1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
//******************************************************************************
//
// File: BigRational.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.BigRational
//
// This Java source file is copyright (C) 2009 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
/**
* Class BigRational provides an arbitrary precision rational number. An
* arbitrary precision rational number is the ratio of two arbitrary precision
* integers (type java.math.BigInteger). Operations are provided for exact
* arithmetic with rational numbers.
* <P>
* A rational number is said to be <B>normalized</B> if
* GCD(numerator,denominator) = 1. The methods below do <B><I>not</I></B>
* automatically normalize the rational number. Thus, the numerator and
* denominator tend to get larger and larger as operations are performed on the
* rational number. To reduce the numerator and denominator to lowest terms
* again, call the <TT>normalize()</TT> method. It is up to you to decide
* whether to normalize the rational number after each operation, or after a
* series of operations.
* <P>
* Class BigRational provides the <TT>equals()</TT> and <TT>hashCode()</TT>
* methods, and BigRational objects can be used as keys in hashed data
* structures. However, BigRational objects are mutable. If a BigRational object
* is used as a hash key, be sure not to change its value.
* <P>
* Class BigRational is not multiple thread safe.
*
* @author Alan Kaminsky
* @version 31-Dec-2009
*/
public class BigRational
extends Number
implements Comparable<BigRational>
{
// Hidden data members.
private BigInteger numer;
private BigInteger denom;
// Exported constructors.
/**
* Construct a new rational number. Its value is 0.
*/
public BigRational()
{
numer = BigInteger.ZERO;
denom = BigInteger.ONE;
}
/**
* Construct a new rational number. Its value is <TT>x</TT>.
*
* @param x Long integer.
*/
public BigRational
(long x)
{
assign (x);
}
/**
* Construct a new rational number. Its value is <TT>n/d</TT>.
*
* @param n Numerator.
* @param d Denominator.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>d</TT> is 0.
*/
public BigRational
(long n,
long d)
{
assign (n, d);
}
/**
* Construct a new rational number. Its value is <TT>x</TT>.
*
* @param x Big integer.
*/
public BigRational
(BigInteger x)
{
assign (x);
}
/**
* Construct a new rational number. Its value is <TT>n/d</TT>.
*
* @param n Numerator.
* @param d Denominator.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>d</TT> is 0.
*/
public BigRational
(BigInteger n,
BigInteger d)
{
assign (n, d);
}
/**
* Construct a new rational number. Its value is <TT>x</TT>.
*
* @param x Rational number.
*/
public BigRational
(BigRational x)
{
assign (x);
}
/**
* Construct a new rational number. Its value comes from the string
* <TT>s</TT>. The string must obey this syntax: optional minus sign
* (<TT>-</TT>), numerator (decimal integer), slash (<TT>/</TT>),
* denominator (decimal integer). The slash-and-denominator is optional. If
* present, the denominator must be greater than 0. There is no whitespace
* within the string.
*
* @param s String.
*
* @exception NumberFormatException
* (unchecked exception) Thrown if <TT>s</TT> cannot be parsed into a
* rational number.
*/
public BigRational
(String s)
{
assign (s);
}
// Exported operations.
/**
* Returns this rational number's numerator.
*
* @return Numerator.
*/
public BigInteger numerator()
{
return numer;
}
/**
* Returns this rational number's denominator.
*
* @return Denominator.
*/
public BigInteger denominator()
{
return denom;
}
/**
* Set this rational number to the given number.
*
* @param x Long integer.
*
* @return This rational number, with its value set to <TT>x</TT>.
*/
public BigRational assign
(long x)
{
this.numer = BigInteger.valueOf (x);
this.denom = BigInteger.ONE;
return this;
}
/**
* Set this rational number to the given fraction.
*
* @param n Numerator.
* @param d Denominator.
*
* @return This rational number, with its value set to <TT>n/d</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>d</TT> is 0.
*/
public BigRational assign
(long n,
long d)
{
if (d == 0)
{
throw new ArithmeticException
("BigRational.assign(): Zero denominator");
}
this.numer = BigInteger.valueOf (n);
this.denom = BigInteger.valueOf (d);
return this;
}
/**
* Set this rational number to the given number.
*
* @param x Big integer.
*
* @return This rational number, with its value set to <TT>x</TT>.
*/
public BigRational assign
(BigInteger x)
{
this.numer = x;
this.denom = BigInteger.ONE;
return this;
}
/**
* Set this rational number to the given fraction.
*
* @param n Numerator.
* @param d Denominator.
*
* @return This rational number, with its value set to <TT>n/d</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>d</TT> is 0.
*/
public BigRational assign
(BigInteger n,
BigInteger d)
{
if (d.equals (BigInteger.ZERO))
{
throw new ArithmeticException
("BigRational.assign(): Zero denominator");
}
this.numer = n;
this.denom = d;
return this;
}
/**
* Set this rational number to the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>x</TT>.
