1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//******************************************************************************
//
// File: PixelAnalysis.java
// Package: edu.rit.mri
// Unit: Class edu.rit.mri.PixelAnalysis
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.mri;
import edu.rit.mri.SpinSignal;
import edu.rit.mri.SpinSignalDifference;
import edu.rit.numeric.NonLinearLeastSquares;
import edu.rit.numeric.NonNegativeLeastSquares;
import edu.rit.numeric.Series;
import edu.rit.numeric.TooManyIterationsException;
import java.util.ArrayList;
import java.util.List;
/**
* Class PixelAnalysis provides a routine for doing a spin relaxometry analysis
* on one pixel of a magnetic resonance image.
* <P>
* The input to the analysis is a measured spin signal expressed as two
* {@linkplain edu.rit.numeric.Series Series} objects, a time series
* <I>t</I><SUB><I>i</I></SUB> and a spin signal series
* <I>S</I>(<I>t</I><SUB><I>i</I></SUB>). Another input is a series of fixed
* spin-lattice relaxation rates <I>R</I>1<SUB><I>j</I></SUB>. These rates are
* chosen to cover the range of likely rates for the magnetic resonance image
* being analyzed.
* <P>
* The routine first does a <I>nonnegative, linear</I> least squares fit of the
* input data to a model consisting of a group of tissues with the input fixed
* spin-lattice relaxation rates <I>R</I>1<SUB><I>j</I></SUB>. Peaks in the
* linear least squares fit determine the number of tissues and the approximate
* spin density and spin-lattice relaxation rate for each tissue.
* <P>
* The routine then does a <I>nonlinear</I> least squares fit of the input data
* to a model consisting of the number of tissues determined in the previous
* step. The nonlinear least squares fit "polishes up" the spin densities and
* spin-lattice relaxation rates determined in the previous step, which are only
* approximate.
* <P>
* The routine checks the nonlinear least squares fit for plausibility. To be
* plausible:
* <UL>
* <LI>
* All spin densities and spin-lattice relaxation rates must be positive. (If
* this is not the case, it's likely the nonlinear least squares fit is trying
* to fit the data to too many parameters, resulting in nonsensical parameter
* values.)
* <P><LI>
* All the spin-lattice relaxation rates must be sufficiently far apart.
* Specifically, the relative difference between any two rates must be greater
* than 0.001. (If the rates are closer together than that, it's likely they
* represent the same tissue.)
* <P><LI>
* The sum of the spin densities must agree with the asymptotic spin signal for
* large values of <I>t</I>. Specifically, the sum must be within 20% of the
* average of the last seven spin signal values. (If this is not the case, it's
* likely that two spurious "tissues," one with a very large relaxation rate,
* one with a very small relaxation rate, are canceling each other out, and
* there really should be only one tissue.)
* </UL>
* If the nonlinear least squares fit is not plausible, the routine decides it
* is trying to fit too many tissues. The routine eliminates the tissue with the
* smallest spin density and repeats the nonlinear least squares fit. This
* continues until the fit is plausible or until all the tissues have been
* eliminated, in which case the routine reports that it could not find a
* solution.
* <P>
* The output of the analysis is a list of the tissues' computed spin densities
* and a list of the tissues' computed spin-lattice relaxation rates.
*
* @author Alan Kaminsky
* @version 16-Jun-2008
*/
public class PixelAnalysis
{
// Prevent construction.
private PixelAnalysis()
{
}
// Exported operations.
/**
* Do a spin relaxometry analysis.
*
* @param t_series
* Series of measured time values, of length <I>M</I> (input).
* @param S_series
* Series of measured spin signal values, of length <I>M</I> (input).
* @param R1_series
* Series of fixed spin-lattice relaxation rates for the linear part of
* the analysis, of length <I>N</I> (input).
* @param A
* Design matrix for the linear part of the analysis (input). This must
* be an <I>M</I>×<I>N</I>-element matrix such that
* <I>A</I><SUB><I>i,j</I></SUB> = 1 − 2
* exp(−<I>R</I>1<SUB><I>j</I></SUB> <I>t</I><SUB><I>i</I></SUB>).
* (The design matrix is supplied as an argument because the same design
* matrix is typically used for every pixel in an image, and calculating
* the design matrix just once outside this routine saves time.)
* @param rho_list
* List in which to store the computed spin densities (output). The size
* of the list is the number of tissues. If the routine could not find a
* solution, the size of the list is 0.
* @param R1_list
* List in which to store the computed spin-lattice relaxation rates
* (output). The size of the list is the number of tissues. If the
* routine could not find a solution, the size of the list is 0.
