File: ProteinLocalAlignmentSmp.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (339 lines) | stat: -rw-r--r-- 11,844 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//******************************************************************************
//
// File:    ProteinLocalAlignmentSmp.java
// Package: edu.rit.compbio.seq
// Unit:    Class edu.rit.compbio.seq.ProteinLocalAlignmentSmp
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.compbio.seq;

import edu.rit.pj.ParallelRegion;
import edu.rit.pj.ParallelTeam;

import edu.rit.util.Range;

/**
 * Class ProteinLocalAlignmentSmp provides an object that does local alignments
 * of {@linkplain ProteinSequence}s. For further information, see the base class
 * {@linkplain ProteinLocalAlignment}.
 * <P>
 * The <TT>align()</TT> method is designed to be executed by a {@linkplain
 * edu.rit.pj.ParallelTeam} of threads. Thus, this class is suitable for use in
 * an SMP parallel program or a hybrid parallel program.
 * <P>
 * As an example of how the computation is performed in parallel while obeying
 * the sequential dependencies in the Smith-Waterman algorithm, suppose the
 * query sequence has 100 elements, the subject sequence has 500 elements, and
 * the parallel team has 4 threads. The 500 columns of the scoring matrix
 * <I>S</I> are partitioned equally among the threads: thread 0 gets columns
 * 1..125, thread 1 gets columns 126..250, thread 2 gets columns 251..375,
 * thread 3 gets columns 376..500. Then <I>S</I> is computed in parallel in a
 * series of rounds:
 * <P>
 * <TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
 * <TR>
 * <TD ALIGN="left" VALIGN="top"><I>Round:</I>&nbsp;&nbsp;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>Thread 0 computes:</I>&nbsp;&nbsp;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>Thread 1 computes:</I>&nbsp;&nbsp;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>Thread 2 computes:</I>&nbsp;&nbsp;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>Thread 3 computes:</I>&nbsp;&nbsp;</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">1</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[1][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">2</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[2][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[1][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">3</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[3][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[2][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[1][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">4</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[4][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[3][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[2][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[1][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">5</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[5][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[4][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[3][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[2][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">&hellip;</TD>
 * <TD ALIGN="left" VALIGN="top">&hellip;</TD>
 * <TD ALIGN="left" VALIGN="top">&hellip;</TD>
 * <TD ALIGN="left" VALIGN="top">&hellip;</TD>
 * <TD ALIGN="left" VALIGN="top">&hellip;</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">99</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[99][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[98][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[97][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[96][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">100</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[100][1..125]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[99][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[98][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[97][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">101</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[100][126..250]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[99][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[98][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">102</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[100][251..375]</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[99][376..500]</TD>
 * </TR>
 * <TR>
 * <TD ALIGN="left" VALIGN="top">103</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top">&mdash;</TD>
 * <TD ALIGN="left" VALIGN="top"><I>S</I>[100][376..500]</TD>
 * </TR>
 * </TABLE>
 * <P>
 * After a short startup period, all columns of <I>S</I> are being computed in
 * parallel, with different threads working on different rows so as to obey the
 * sequential dependencies. For example, <I>S</I>[4][126] is computed (by thread
 * 1 in round 5) after <I>S</I>[3][125] (by thread 0 in round 3),
 * <I>S</I>[3][126] (by thread 1 in round 4), and <I>S</I>[4][125] (by thread 0
 * in round 4).
 *
 * @author  Alan Kaminsky
 * @version 02-Jul-2008
 */
public class ProteinLocalAlignmentSmp
	extends ProteinLocalAlignment
	{

// Hidden data members.

	private ParallelTeam team;

// Exported constructors.

	/**
	 * Construct a new protein sequence local alignment object.
	 *
	 * @param  team  Parallel thread team that will compute the alignment.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>team</TT> is null.
	 */
	public ProteinLocalAlignmentSmp
		(ParallelTeam team)
		{
		super();
		if (team == null)
			{
			throw new NullPointerException
				("ProteinLocalAlignmentSmp(): team is null");
			}
		this.team = team;
		}

// Exported operations.

