1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
//******************************************************************************
//
// File: PrimeCountFunctionHyb.java
// Package: edu.rit.hyb.prime
// Unit: Class edu.rit.hyb.prime.PrimeCountFunctionHyb
//
// This Java source file is copyright (C) 2012 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.hyb.prime;
import edu.rit.mp.LongBuf;
import edu.rit.mp.buf.LongItemBuf;
import edu.rit.pj.Comm;
import edu.rit.pj.LongForLoop;
import edu.rit.pj.LongSchedule;
import edu.rit.pj.ParallelRegion;
import edu.rit.pj.ParallelTeam;
import edu.rit.pj.WorkerLongForLoop;
import edu.rit.pj.WorkerRegion;
import edu.rit.pj.WorkerTeam;
import edu.rit.pj.reduction.LongOp;
import edu.rit.pj.reduction.SharedLong;
import java.io.File;
/**
* Class PrimeCountFunctionHyb is a hybrid parallel program that calculates the
* prime counting function π(<I>x</I>). π(<I>x</I>) is the number of
* primes less than or equal to <I>x</I>. The program uses a list of 32-bit
* primes stored in a file. The prime file must be generated by the {@linkplain
* Prime32File} program. To find the primes, the program calculates a series of
* sieves. Each sieve consists of one million numbers.
* <P>
* The program runs with one process per node and multiple threads per process.
* The program uses the master-worker pattern for load balancing. Each process
* in the program is an independent worker process. Each worker process
* calculates a series of groups of sieves, as assigned by the master thread.
* Within each group of sieves, the threads of the worker process calculate the
* individual sieves in parallel.
* <P>
* The groups of sieves are determined by the <TT>pj.schedule</TT> property
* specified on the command line; the default is to divide the sieves evenly
* among the worker processes (i.e. no load balancing). For further information
* about the <TT>pj.schedule</TT> property, see class {@linkplain
* edu.rit.pj.PJProperties PJProperties}.
* <P>
* Within each group of sieves, the individual sieves are partitioned among the
* threads of the worker process using the parallel loop schedule specified by
* the last command line argument. If this argument is missing, the default is
* to divide the individual sieves evenly among the threads (i.e. no load
* balancing). For further information, see the <TT>parse()</TT> method in class
* {@linkplain edu.rit.pj.IntegerSchedule IntegerSchedule}.
* <P>
* Usage: java -Dpj.np=<I>Kp</I> -Dpj.nt=<I>Kt</I> [
* -Dpj.schedule=<I>procschedule</I> ] edu.rit.hyb.prime.PrimeCountFunctionHyb
* <I>x</I> <I>primefile</I> [ <I>thrschedule</I> ]
* <BR><I>Kp</I> = Number of parallel processes
* <BR><I>Kt</I> = Number of parallel threads per process
* <BR><I>procschedule</I> = Load balancing schedule for processes
* <BR><I>x</I> = Argument of prime counting function, 0 <= <I>x</I> <=
* 2<SUP>63</SUP>-1
* <BR><I>primefile</I> = Prime file name
* <BR><I>thrschedule</I> = Load balancing schedule for threads
* <P>
* The computation is performed in parallel in multiple processors. The program
* measures the total running time.
*
* @author Alan Kaminsky
* @version 19-Mar-2012
*/
public class PrimeCountFunctionHyb
{
// Prevent construction.
private PrimeCountFunctionHyb()
{
}
// Shared global variables.
// Sieve in one-million-number chunks.
static final int CHUNK = 1000000;
// World communicator.
static Comm world;
static int rank;
// Command line arguments.
static long x;
static File primeFile;
static LongSchedule thrSchedule;
// Parallel team.
static ParallelTeam team;
// Per-thread sieves.
static Sieve[] sieves;
// List of 32-bit primes.
static Prime32List primeList;
// Per-process prime counter.
static SharedLong primeCount = new SharedLong (0);
// Main program.