*/
public static void analyze
(Series t_series,
Series S_series,
Series R1_series,
double[][] A,
List<Double> rho_list,
List<Double> R1_list)
{
int M = t_series.length();
int N = R1_series.length();
// Do a spin relaxometry analysis using nonnegative linear least
// squares.
// Create nonnegative linear least squares solver.
NonNegativeLeastSquares linsolver = new NonNegativeLeastSquares (M, N);
// Find the solution.
for (int i = 0; i < M; ++ i)
{
System.arraycopy (A[i], 0, linsolver.a[i], 0, N);
linsolver.b[i] = S_series.x(i);
}
linsolver.solve();
double[] rho_series = linsolver.x;
// Find peaks in the solution. A peak occurs at index i if
// rho[i] > rho[i-1] and rho[i] > rho[i+1].
ArrayList<Double> approx_rho_list = new ArrayList<Double>();
ArrayList<Double> approx_R1_list = new ArrayList<Double>();
for (int j = 0; j < N; ++ j)
{
if (rho_series[j] > (j == 0 ? 0.0 : rho_series[j-1]) &&
rho_series[j] > (j == N-1 ? 0.0 : rho_series[j+1]))
{
approx_rho_list.add (rho_series[j]);
approx_R1_list.add (R1_series.x(j));
}
}
// Do a spin relaxometry analysis using nonlinear least squares. Peaks
// in the linear analysis give the initial vector of densities and
// rates.
// Repeat until the solution is plausible.
boolean plausible = false;
int L = approx_rho_list.size();
rho_list.clear();
R1_list.clear();
while (L > 0 && ! plausible)
{
// Create spin signal difference function. L = number of tissues.
SpinSignalDifference fcn =
new SpinSignalDifference (t_series, S_series, L);
// Create nonlinear least squares solver.
NonLinearLeastSquares nonlinsolver =
new NonLinearLeastSquares (fcn);
// Find the solution.
for (int i = 0; i < L; ++ i)
{
nonlinsolver.x[(i<<1)] = approx_rho_list.get(i);
nonlinsolver.x[(i<<1)+1] = approx_R1_list.get(i);
}
try
{
nonlinsolver.solve();
for (int i = 0; i < L; ++ i)
{
rho_list.add (nonlinsolver.x[(i<<1)]);
R1_list.add (nonlinsolver.x[(i<<1)+1]);
}
// Decide if solution is plausible.
plausible = checkPlausibility (S_series, rho_list, R1_list);
}
// Couldn't find a solution.
catch (TooManyIterationsException exc)
{
plausible = false;
}
// If solution is not plausible, eliminate tissue with smallest
// density and try again.
if (! plausible)
{
double minrho = Double.MAX_VALUE;
int mini = 0;
for (int i = 0; i < L; ++ i)
{
if (approx_rho_list.get(i) < minrho)
{
minrho = approx_rho_list.get(i);
mini = i;
}
}
approx_rho_list.remove (mini);
approx_R1_list.remove (mini);
L = approx_rho_list.size();
rho_list.clear();
R1_list.clear();
}
}
}
// Hidden operations.
/**
* Decide if the given solution is plausible.
*/
private static boolean checkPlausibility
(Series S_series,
List<Double> rho_list,
List<Double> R1_list)
{
int M = S_series.length();
int L = rho_list.size();
// If any density or rate is negative, solution is not plausible.
for (int i = 0; i < L; ++ i)
{
if (rho_list.get(i) < 0.0)
{
return false;
}
if (R1_list.get(i) < 0.0)
{
return false;
}
}
// If relative difference between any two rates is too small, solution
// is not plausible.
for (int i = 0; i < L-1; ++ i)
{
double R_i = R1_list.get(i);
for (int j = i+1; j < L; ++ j)
{
double R_j = R1_list.get(j);
double reldiff = 2.0*Math.abs(R_i-R_j)/Math.abs(R_i+R_j);
if (reldiff <= 0.001)
{
return false;
}
}
}
// If sum of densities is too far from asymptotic measurement for large
// t, solution is not plausible.
double sumrho = 0.0;
for (int i = 0; i < L; ++ i)
{
sumrho += rho_list.get(i);
}
double S_last = 0.0;
int n = 0;
for (int i = M-1; i >=0 && n < 7; -- i)
{
S_last += S_series.x(i);
++ n;
}
S_last /= n;
double reldiff = Math.abs(sumrho-S_last)/Math.abs(S_last);
if (reldiff >= 0.2)
{
return false;
}
// Solution is plausible.
return true;
}
}
|