*/
public BigRational assign
(BigRational x)
{
this.numer = x.numer;
this.denom = x.denom;
return this;
}
/**
* Set this rational number to the value parsed from the given string. The
* string must obey this syntax: optional minus sign (<TT>-</TT>), numerator
* (decimal integer), slash (<TT>/</TT>), denominator (decimal integer). The
* slash-and-denominator is optional. If present, the denominator must be
* greater than 0. There is no whitespace within the string.
*
* @param s String.
*
* @return This rational number, with its value set to <TT>s</TT>.
*
* @exception NumberFormatException
* (unchecked exception) Thrown if <TT>s</TT> cannot be parsed into a
* rational number.
*/
public BigRational assign
(String s)
{
BigInteger numer, denom;
int iSlash = s.indexOf ('/');
if (iSlash == -1)
{
// No denominator.
numer = new BigInteger (s);
denom = BigInteger.ONE;
}
else if (iSlash+1 < s.length())
{
// Slash and denominator.
numer = new BigInteger (s.substring (0, iSlash));
denom = new BigInteger (s.substring (iSlash+1));
if (denom.compareTo (BigInteger.ZERO) <= 0)
{
throw new NumberFormatException
("BigRational.assign(): Negative denominator not allowed");
}
}
else
{
// Slash but no denominator.
throw new NumberFormatException
("BigRational.assign(): Missing denominator after /");
}
this.numer = numer;
this.denom = denom;
return this;
}
/**
* Set this rational number to the integer part of itself.
*
* @return This rational number, with its value set to <TT>int(this)</TT>.
*/
public BigRational intPart()
{
numer = numer.divide (denom);
denom = BigInteger.ONE;
return this;
}
/**
* Set this rational number to the fractional part of itself.
*
* @return This rational number, with its value set to <TT>frac(this)</TT>.
*/
public BigRational fracPart()
{
numer = numer.remainder (denom);
return this;
}
/**
* Set this rational number to the sum of itself and the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>this+x</TT>.
*/
public BigRational add
(BigRational x)
{
this.numer =
this.numer.multiply(x.denom).add
(x.numer.multiply (this.denom));
this.denom = this.denom.multiply (x.denom);
return this;
}
/**
* Set this rational number to the difference of itself and the given
* number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>this-x</TT>.
*/
public BigRational sub
(BigRational x)
{
this.numer =
this.numer.multiply(x.denom).subtract
(x.numer.multiply (this.denom));
this.denom = this.denom.multiply (x.denom);
return this;
}
/**
* Set this rational number to the product of itself and the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>this*x</TT>.
*/
public BigRational mul
(BigRational x)
{
this.numer = this.numer.multiply (x.numer);
this.denom = this.denom.multiply (x.denom);
return this;
}
/**
* Set this rational number to the quotient of itself and the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>this/x</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>x</TT> is 0.
*/
public BigRational div
(BigRational x)
{
if (x.numer.equals (BigInteger.ZERO))
{
throw new ArithmeticException
("BigRational.div(): Divide by zero");
}
this.numer = this.numer.multiply (x.denom);
this.denom = this.denom.multiply (x.numer);
return this;
}
/**
* Set this rational number to the remainder when divided by the given
* number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to
* <TT>frac(this/x)*x</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>x</TT> is 0.
*/
public BigRational rem
(BigRational x)
{
return div (x) .fracPart() .mul (x);
}
/**
* Increment this rational number.
*
* @return This rational number, with its value set to <TT>this+1</TT>.
*/
public BigRational incr()
{
this.numer = this.numer.add (this.denom);
return this;
}
/**
* Decrement this rational number.
*
* @return This rational number, with its value set to <TT>this-1</TT>.
*/
public BigRational decr()
{
this.numer = this.numer.subtract (this.denom);
return this;
}
/**
* Set this rational number to the absolute value of itself.
*
* @return This rational number, with its value set to <TT>abs(this)</TT>.
*/
public BigRational abs()
{
this.numer = this.numer.abs();
this.denom = this.denom.abs();
return this;
}
/**
* Set this rational number to the negative of itself.
*
* @return This rational number, with its value set to <TT>-this</TT>.
*/
public BigRational negate()
{
this.numer = this.numer.negate();
return this;
}
/**
* Set this rational number to the reciprocal of itself.
*
* @return This rational number, with its value set to <TT>1/this</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if this rational number is 0.
*/
public BigRational recip()
{
if (this.numer.equals (BigInteger.ZERO))
{
throw new ArithmeticException
("BigRational.recip(): Divide by zero");
}
BigInteger tmp = this.numer;
this.numer = this.denom;
this.denom = tmp;
return this;
}
/**
* Set this rational number to the smaller of itself and the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to
* <TT>min(this,x)</TT>.
*/
public BigRational min
(BigRational x)
{
if (this.compareTo (x) > 0) this.assign (x);
return this;
}
/**
* Set this rational number to the larger of itself and the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to
* <TT>max(this,x)</TT>.
