File: MaximumParsimonyBnbSmp.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (322 lines) | stat: -rw-r--r-- 10,853 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
//*****************************************************************************
//
// File:    MaximumParsimonyBnbSmp.java
// Package: edu.rit.compbio.phyl
// Unit:    Class edu.rit.compbio.phyl.MaximumParsimonyBnbSmp
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.compbio.phyl;

import edu.rit.pj.reduction.IntegerOp;
import edu.rit.pj.reduction.SharedInteger;

/**
 * Class MaximumParsimonyBnbSmp provides an SMP parallel algorithm for maximum
 * parsimony phylogenetic tree construction using branch-and-bound search.
 * <P>
 * Class MaximumParsimonyBnbSmp is designed to be used in an SMP parallel
 * program that runs in one process with multiple threads. Each thread has its
 * own MaximumParsimonyBnbSmp instance. Each thread uses its own
 * MaximumParsimonyBnbSmp instance to search different sections of the search
 * graph concurrently.
 * <P>
 * The process has a shared variable, <I>bound</I>, that holds the best
 * parsimony score found so far (i.e., the bound for branch-and-bound search).
 * The <I>bound</I> variable is an instance of class {@linkplain
 * edu.rit.pj.reduction.SharedInteger}. All the MaximumParsimonyBnbSmp instances
 * within the process share the same <I>bound</I> variable. Whenever one thread
 * finds a phylogenetic tree with a better parsimony score, it notifies all the
 * threads by updating the <I>bound</I> variable.
 * <P>
 * To perform a search, the process must:
 * <OL TYPE=1>
 * <LI>
 * Call the static <TT>createBoundVariable()</TT> method to create the shared
 * <I>bound</I> variable.
 * </OL>
 * Then each thread in the process must:
 * <OL TYPE=1 START=2>
 * <LI>
 * Create its own instance of class MaximumParsimonyBnbSmp, passing in a
 * {@linkplain DnaSequenceList} of the DNA sequences in the tree, a reference to
 * the process's shared <I>bound</I> variable, and a {@linkplain
 * MaximumParsimonyResults} object to hold the search results.
 * <P><LI>
 * Call the <TT>findTrees()</TT> method one or more times, each time indicating
 * a section of the search graph to search. The results of searching that
 * section are accumulated into the {@linkplain MaximumParsimonyResults} object
 * specified to the constructor.
 * </OL>
 * <P>
 * <I>Note:</I> Class MaximumParsimonyBnbSmp is not multiple thread safe; it is
 * intended to be used as a per-thread variable.
 *
 * @author  Alan Kaminsky
 * @version 21-Nov-2008
 */
public class MaximumParsimonyBnbSmp
	{

// Exported static operations.

	/**
	 * Create a new shared <I>bound</I> variable.
	 *
	 * @param  initialBound  Initial bound for branch-and-bound search.
	 */
	public static SharedInteger createBoundVariable
		(int initialBound)
		{
		return new SharedInteger (initialBound);
		}

// Hidden data members.

	// List of DNA sequences with which to construct trees.
	private DnaSequenceList seqList;

	// Shared bound variable.
	private SharedInteger bound;

	// For holding search results.
	private MaximumParsimonyResults results;

	// Length of each DNA sequence.
	private int L;

	// Number of DNA sequences.
	private int N;

	// Tree capacity.
	private int C;

	// Number of absent states as each DNA sequence is added.
	private int[] absentStates;

	// Stack of DNA sequence trees.
	private DnaSequenceTree[] treeStack;

	// Stack of auxiliary DNA sequence arrays.
	DnaSequence[][] seqArrayStack;

	// Tree signature currently being searched.
	private int[] signature;

	// Extra padding to avert cache interference.
	private long p0, p1, p2, p3, p4, p5, p6, p7;
	private long p8, p9, pa, pb, pc, pd, pe, pf;

// Exported constructors.

	/**
	 * Construct a new maximum parsimony phylogenetic tree construction
	 * algorithm object.
	 *
	 * @param  seqList  DNA sequence list.
	 * @param  bound    Shared <I>bound</I> variable.
	 * @param  results  Object in which to store the results.
	 */
	public MaximumParsimonyBnbSmp
		(DnaSequenceList seqList,
		 SharedInteger bound,
		 MaximumParsimonyResults results)
		{
		// Record parameters.
		this.seqList = seqList;
		this.bound = bound;
		this.results = results;

		// Initialize.
		L = seqList.seq(0).length();
		N = seqList.length();
		C = 2*N - 1;

		// Compute number of absent states as each DNA sequence is added.
		absentStates = seqList.countAbsentStates();

		// Set up stack of DNA sequence trees.
		treeStack = new DnaSequenceTree [N];
		for (int i = 0; i < N; ++ i)
			{
			treeStack[i] = new DnaSequenceTree (C);
			}

		// Initialize DNA sequence tree at first level of the search graph.
		treeStack[0].add (0, seqList.seq(0));

		// Set up stack of auxiliary DNA sequence arrays.
		seqArrayStack = new DnaSequence [N] [];
		for (int i = 0; i < N; ++ i)
			{
			DnaSequence[] seqArray = new DnaSequence [i];
			seqArrayStack[i] = seqArray;
			for (int j = 0; j < i; ++ j)
				{
				seqArray[j] = new DnaSequence (L);
				}
			}

		// Set up tree signature.
		signature = new int [N+32]; // Extra padding
		}

// Exported operations.

