1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
//*****************************************************************************
//
// File: MaximumParsimonyBnbSmp.java
// Package: edu.rit.compbio.phyl
// Unit: Class edu.rit.compbio.phyl.MaximumParsimonyBnbSmp
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.compbio.phyl;
import edu.rit.pj.reduction.IntegerOp;
import edu.rit.pj.reduction.SharedInteger;
/**
* Class MaximumParsimonyBnbSmp provides an SMP parallel algorithm for maximum
* parsimony phylogenetic tree construction using branch-and-bound search.
* <P>
* Class MaximumParsimonyBnbSmp is designed to be used in an SMP parallel
* program that runs in one process with multiple threads. Each thread has its
* own MaximumParsimonyBnbSmp instance. Each thread uses its own
* MaximumParsimonyBnbSmp instance to search different sections of the search
* graph concurrently.
* <P>
* The process has a shared variable, <I>bound</I>, that holds the best
* parsimony score found so far (i.e., the bound for branch-and-bound search).
* The <I>bound</I> variable is an instance of class {@linkplain
* edu.rit.pj.reduction.SharedInteger}. All the MaximumParsimonyBnbSmp instances
* within the process share the same <I>bound</I> variable. Whenever one thread
* finds a phylogenetic tree with a better parsimony score, it notifies all the
* threads by updating the <I>bound</I> variable.
* <P>
* To perform a search, the process must:
* <OL TYPE=1>
* <LI>
* Call the static <TT>createBoundVariable()</TT> method to create the shared
* <I>bound</I> variable.
* </OL>
* Then each thread in the process must:
* <OL TYPE=1 START=2>
* <LI>
* Create its own instance of class MaximumParsimonyBnbSmp, passing in a
* {@linkplain DnaSequenceList} of the DNA sequences in the tree, a reference to
* the process's shared <I>bound</I> variable, and a {@linkplain
* MaximumParsimonyResults} object to hold the search results.
* <P><LI>
* Call the <TT>findTrees()</TT> method one or more times, each time indicating
* a section of the search graph to search. The results of searching that
* section are accumulated into the {@linkplain MaximumParsimonyResults} object
* specified to the constructor.
* </OL>
* <P>
* <I>Note:</I> Class MaximumParsimonyBnbSmp is not multiple thread safe; it is
* intended to be used as a per-thread variable.
*
* @author Alan Kaminsky
* @version 21-Nov-2008
*/
public class MaximumParsimonyBnbSmp
{
// Exported static operations.
/**
* Create a new shared <I>bound</I> variable.
*
* @param initialBound Initial bound for branch-and-bound search.
*/
public static SharedInteger createBoundVariable
(int initialBound)
{
return new SharedInteger (initialBound);
}
// Hidden data members.
// List of DNA sequences with which to construct trees.
private DnaSequenceList seqList;
// Shared bound variable.
private SharedInteger bound;
// For holding search results.
private MaximumParsimonyResults results;
// Length of each DNA sequence.
private int L;
// Number of DNA sequences.
private int N;
// Tree capacity.
private int C;
// Number of absent states as each DNA sequence is added.
private int[] absentStates;
// Stack of DNA sequence trees.
private DnaSequenceTree[] treeStack;
// Stack of auxiliary DNA sequence arrays.
DnaSequence[][] seqArrayStack;
// Tree signature currently being searched.
private int[] signature;
// Extra padding to avert cache interference.
private long p0, p1, p2, p3, p4, p5, p6, p7;
private long p8, p9, pa, pb, pc, pd, pe, pf;
// Exported constructors.
/**
* Construct a new maximum parsimony phylogenetic tree construction
* algorithm object.
*
* @param seqList DNA sequence list.
* @param bound Shared <I>bound</I> variable.
* @param results Object in which to store the results.
*/
public MaximumParsimonyBnbSmp
(DnaSequenceList seqList,
SharedInteger bound,
MaximumParsimonyResults results)
{
// Record parameters.
this.seqList = seqList;
this.bound = bound;
this.results = results;
// Initialize.
