File: Upgma.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (326 lines) | stat: -rw-r--r-- 9,604 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
//******************************************************************************
//
// File:    Upgma.java
// Package: edu.rit.compbio.phyl
// Unit:    Class edu.rit.compbio.phyl.Upgma
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.compbio.phyl;

import java.io.File;

import java.text.DecimalFormat;

/**
 * Class Upgma provides the Unweighted Pair Group Method with Arithmetic mean
 * (UPGMA) algorithm for phylogenetic tree construction. For further
 * information, see:
 * <UL>
 * <LI>
 * R. Sokal and C. Michener. A statistical method for evaluating systematic
 * relationships. <I>University of Kansas Science Bulletin,</I> 38:1409-1438,
 * 1958.
 * <LI>
 * J. Felsenstein. <I>Inferring Phylogenies.</I> Sinauer Associates, 2004, pages
 * 161-166.
 * </UL>
 *
 * @author  Alan Kaminsky
 * @version 23-Jul-2008
 */
public class Upgma
	{

// Prevent construction.

	private Upgma()
		{
		}

// Exported operations.

	/**
	 * Main program. Reads a {@linkplain DnaSequenceList} from a file in
	 * interleaved PHYLIP format, constructs a phylogenetic tree using the UPGMA
	 * algorithm with Jukes-Cantor distances, prints the tree (including branch
	 * lengths) in Newick Standard format, and prints the squared error in the
	 * branch lengths as computed by the <TT>squaredError()</TT> method of class
	 * {@linkplain LeastSquaresBranchLengths}.
	 * <P>
	 * Usage: java edu.rit.compbio.phyl.Upgma <I>file</I>
	 * <BR><I>file</I> = DNA sequence list file name
	 */
	public static void main
		(String[] args)
		throws Exception
		{
		if (args.length != 1) usage();
		Distance dcalc = new JukesCantorDistance();
		DnaSequenceTree tree =
			buildTree (DnaSequenceList.read (new File (args[0])), dcalc);
		System.out.println (tree);
		System.out.println
			("Squared error = "+
			 LeastSquaresBranchLengths.squaredError (tree, dcalc));
		}

	/**
	 * Build a phylogenetic tree of the given DNA sequences. The return value is
	 * a phylogenetic tree, including branch lengths, of the DNA sequences in
	 * <TT>seqlist</TT>, as constructed by the UPGMA algorithm. The DNA
	 * sequences in the tree are references to (not copies of) the DNA sequences
	 * in <TT>seqlist</TT>. The distances between the DNA sequences are
	 * calculated using the <TT>dcalc</TT> object.
	 *
	 * @param  seqList  List of DNA sequences.
	 * @param  dcalc    Object to calculate distances between DNA sequences.
	 *
	 * @return  Phylogenetic tree.
	 */
	public static DnaSequenceTree buildTree
		(DnaSequenceList seqList,
		 Distance dcalc)
		{
		// Get initial DNA sequences and put each one in its own tree.
		int N = seqList.length();
		DnaSequenceTree[] tree = new DnaSequenceTree [N+1];
		for (int i = 0; i < N; ++ i)
			{
			tree[i] = new DnaSequenceTree (1);
			tree[i].add (0, seqList.seq (i));
			}

		// Compute initial distance matrix.
		double[][] D = new double [N+1] [N+1];
		for (int i = 0; i < N-1; ++ i)
			{
			DnaSequence seq_i = seqList.seq(i);
			double[] D_i = D[i];
			for (int j = i+1; j < N; ++ j)
				{
				DnaSequence seq_j = seqList.seq(j);
				double D_i_j = dcalc.distance (seq_i, seq_j);
				D_i[j] = D_i_j;
				D[j][i] = D_i_j;
				}
			}

		// Set up array of group sizes n_i.
		int[] n = new int [N+1];
		for (int i = 0; i < N; ++ i)
			{
			n[i] = 1;
			}

		//*DEBUG*/ dump ("INITIAL DISTANCE MATRIX", D, n, N);

		// Join trees until only one is left.
		while (N > 1)
			{
			// Find i and j for which D_i_j is smallest.
			double min_d = Double.POSITIVE_INFINITY;
			int min_i = 0;
			int min_j = 0;
			for (int i = 0; i < N-1; ++ i)
				{
				double[] D_i = D[i];
				for (int j = i+1; j < N; ++ j)
					{
					double d = D_i[j];
					if (d < min_d)
						{
						min_d = d;
						min_i = i;
						min_j = j;
						}
					}
				}

			//*DEBUG*/ System.out.println ("min_i="+min_i+", min_j="+min_j);