	/**
	 * Find the maximum parsimony phylogenetic tree(s) in the given section of
	 * the search graph. The DNA sequence list was specified to the constructor.
	 * <P>
	 * The search will commence at level <I>L</I> of the search graph, 0 &le;
	 * <I>L</I> &le; <I>N</I>&minus;1, where <I>N</I> is the number of sequences
	 * in the DNA sequence list. Of the (2<I>L</I>&minus;1)!! vertices at level
	 * <I>L</I>, the search will start at the <I>V</I><SUB>1</SUB>-th such
	 * vertex and end at the <I>V</I><SUB>2</SUB>-th such vertex, 0 &le;
	 * <I>V</I><SUB>1</SUB> &le; <I>V</I><SUB>2</SUB> &le;
	 * (2<I>L</I>&minus;1)!!&nbsp;&minus;&nbsp;1. All search graph vertices at
	 * and below vertices <I>V</I><SUB>1</SUB> through <I>V</I><SUB>2</SUB>
	 * inclusive will be searched.
	 * <P>
	 * The results are accumulated into the {@linkplain MaximumParsimonyResults}
	 * object specified to the constructor. The <TT>findTrees()</TT> method will
	 * only find trees whose parsimony scores are less than or equal to the
	 * value of the <TT>bound</TT> variable specified to the constructor or the
	 * best bound found thereafter, whichever is smaller.
	 *
	 * @param  startLevel
	 *     <I>L</I>, the level of the search graph at which to commence the
	 *     search.
	 * @param  vertex1
	 *     <I>V</I><SUB>1</SUB>, the search graph vertex at level <I>L</I> at
	 *     which to start the search.
	 * @param  vertex2
	 *     <I>V</I><SUB>2</SUB>, the search graph vertex at level <I>L</I> at
	 *     which to end the search.
	 */
	public void findTrees
		(int startLevel,
		 int vertex1,
		 int vertex2)
		{
		// Initialize tree signature as specified by <startLevel> and <vertex1>.
		signature[0] = 0;
		int q = vertex1;
		for (int i = startLevel; i > 0; -- i)
			{
			int d = 2*i - 1;
			signature[i] = q % d - 1;
			q = q / d;
			}
		for (int i = startLevel + 1; i < N; ++ i)
			{
			signature[i] = -1;
			}

		// Traverse remaining levels of the search graph.
		int level = 1;
		boolean done = false;
		results.reduceScore (bound.get());
		while (! done)
			{
			DnaSequenceTree prevTree = treeStack[level-1];

			// If we have reached the bottom of the search graph, we have a
			// tentative solution.
			if (level == N)
				{
				int tentativeScore = prevTree.seq (prevTree.root()) .score();

				// Update best solution's score to reflect tentative solution's
				// score.
				int updatedScore =
					bound.reduce (tentativeScore, IntegerOp.MINIMUM);

				// If best solution's score is better than that of previous
				// solutions, discard previous solutions.
				results.reduceScore (updatedScore);

				// Record tentative solution.
				results.add (signature, tentativeScore);

				// Go to previous level.
				-- level;
				if (level == startLevel)
					{
					++ vertex1;
					if (vertex1 > vertex2) done = true;
					}
				}

			// If there are no more positions to try at this level, reset
			// position at this level and go to previous level.
			else if (signature[level] == 2*(level - 1))
				{
				signature[level] = -1;
				-- level;
				if (level == startLevel)
					{
					++ vertex1;
					if (vertex1 > vertex2) done = true;
					}
				}

			// If there are more positions to try at this level, add the DNA
			// sequence to the tree at the next position and do
			// branch-and-bound.
			else
				{
				++ signature[level];
				DnaSequenceTree currTree = treeStack[level];
				currTree.copy (prevTree);
				int tip = currTree.add (signature[level], seqList.seq(level));
				int partialScore =
					FitchParsimony.updateScore
						(currTree, tip, seqArrayStack[level]);

				// If partial parsimony score plus number of absent states in
				// the remaining levels is less than or equal to the best
				// solution's score, go to the next level (branch), otherwise
				// try the next choice at this level (bound).
				if
					((level <= startLevel) ||
					 (partialScore + absentStates[level] <= bound.get()))
					{
					++ level;
					}
				}
			}
		}

	}