L = seqList.seq(0).length();
N = seqList.length();
C = 2*N - 1;
// Compute number of absent states as each DNA sequence is added.
absentStates = seqList.countAbsentStates();
// Set up stack of DNA sequence trees.
treeStack = new DnaSequenceTree [N];
for (int i = 0; i < N; ++ i)
{
treeStack[i] = new DnaSequenceTree (C);
}
// Initialize DNA sequence tree at first level of the search graph.
treeStack[0].add (0, seqList.seq(0));
// Set up stack of auxiliary DNA sequence arrays.
seqArrayStack = new DnaSequence [N] [];
for (int i = 0; i < N; ++ i)
{
DnaSequence[] seqArray = new DnaSequence [i];
seqArrayStack[i] = seqArray;
for (int j = 0; j < i; ++ j)
{
seqArray[j] = new DnaSequence (L);
}
}
// Set up tree signature.
signature = new int [N+32]; // Extra padding
}
// Exported operations.
/**
* Find the maximum parsimony phylogenetic tree(s) in the given section of
* the search graph. The DNA sequence list was specified to the constructor.
* <P>
* The search will commence at level <I>L</I> of the search graph, 0 ≤
* <I>L</I> ≤ <I>N</I>−1, where <I>N</I> is the number of sequences
* in the DNA sequence list. Of the (2<I>L</I>−1)!! vertices at level
* <I>L</I>, the search will start at the <I>V</I><SUB>1</SUB>-th such
* vertex and end at the <I>V</I><SUB>2</SUB>-th such vertex, 0 ≤
* <I>V</I><SUB>1</SUB> ≤ <I>V</I><SUB>2</SUB> ≤
* (2<I>L</I>−1)!! − 1. All search graph vertices at
* and below vertices <I>V</I><SUB>1</SUB> through <I>V</I><SUB>2</SUB>
* inclusive will be searched.
* <P>
* The results are accumulated into the {@linkplain MaximumParsimonyResults}
* object specified to the constructor. The <TT>findTrees()</TT> method will
* only find trees whose parsimony scores are less than or equal to the
* value of the <TT>bound</TT> variable specified to the constructor or the
* best bound found thereafter, whichever is smaller.
*
* @param startLevel
* <I>L</I>, the level of the search graph at which to commence the
* search.
* @param vertex1
* <I>V</I><SUB>1</SUB>, the search graph vertex at level <I>L</I> at
* which to start the search.
* @param vertex2
* <I>V</I><SUB>2</SUB>, the search graph vertex at level <I>L</I> at
* which to end the search.
*/
public void findTrees
(int startLevel,
int vertex1,
int vertex2)
{
// Initialize tree signature as specified by <startLevel> and <vertex1>.
signature[0] = 0;
int q = vertex1;
for (int i = startLevel; i > 0; -- i)
{
int d = 2*i - 1;
signature[i] = q % d - 1;
q = q / d;
}
for (int i = startLevel + 1; i < N; ++ i)
{
signature[i] = -1;
}
// Traverse remaining levels of the search graph.
int level = 1;
boolean done = false;
results.reduceScore (bound.get());
while (! done)
{
DnaSequenceTree prevTree = treeStack[level-1];
// If we have reached the bottom of the search graph, we have a
// tentative solution.
if (level == N)
{
int tentativeScore = prevTree.seq (prevTree.root()) .score();
// Update best solution's score to reflect tentative solution's
// score.
int updatedScore =
bound.reduce (tentativeScore, IntegerOp.MINIMUM);
// If best solution's score is better than that of previous
// solutions, discard previous solutions.
results.reduceScore (updatedScore);
// Record tentative solution.
results.add (signature, tentativeScore);
// Go to previous level.
-- level;
if (level == startLevel)
{
++ vertex1;
if (vertex1 > vertex2) done = true;
}
}
// If there are no more positions to try at this level, reset
// position at this level and go to previous level.
else if (signature[level] == 2*(level - 1))
{
signature[level] = -1;
-- level;
if (level == startLevel)
{
++ vertex1;
if (vertex1 > vertex2) done = true;
}
}
// If there are more positions to try at this level, add the DNA
// sequence to the tree at the next position and do
// branch-and-bound.
else
{
++ signature[level];
DnaSequenceTree currTree = treeStack[level];
currTree.copy (prevTree);
int tip = currTree.add (signature[level], seqList.seq(level));
int partialScore =
FitchParsimony.updateScore
(currTree, tip, seqArrayStack[level]);
// If partial parsimony score plus number of absent states in
// the remaining levels is less than or equal to the best
// solution's score, go to the next level (branch), otherwise
// try the next choice at this level (bound).
if
((level <= startLevel) ||
(partialScore + absentStates[level] <= bound.get()))
{
++ level;
}
}
}
}
}
|