1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
//******************************************************************************
//
// File: Cubic.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.Cubic
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
/**
* Class Cubic solves for the real roots of a cubic equation with real
* coefficients. The cubic equation is of the form
* <P>
* <I>ax</I><SUP>3</SUP> + <I>bx</I><SUP>2</SUP> + <I>cx</I> + <I>d</I> = 0
* <P>
* To solve a cubic equation, construct an instance of class Cubic; call the
* Cubic object's <TT>solve()</TT> method, passing in the coefficients <I>a</I>,
* <I>b</I>, <I>c</I>, and <I>d</I>; and obtain the roots from the Cubic
* object's fields. The number of (real) roots, either 1 or 3, is stored in
* field <TT>nRoots</TT>. If there is one root, it is stored in field
* <TT>x1</TT>, and fields <TT>x2</TT> and <TT>x3</TT> are set to NaN. If there
* are three roots, they are stored in fields <TT>x1</TT>, <TT>x2</TT>, and
* <TT>x3</TT> in descending order.
* <P>
* The same Cubic object may be used to solve several cubic equations. Each time
* the <TT>solve()</TT> method is called, the solution is stored in the Cubic
* object's fields.
* <P>
* The formulas for the roots of a cubic equation come from:
* <P>
* E. Weisstein. "Cubic formula." From <I>MathWorld</I>--A Wolfram Web Resource.
* <A HREF="http://mathworld.wolfram.com/CubicFormula.html" TARGET="_top">http://mathworld.wolfram.com/CubicFormula.html</A>
*
* @author Alan Kaminsky
* @version 02-Feb-2008
*/
public class Cubic
{
// Hidden constants.
private static final double TWO_PI = 2.0 * Math.PI;
private static final double FOUR_PI = 4.0 * Math.PI;
// Exported fields.
/**
* The number of real roots.
*/
public int nRoots;
/**
* The first real root.
*/
public double x1;
/**
* The second real root.
*/
public double x2;
/**
* The third real root.
*/
public double x3;
// Exported constructors.
/**
* Construct a new Cubic object.
*/
public Cubic()
{
}
// Exported operations.
/**
* Solve the cubic equation with the given coefficients. The results are
* stored in this Cubic object's fields.
*
* @param a Coefficient of <I>x</I><SUP>3</SUP>.
* @param b Coefficient of <I>x</I><SUP>2</SUP>.
* @param c Coefficient of <I>x</I>.
* @param d Constant coefficient.
*
* @exception DomainException
* (unchecked exception) Thrown if <TT>a</TT> is 0; in other words, the
* coefficients do not represent a cubic equation.
*/
public void solve
(double a,
double b,
double c,
double d)
{
// Verify preconditions.
if (a == 0.0)
{
throw new DomainException ("Cubic.solve(): a = 0");
}
// Normalize coefficients.
double denom = a;
a = b/denom;
b = c/denom;
c = d/denom;
// Commence solution.
double a_over_3 = a / 3.0;
double Q = (3*b - a*a) / 9.0;
double Q_CUBE = Q*Q*Q;
double R = (9*a*b - 27*c - 2*a*a*a) / 54.0;
double R_SQR = R*R;
double D = Q_CUBE + R_SQR;
if (D < 0.0)
{
// Three unequal real roots.
nRoots = 3;
double theta = Math.acos (R / Math.sqrt (-Q_CUBE));
double SQRT_Q = Math.sqrt (-Q);
x1 = 2.0 * SQRT_Q * Math.cos (theta/3.0) - a_over_3;
x2 = 2.0 * SQRT_Q * Math.cos ((theta+TWO_PI)/3.0) - a_over_3;
x3 = 2.0 * SQRT_Q * Math.cos ((theta+FOUR_PI)/3.0) - a_over_3;
sortRoots();
}
else if (D > 0.0)
{
// One real root.
nRoots = 1;
double SQRT_D = Math.sqrt (D);
double S = Math.cbrt (R + SQRT_D);
double T = Math.cbrt (R - SQRT_D);
x1 = (S + T) - a_over_3;
x2 = Double.NaN;
x3 = Double.NaN;
}
else
{
// Three real roots, at least two equal.
nRoots = 3;
double CBRT_R = Math.cbrt (R);
x1 = 2*CBRT_R - a_over_3;
x2 = x3 = CBRT_R - a_over_3;
sortRoots();
}
}
// Hidden operations.
/**
* Sort the roots into descending order.
*/
private void sortRoots()
{
if (x1 < x2)
{
double tmp = x1; x1 = x2; x2 = tmp;
}
if (x2 < x3)
{
double tmp = x2; x2 = x3; x3 = tmp;
}
if (x1 < x2)
{
double tmp = x1; x1 = x2; x2 = tmp;
}
}
// Unit test main program.
/**
* Unit test main program.
* <P>
* Usage: java edu.rit.numeric.Cubic <I>a</I> <I>b</I> <I>c</I> <I>d</I>
*/
public static void main
(String[] args)
throws Exception
{
if (args.length != 4) usage();
double a = Double.parseDouble (args[0]);
double b = Double.parseDouble (args[1]);
double c = Double.parseDouble (args[2]);
double d = Double.parseDouble (args[3]);
Cubic cubic = new Cubic();
cubic.solve (a, b, c, d);
System.out.println ("x1 = " + cubic.x1);
if (cubic.nRoots == 3)
{
System.out.println ("x2 = " + cubic.x2);
System.out.println ("x3 = " + cubic.x3);
}
}
/**
* Print a usage message and exit.
*/
private static void usage()
{
System.err.println ("Usage: java edu.rit.numeric.Cubic <a> <b> <c> <d>");
System.err.println ("Solves ax^3 + bx^2 + cx + d = 0");
System.exit (1);
}
}
|