			// Compute node heights for trees <min_i> and <min_j>. Store as
			// branch lengths for now.
			DnaSequenceTree tree_i = tree[min_i];
			tree_i.branchLength (tree_i.root(), 0.5*min_d);
			DnaSequenceTree tree_j = tree[min_j];
			tree_j.branchLength (tree_j.root(), 0.5*min_d);

			// Join trees <min_i> and <min_j>. Add new tree to end of list.
			DnaSequenceTree newtree =
				new DnaSequenceTree (tree_i.length() + tree_j.length() + 1);
			newtree.join (tree_i, tree_j);
			tree[N] = newtree;
			int newn = n[min_i] + n[min_j];
			n[N] = newn;

			// Compute distance from new tree to every other tree.
			double w_i = ((double) n[min_i])/newn;
			double w_j = ((double) n[min_j])/newn;
			double[] D_n = D[N];
			for (int k = 0; k < N; ++ k)
				{
				double[] D_k = D[k];
				double D_n_k = w_i*D_k[min_i] + w_j*D_k[min_j];
				D_n[k] = D_n_k;
				D_k[N] = D_n_k;
				}
			//*DEBUG*/ dump ("DISTANCE MATRIX WITH NEW GROUP ADDED", D, n, N+1);

			// Swap row <N> with row <min_i> and swap row <N-1> with row
			// <min_j>, thus removing rows <min_i> and <min_j> from D, tree, and
			// n.
			double[] swap1 = D[min_i];
			D[min_i] = D[N];
			D[N] = swap1;
			swap1 = D[min_j];
			D[min_j] = D[N-1];
			D[N-1] = swap1;
			DnaSequenceTree swap2 = tree[min_i];
			tree[min_i] = tree[N];
			tree[N] = swap2;
			swap2 = tree[min_j];
			tree[min_j] = tree[N-1];
			tree[N-1] = swap2;
			int swap3 = n[min_i];
			n[min_i] = n[N];
			n[N] = swap3;
			swap3 = n[min_j];
			n[min_j] = n[N-1];
			n[N-1] = swap3;

			// Swap column <N> with column <min_i> and swap column <N-1> with
			// column <min_j>, thus removing columns <min_i> and <min_j> from D.
			for (int i = 0; i <= N; ++ i)
				{
				double[] D_i = D[i];
				double swap4 = D_i[min_i];
				D_i[min_i] = D_i[N];
				D_i[N] = swap4;
				swap4 = D_i[min_j];
				D_i[min_j] = D_i[N-1];
				D_i[N-1] = swap4;
				}

			// Took away two trees and added one.
			D[N] = null;
			tree[N] = null;
			-- N;
			//*DEBUG*/ dump ("DISTANCE MATRIX WITH OLD GROUPS REMOVED", D, n, N);
			}

		// Convert node heights to branch lengths.
		computeBranchLengths (tree[0], tree[0].root());

		// Return the last tree left standing.
		return tree[0];
		}

// Hidden operations.

	/**
	 * Convert the node height stored in the given node of the given tree to a
	 * branch length.
	 *
	 * @param  tree   Tree.
	 * @param  index  Node index.
	 *
	 * @return  Original node height of the given node.
	 */
	private static double computeBranchLengths
		(DnaSequenceTree tree,
		 int index)
		{
		// Stop recursion when we reach a tip.
		if (index == -1) return 0.0;

		// Convert both children.
		double childHeight = computeBranchLengths (tree, tree.child1 (index));
		computeBranchLengths (tree, tree.child2 (index));

		// Convert this node.
		Double nodeHeight = tree.branchLength (index);
		if (nodeHeight == null)
			{
			return 0.0;
			}
		else
			{
			tree.branchLength (index, nodeHeight - childHeight);
			return nodeHeight;
			}
		}

	/**
	 * Print the distance matrix and group counts. For debugging.
	 *
	 * @param  msg  Message.
	 * @param  D    Distance matrix.
	 * @param  n    Group counts.
	 * @param  N    Number of groups.
	 */
	private static void dump
		(String msg,
		 double[][] D,
		 int[] n,
		 int N)
		{
		System.out.println (msg);
		for (int j = 0; j < N; ++ j) System.out.print ("\t"+j);
		System.out.println ("\tn");
		for (int i = 0; i < N; ++ i)
			{
			double[] D_i = D[i];
			System.out.print (i);
			for (int j = 0; j < N; ++ j)
				{
				System.out.print ("\t"+FMT.format(D_i[j]));
				}
			System.out.println ("\t"+n[i]);
			}
		}

	private static DecimalFormat FMT = new DecimalFormat ("0.00");

	/**
	 * Print a usage message and exit.
	 */
	private static void usage()
		{
		System.err.println ("Usage: java edu.rit.compbio.phyl.Upgma <file>");
		System.exit (1);
		}

	}