/**
* Main program.
*/
public static void main
(String[] args)
throws Exception
{
// Start timing.
long t1 = System.currentTimeMillis();
// World communicator.
Comm.init (args);
world = Comm.world();
rank = world.rank();
// Parse command line arguments.
if (args.length < 2 || args.length > 3) usage();
x = Long.parseLong (args[0]);
if (x < 0) usage();
primeFile = new File (args[1]);
thrSchedule =
args.length == 3 ?
LongSchedule.parse (args[2]) :
LongSchedule.fixed();
// Set up parallel team and per-thread sieves.
team = new ParallelTeam();
sieves = new Sieve [team.getThreadCount()];
for (int i = 0; i < sieves.length; ++ i)
{
sieves[i] = new Sieve (0, CHUNK);
}
// Set up list of 32-bit primes.
primeList = new Prime32List (primeFile);
// Compute sieves in parallel using a two-level schedule for load
// balancing. First-level schedule controlled by -Dpj.schedule.
new WorkerTeam().execute (new WorkerRegion()
{
public void run() throws Exception
{
// Determine number of sieves to calculate.
long ns = (x + CHUNK - 1)/CHUNK;
execute (0, ns - 1, new WorkerLongForLoop()
{
public void run (final long lb, final long ub)
throws Exception
{
team.execute (new ParallelRegion()
{
public void run() throws Exception
{
execute (lb, ub, new LongForLoop()
{
// Per-thread variables plus extra padding.
Sieve thrSieve;
long thrPrimeCount;
long p0, p1, p2, p3, p4, p5, p6, p7;
long p8, p9, pa, pb, pc, pd, pe, pf;
// Second-level schedule controlled by last
// command line argument.
public LongSchedule schedule()
{
return thrSchedule;
}
// Initialize per-thread variables.
public void start()
{
thrSieve = sieves[getThreadIndex()];
thrPrimeCount = 0;
}
// Calculate all sieves.
public void run (long first, long last)
throws Exception
{
for (long lb = first; lb <= last; ++ lb)
{
// Get an iterator for the odd
// primes.
LongIterator iter =
primeList.iterator();
// Calculate the sieve.
thrSieve.lb (lb*CHUNK);
thrSieve.initialize();
thrSieve.sieveOut (iter);
// Count primes <= x left in the
// sieve.
iter = thrSieve.iterator();
long p;
while ((p = iter.next()) != 0 &&
p <= x)
{
++ thrPrimeCount;
}
}
}
// Reduce per-thread prime count into
// per-process prime count.
public void finish()
{
primeCount.addAndGet (thrPrimeCount);
}
});
}
});
}
});
}
});
// Reduce per-process prime counts into process 0.
LongItemBuf buf = LongBuf.buffer (primeCount.longValue());
world.reduce (0, buf, LongOp.SUM);
// Stop timing.
long t2 = System.currentTimeMillis();
// Print the answer. (Add 1 because 2 is a prime.)
if (rank == 0) System.out.println ("pi("+x+") = "+(buf.item + 1));
System.out.println ((t2-t1)+" msec "+rank);
}
// Hidden operations.
/**
* Print a usage message and exit.
*/
private static void usage()
{
System.err.println ("Usage: java -Dpj.np=<Kp> -Dpj.nt=<Kt> [ -Dpj.schedule=<procschedule> ] edu.rit.hyb.prime.PrimeCountFunctionHyb <x> <primefile> [ <thrschedule> ]");
System.err.println ("<Kp> = Number of parallel processes");
System.err.println ("<Kt> = Number of parallel threads per process");
System.err.println ("<procschedule> = Load balancing schedule for processes");
System.err.println ("<x> = Argument of prime counting function, 0 <= <x> <= 2^63-1");
System.err.println ("<primefile> = Prime file name");
System.err.println ("<thrschedule> = Load balancing schedule for threads System.exit (1);");
}
}
|