	/**
	 * Align the query sequence and the subject sequence. The parallel thread
	 * team specified to the constructor computes the alignment in parallel.
	 *
	 * @return  Alignment.
	 *
	 * @exception  Exception
	 *     Thrown if an error occurred.
	 */
	public Alignment align()
		throws Exception
		{
		// Verify preconditions.
		if (A == null)
			{
			throw new IllegalStateException
				("ProteinLocalAlignmentSmp.align(): Query sequence not set");
			}
		if (B == null)
			{
			throw new IllegalStateException
				("ProteinLocalAlignmentSmp.align(): Subject sequence not set");
			}
		final int M = A.length - 1;
		final int N = B.length - 1;
		final int K = team.getThreadCount();
		final int lastRound = M + K - 1;

		// Initialize global finish point reduction variable.
		final FinishPoint gblfp = new FinishPoint();
		gblfp.maxScore = 0;
		gblfp.theQueryFinish = 0;
		gblfp.theSubjectFinish = 0;

		// Do the Smith-Waterman algorithm in the parallel thread team.
		team.execute (new ParallelRegion()
			{
			public void run() throws Exception
				{
				int threadIndex = getThreadIndex();

				// Determine range of columns for this thread.
				Range range = new Range (1, N) .subrange (K, threadIndex);
				int jlb = range.lb();
				int jub = range.ub();

				// Initialize per-thread finish point.
				int maxScore = 0;
				int theQueryFinish = 0;
				int theSubjectFinish = 0;

				// Do all rounds.
				for (int round = 1; round <= lastRound; ++ round)
					{
					// Row for this thread in this round is round number offset
					// by thread index. If row is out of bounds, do nothing this
					// round.
					int i = round - threadIndex;
					if (1 <= i && i <= M)
						{
						int A_i = A[i];
						int[] delta_A_i = delta[A_i];
						int[] S_im1 = S[i-1];
						int[] S_i = S[i];
						int[] GA_im1 = GA[i-1];
						int[] GA_i = GA[i];
						int[] GB_i = GB[i];
						int B_j, S_i_j, GA_i_j, GB_i_j;

						// Do only this thread's columns.
						for (int j = jlb; j <= jub; ++ j)
							{
							B_j = B[j];
							GA_i_j = S_im1[j] + g;
							GA_i_j = Math.max (GA_i_j, GA_im1[j] + h);
							GB_i_j = S_i[j-1] + g;
							GB_i_j = Math.max (GB_i_j, GB_i[j-1] + h);
							S_i_j = S_im1[j-1] + delta_A_i[B_j];
							S_i_j = Math.max (S_i_j, GA_i_j);
							S_i_j = Math.max (S_i_j, GB_i_j);
							S_i_j = Math.max (S_i_j, 0);
							if (S_i_j > maxScore)
								{
								maxScore = S_i_j;
								theQueryFinish = i;
								theSubjectFinish = j;
								}
							S_i[j] = S_i_j;
							GA_i[j] = GA_i_j;
							GB_i[j] = GB_i_j;
							}
						}

					// Wait for all threads to complete this round.
					barrier();
					}

				// After all rounds, reduce per-thread finish point into global
				// finish point.
				gblfp.setToBest (maxScore, theQueryFinish, theSubjectFinish);
				}
			});

		// Do the traceback in a single thread, starting from global finish
		// point.
		return computeTraceback
			(gblfp.maxScore, gblfp.theQueryFinish, gblfp.theSubjectFinish);
		}

// Hidden helper classes.

	// A record of information about the local alignment finish point.
	private static class FinishPoint
		{
		// Alignment score.
		public int maxScore;

		// Query sequence index.
		public int theQueryFinish;

		// Subject sequence index.
		public int theSubjectFinish;

		// Set this finish point to the best of itself and the given finish
		// point. Multiple thread safe method.
		public synchronized void setToBest
			(int maxScore,
			 int theQueryFinish,
			 int theSubjectFinish)
			{
			if ((maxScore > this.maxScore) ||
				(maxScore == this.maxScore &&
					theQueryFinish < this.theQueryFinish) ||
				(maxScore == this.maxScore &&
					theQueryFinish == this.theQueryFinish &&
					theSubjectFinish < this.theSubjectFinish))
				{
				this.maxScore = maxScore;
				this.theQueryFinish = theQueryFinish;
				this.theSubjectFinish = theSubjectFinish;
				}
			}
		}

	}