*/
public BigRational max
(BigRational x)
{
if (this.compareTo (x) < 0) this.assign (x);
return this;
}
/**
* Normalize this rational number. Afterwards, the denominator is greater
* than or equal to 1, and the denominator does not divide the numerator; in
* other words, GCD(numerator,denominator) = 1.
*
* @return This rational number, normalized.
*/
public BigRational normalize()
{
int sign = numer.signum() * denom.signum();
numer = numer.abs();
denom = denom.abs();
BigInteger gcd = numer.gcd (denom);
numer = numer.divide (gcd);
denom = denom.divide (gcd);
if (sign < 0) numer = numer.negate();
return this;
}
/**
* Converts this rational number to an integer.
*
* @return Integer value of this rational number.
*/
public int intValue()
{
BigDecimal n = new BigDecimal (numer);
BigDecimal d = new BigDecimal (denom);
return n.divide (d, 1, RoundingMode.HALF_UP) .intValue();
}
/**
* Converts this rational number to a long integer.
*
* @return Long integer value of this rational number.
*/
public long longValue()
{
BigDecimal n = new BigDecimal (numer);
BigDecimal d = new BigDecimal (denom);
return n.divide (d, 1, RoundingMode.HALF_UP) .longValue();
}
/**
* Converts this rational number to a single precision floating point
* number.
*
* @return Single precision floating point value of this rational number.
*/
public float floatValue()
{
BigDecimal n = new BigDecimal (numer);
BigDecimal d = new BigDecimal (denom);
return n.divide (d, MathContext.DECIMAL32) .floatValue();
}
/**
* Converts this rational number to a double precision floating point
* number.
*
* @return Double precision floating point value of this rational number.
*/
public double doubleValue()
{
BigDecimal n = new BigDecimal (numer);
BigDecimal d = new BigDecimal (denom);
return n.divide (d, MathContext.DECIMAL64) .doubleValue();
}
/**
* Compare this rational number to the given rational number.
*
* @param x Rational number to compare.
*
* @return A number less than, equal to, or greater than 0 if this rational
* number is less than, equal to, or greater than <TT>x</TT>,
* respectively.
*/
public int compareTo
(BigRational x)
{
BigInteger diff =
this.numer.multiply(x.denom).subtract
(x.numer.multiply (this.denom));
return diff.compareTo (BigInteger.ZERO);
}
/**
* Determine if this rational number equals the given object.
* <P>
* <I>Note:</I> Class BigRational provides the <TT>equals()</TT> and
* <TT>hashCode()</TT> methods, and BigRational objects can be used as keys
* in hashed data structures. However, BigRational objects are mutable. If a
* BigRational object is used as a hash key, be sure not to change its
* value.
* <P>
* <I>Note:</I> Two rational numbers are equal only if their numerators and
* denominators are equal. Thus, it is possible for <TT>equals()</TT> to
* return false even if the two rational numbers have the same numerical
* value. To ensure that <TT>equals()</TT> will return true if the two
* rational numbers have the same numerical value, normalize the two
* rational numbers first.
*
* @param obj Object to compare.
*
* @return True if this rational number equals <TT>obj</TT>, false
* otherwise.
*/
public boolean equals
(Object obj)
{
return
(obj instanceof BigRational) &&
(((BigRational) obj).numer.equals (this.numer)) &&
(((BigRational) obj).denom.equals (this.denom));
}
/**
* Returns a hash code for this rational number.
* <P>
* <I>Note:</I> Class BigRational provides the <TT>equals()</TT> and
* <TT>hashCode()</TT> methods, and BigRational objects can be used as keys
* in hashed data structures. However, BigRational objects are mutable. If a
* BigRational object is used as a hash key, be sure not to change its
* value.
* <P>
* <I>Note:</I> Two rational numbers have the same hash code only if their
* numerators and denominators are equal. Thus, it is possible for
* <TT>hashCode()</TT> to return different values even if the two rational
* numbers have the same numerical value. To ensure that <TT>hashCode()</TT>
* will return the same value if the two rational numbers have the same
* numerical value, normalize the two rational numbers first.
*
* @return Hash code.
*/
public int hashCode()
{
return numer.hashCode()*31 + denom.hashCode();
}
/**
* Returns a string version of this rational number. If this rational
* number's denominator is 1, the string is in the form
* <TT>"<numer>"</TT>, otherwise the string is in the form
* <TT>"<numer>/<denom>"</TT>. The negative sign, if any, is
* attached to the numerator.
* <P>
* <I>Note:</I> The <TT>toString()</TT> method yields the numerator and
* denominator as they are, without normalizing this rational number.
*/
public String toString()
{
String ns = this.numer.toString();
String ds = this.denom.toString();
if (ns.charAt(0) == '-' && ds.charAt(0) == '-')
{
ns = ns.substring (1);
ds = ds.substring (1);
}
else if (ns.charAt(0) != '-' && ds.charAt(0) == '-')
{
ns = "-" + ns;
ds = ds.substring (1);
}
if (ds.equals ("1"))
{
return ns;
}
else
{
return ns + "/" + ds;
}
}
}
|