* lengths. Thus, all branch lengths will be nonnegative; some may be 0.
*
* @param tree DNA sequence tree.
* @param dcalc Object to calculate distances between DNA sequences.
*
* @return Squared error.
*/
public static double solve
(DnaSequenceTree tree,
Distance dcalc)
{
// Get tree information.
double[] brlen = getBranchLengths (tree);
int[] tip = getTipNodes (tree);
boolean[][] rootPath = getRootPaths (tree, tip);
int L = brlen.length;
int N = tip.length;
int P = N*(N - 1)/2;
// Set up nonnegative least squares solver. Number of rows = number of
// pairs of DNA sequences (P). Number of columns = number of branch
// lengths (L).
NonNegativeLeastSquares solver = new NonNegativeLeastSquares (P, L);
// Scan all pairs of DNA sequences. For every pair of sequences p:
// - Input vector b[p] = distance between the pair of sequences as
// returned by dcalc.distance().
// - For every branch k:
// - Input matrix a[p][k] = 1 if the branch is on the path between the
// pair of sequences, = 0 otherwise.
int p = 0;
double[] a_p;
for (int i = 0; i < N-1; ++ i)
{
DnaSequence seq_i = tree.seq (tip[i]);
boolean[] rootPath_i = rootPath[i];
for (int j = i+1; j < N; ++ j)
{
DnaSequence seq_j = tree.seq (tip[j]);
boolean[] rootPath_j = rootPath[j];
solver.b[p] = dcalc.distance (seq_i, seq_j);
a_p = solver.a[p];
for (int k = 0; k < L; ++ k)
{
a_p[k] = rootPath_i[k] ^ rootPath_j[k] ? 1.0 : 0.0;
}
++ p;
}
}
// Find the solution.
solver.solve();
// Store branch lengths back in tree (except root has no branch length).
for (int i = 0; i < L; ++ i)
{
tree.branchLength (i, solver.x[i]);
}
tree.branchLength (tree.root(), null);
// Return squared error.
return solver.normsqr;
}
// Hidden operations.
/**
* Get the branch lengths from the given tree.
*
* @param tree DNA sequence tree.
*
* @return Array of branch lengths, indexed by tree node index.
*/
private static double[] getBranchLengths
(DnaSequenceTree tree)
{
int L = tree.length();
double[] brlen = new double [L];
for (int i = 0; i < L; ++ i)
{
Double b = tree.branchLength(i);
if (b != null) brlen[i] = b;
}
return brlen;
}
/**
* Get the indexes of the tip nodes in the given tree.
*
* @param tree DNA sequence tree.
*
* @return Array of tip node indexes.
*/
private static int[] getTipNodes
(DnaSequenceTree tree)
{
int L = tree.length();
int N = (L + 1)/2;
int[] tip = new int [N];
int j = 0;
for (int i = 0; i < L; ++ i)
{
if (tree.child1(i) == -1)
{
tip[j++] = i;
}
}
return tip;
}
/**
* Get the paths from the tip nodes to the root node in the given tree.
*
* @param tree DNA sequence tree.
* @param tip Array of tip node indexes.
*
* @return Array of paths. First index is tip node number. Second index is
* branch number. The element at indexes <TT>[t,b]</TT> is true if
* branch <TT>b</TT> is on the path from tip number <TT>t</TT> to
* the root, false otherwise.
*/
private static boolean[][] getRootPaths
(DnaSequenceTree tree,
int[] tip)
{
int L = tree.length();
int N = tip.length;
boolean[][] rootPath = new boolean [N] [L];
for (int i = 0; i < N; ++ i)
{
boolean[] rootPath_i = rootPath[i];
int j = tip[i];
while (j != -1)
{
rootPath_i[j] = true;
j = tree.parent(j);
}
}
return rootPath;
}
/**
* Compute the tree distance between the given tip nodes.
*
* @param tip1 First tip node number.
* @param tip2 Second tip node number.
* @param brlen Array of branch lengths.
* @param rootPath Array of paths from tips to root.
*
* @return Tree distance.
*/
private static double treeDistance
(int tip1,
int tip2,
double[] brlen,
boolean[][] rootPath)
{
boolean[] rootPath1 = rootPath[tip1];
boolean[] rootPath2 = rootPath[tip2];
// For each branch that is the path from tip1 to root or the path from
// tip2 to root but not both, add up the branch lengths.
int L = rootPath[0].length;
double d = 0.0;
for (int i = 0; i < L; ++ i)
{
if (rootPath1[i] ^ rootPath2[i]) d += brlen[i];
}
return d;
}
}
|