1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
//******************************************************************************
//
// File: ProteinLocalAlignmentSmp.java
// Package: edu.rit.compbio.seq
// Unit: Class edu.rit.compbio.seq.ProteinLocalAlignmentSmp
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.compbio.seq;
import edu.rit.pj.ParallelRegion;
import edu.rit.pj.ParallelTeam;
import edu.rit.util.Range;
/**
* Class ProteinLocalAlignmentSmp provides an object that does local alignments
* of {@linkplain ProteinSequence}s. For further information, see the base class
* {@linkplain ProteinLocalAlignment}.
* <P>
* The <TT>align()</TT> method is designed to be executed by a {@linkplain
* edu.rit.pj.ParallelTeam} of threads. Thus, this class is suitable for use in
* an SMP parallel program or a hybrid parallel program.
* <P>
* As an example of how the computation is performed in parallel while obeying
* the sequential dependencies in the Smith-Waterman algorithm, suppose the
* query sequence has 100 elements, the subject sequence has 500 elements, and
* the parallel team has 4 threads. The 500 columns of the scoring matrix
* <I>S</I> are partitioned equally among the threads: thread 0 gets columns
* 1..125, thread 1 gets columns 126..250, thread 2 gets columns 251..375,
* thread 3 gets columns 376..500. Then <I>S</I> is computed in parallel in a
* series of rounds:
* <P>
* <TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
* <TR>
* <TD ALIGN="left" VALIGN="top"><I>Round:</I> </TD>
* <TD ALIGN="left" VALIGN="top"><I>Thread 0 computes:</I> </TD>
* <TD ALIGN="left" VALIGN="top"><I>Thread 1 computes:</I> </TD>
* <TD ALIGN="left" VALIGN="top"><I>Thread 2 computes:</I> </TD>
* <TD ALIGN="left" VALIGN="top"><I>Thread 3 computes:</I> </TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">1</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[1][1..125]</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">2</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[2][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[1][126..250]</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">3</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[3][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[2][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[1][251..375]</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">4</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[4][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[3][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[2][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[1][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">5</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[5][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[4][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[3][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[2][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">…</TD>
* <TD ALIGN="left" VALIGN="top">…</TD>
* <TD ALIGN="left" VALIGN="top">…</TD>
* <TD ALIGN="left" VALIGN="top">…</TD>
* <TD ALIGN="left" VALIGN="top">…</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">99</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[99][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[98][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[97][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[96][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">100</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[100][1..125]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[99][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[98][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[97][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">101</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[100][126..250]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[99][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[98][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">102</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[100][251..375]</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[99][376..500]</TD>
* </TR>
* <TR>
* <TD ALIGN="left" VALIGN="top">103</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top">—</TD>
* <TD ALIGN="left" VALIGN="top"><I>S</I>[100][376..500]</TD>
* </TR>
* </TABLE>
* <P>
* After a short startup period, all columns of <I>S</I> are being computed in
* parallel, with different threads working on different rows so as to obey the
* sequential dependencies. For example, <I>S</I>[4][126] is computed (by thread
* 1 in round 5) after <I>S</I>[3][125] (by thread 0 in round 3),
* <I>S</I>[3][126] (by thread 1 in round 4), and <I>S</I>[4][125] (by thread 0
* in round 4).
*
* @author Alan Kaminsky
* @version 02-Jul-2008
*/
public class ProteinLocalAlignmentSmp
extends ProteinLocalAlignment
{
// Hidden data members.
private ParallelTeam team;
// Exported constructors.
/**
* Construct a new protein sequence local alignment object.
*
* @param team Parallel thread team that will compute the alignment.
*
* @exception NullPointerException
* (unchecked exception) Thrown if <TT>team</TT> is null.
*/
public ProteinLocalAlignmentSmp
(ParallelTeam team)
{
super();
if (team == null)
{
throw new NullPointerException
("ProteinLocalAlignmentSmp(): team is null");
}
this.team = team;
}
// Exported operations.
/**
* Align the query sequence and the subject sequence. The parallel thread
* team specified to the constructor computes the alignment in parallel.
*
* @return Alignment.
*
* @exception Exception
* Thrown if an error occurred.
*/
public Alignment align()
throws Exception
{
// Verify preconditions.
if (A == null)
{
throw new IllegalStateException
("ProteinLocalAlignmentSmp.align(): Query sequence not set");
}
if (B == null)
{
throw new IllegalStateException
("ProteinLocalAlignmentSmp.align(): Subject sequence not set");
}
final int M = A.length - 1;
final int N = B.length - 1;
final int K = team.getThreadCount();
final int lastRound = M + K - 1;
// Initialize global finish point reduction variable.
final FinishPoint gblfp = new FinishPoint();
gblfp.maxScore = 0;
gblfp.theQueryFinish = 0;
gblfp.theSubjectFinish = 0;
// Do the Smith-Waterman algorithm in the parallel thread team.
team.execute (new ParallelRegion()
{
public void run() throws Exception
{
int threadIndex = getThreadIndex();
// Determine range of columns for this thread.
Range range = new Range (1, N) .subrange (K, threadIndex);
int jlb = range.lb();
int jub = range.ub();
// Initialize per-thread finish point.
int maxScore = 0;
int theQueryFinish = 0;
int theSubjectFinish = 0;
// Do all rounds.
for (int round = 1; round <= lastRound; ++ round)
{
// Row for this thread in this round is round number offset
// by thread index. If row is out of bounds, do nothing this
// round.
int i = round - threadIndex;
if (1 <= i && i <= M)
{
int A_i = A[i];
int[] delta_A_i = delta[A_i];
int[] S_im1 = S[i-1];
int[] S_i = S[i];
int[] GA_im1 = GA[i-1];
int[] GA_i = GA[i];
int[] GB_i = GB[i];
int B_j, S_i_j, GA_i_j, GB_i_j;
// Do only this thread's columns.
for (int j = jlb; j <= jub; ++ j)
{
B_j = B[j];
GA_i_j = S_im1[j] + g;
GA_i_j = Math.max (GA_i_j, GA_im1[j] + h);
GB_i_j = S_i[j-1] + g;
GB_i_j = Math.max (GB_i_j, GB_i[j-1] + h);
S_i_j = S_im1[j-1] + delta_A_i[B_j];
S_i_j = Math.max (S_i_j, GA_i_j);
S_i_j = Math.max (S_i_j, GB_i_j);
S_i_j = Math.max (S_i_j, 0);
if (S_i_j > maxScore)
{
maxScore = S_i_j;
theQueryFinish = i;
theSubjectFinish = j;
}
S_i[j] = S_i_j;
GA_i[j] = GA_i_j;
GB_i[j] = GB_i_j;
}
}
// Wait for all threads to complete this round.
barrier();
}
// After all rounds, reduce per-thread finish point into global
// finish point.
gblfp.setToBest (maxScore, theQueryFinish, theSubjectFinish);
}
});
// Do the traceback in a single thread, starting from global finish
// point.
return computeTraceback
(gblfp.maxScore, gblfp.theQueryFinish, gblfp.theSubjectFinish);
}
// Hidden helper classes.
// A record of information about the local alignment finish point.
private static class FinishPoint
{
// Alignment score.
public int maxScore;
// Query sequence index.
public int theQueryFinish;
// Subject sequence index.
public int theSubjectFinish;
// Set this finish point to the best of itself and the given finish
// point. Multiple thread safe method.
public synchronized void setToBest
(int maxScore,
int theQueryFinish,
int theSubjectFinish)
{
if ((maxScore > this.maxScore) ||
(maxScore == this.maxScore &&
theQueryFinish < this.theQueryFinish) ||
(maxScore == this.maxScore &&
theQueryFinish == this.theQueryFinish &&
theSubjectFinish < this.theSubjectFinish))
{
this.maxScore = maxScore;
this.theQueryFinish = theQueryFinish;
this.theSubjectFinish = theSubjectFinish;
}
}
}
}
|