File: CurveSmoothing.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (475 lines) | stat: -rw-r--r-- 17,993 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
//******************************************************************************
//
// File:    CurveSmoothing.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.CurveSmoothing
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

import java.util.Arrays;

/**
 * Class CurveSmoothing provides operations useful for creating smooth cubic
 * spline curves.
 * <P>
 * We are given a sequence of <I>n</I> coordinate values, <TT>u[0]</TT> ..
 * <TT>u[n-1]</TT>. These may be either the X coordinates or the Y coordinates
 * of a sequence of 2-D points. We wish to join successive pairs of points with
 * a sequence of cubic Bezier curves to create an overall cubic spline curve. We
 * need to know the X or Y coordinates of the two Bezier control points for each
 * Bezier curve. The Bezier control point coordinates are designated by
 * <TT>a[i]</TT> and <TT>c[i]</TT>, such that Bezier curve <I>i</I> is defined
 * by <TT>u[i]</TT>, <TT>a[i]</TT>, <TT>c[i]</TT>, and <TT>u[i+1]</TT> in that
 * order.
 * <P>
 * There are several cases:
 * <OL TYPE=1>
 * <LI>
 * The curve is closed (there is a Bezier curve from point <I>n</I>-1 back to
 * point 0). We need the <I>n</I> Bezier control points <TT>a[0]</TT> ..
 * <TT>a[n-1]</TT> and the <I>n</I> Bezier control points <TT>c[0]</TT> ..
 * <TT>c[n-1]</TT>. The first Bezier curve will be
 * <TT>u[0]--a[0]--c[0]--u[1]</TT>, and the last Bezier curve will be
 * <TT>u[n-1]--a[n-1]--c[n-1]--u[0]</TT>.
 * <BR>&nbsp;
 * <LI>
 * The curve is open (there is no Bezier curve from point <I>n</I>-1 back to
 * point 0). We need the <I>n</I>-1 Bezier control points <TT>a[0]</TT> ..
 * <TT>a[n-2]</TT> and the <I>n</I>-1 Bezier control points <TT>c[0]</TT> ..
 * <TT>c[n-2]</TT>. The first Bezier curve will be
 * <TT>u[0]--a[0]--c[0]--u[1]</TT>, and the last Bezier curve will be
 * <TT>u[n-2]--a[n-2]--c[n-2]--u[n-1]</TT>.
 * <P>
 * For the initial point <TT>u[0]</TT>, an additional condition must be
 * specified, either:
 * <OL TYPE=a>
 * <LI>
 * Zero curvature at the initial point; or
 * <LI>
 * Initial direction, specified as a straight line from a coordinate
 * <TT>uInitial</TT> to <TT>u[0]</TT>.
 * </OL>
 * <P>
 * For the final point <TT>u[n-1]</TT>, an additional condition must be
 * specified, either:
 * <OL TYPE=a>
 * <LI>
 * Zero curvature at the final point; or
 * <LI>
 * Final direction, specified as a straight line from <TT>u[n-1]</TT> to a
 * coordinate <TT>uFinal</TT>.
 * </OL>
 * </OL>
 *
 * @author Alan Kaminsky
 * @version 07-Jul-2007
 */
public class CurveSmoothing
	{

// Prevent construction.

	private CurveSmoothing()
		{
		}

// Exported operations.

	/**
	 * Compute the Bezier control point coordinates for a closed smooth curve.
	 *
	 * @param  u  An input array of coordinates. Elements at indexes <TT>i</TT>
	 *            .. <TT>i+n-1</TT> are used.
	 * @param  a  An output array of coordinates for the first Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-1</TT> are
	 *            used.
	 * @param  c  An output array of coordinates for the second Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-1</TT> are
	 *            used.
	 * @param  i  Index of first element used in input and output arrays.
	 * @param  n  Number of elements used in input and output arrays. Must be
	 *            greater than or equal to 3.
	 *
 	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &lt; 3.
 	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the control points cannot be
	 *     calculated.
	 */
	public static void computeBezierClosed
		(double[] u,
		 double[] a,
		 double[] c,
		 int i,
		 int n)
		{
		int j;

		// First, compute vector of second derivatives of u, upp, by solving
		// this cyclic tridiagonal linear system (illustrated for n=6):
		//     [4 1       1]   [upp0]   [6 u5 - 12 u0 + 6 u1]
		//     [1 4 1      ]   [upp1]   [6 u0 - 12 u1 + 6 u2]
		//     [  1 4 1    ] x [upp2] = [6 u1 - 12 u2 + 6 u3]
		//     [    1 4 1  ]   [upp3]   [6 u2 - 12 u3 + 6 u4]
		//     [      1 4 1]   [upp4]   [6 u3 - 12 u4 + 6 u5]
		//     [1       1 4]   [upp5]   [6 u4 - 12 u5 + 6 u0]

		// Allocate storage for tridiagonal matrix, solution vector, and right-
		// hand side vector.
		double[] d = new double [n];
		double[] e = new double [n];
		double[] upp = new double [n];
		double[] rhs = new double [n];

		// Fill in tridiagonal matrix and right-hand side vector.
		Arrays.fill (d, 4.0);
		Arrays.fill (e, 1.0);
		for (j = 0; j < n; ++ j)
			{
			rhs[j] =
				   6.0 * u[i + (j+n-1)%n]
				- 12.0 * u[i + j]
				+  6.0 * u[i + (j+1)%n];
			}

		// Solve the linear system.
		Tridiagonal.solveSymmetricCyclic (d, e, rhs, upp);

		// Lastly, compute Bezier control point vectors a and c from u and upp.
		for (j = 0; j < n; ++ j)
			{
			a[i+j] = 2.0*u[i+j]/3.0 + u[i+(j+1)%n]/3.0 - upp[j]/9.0 -
						upp[(j+1)%n]/18.0;
			c[i+j] = u[i+j]/3.0 + 2.0*u[i+(j+1)%n]/3.0 - upp[j]/18.0 -
						upp[(j+1)%n]/9.0;
			}

		}

	/**
	 * Compute the Bezier control point coordinates for an open smooth curve
	 * with zero initial curvature and zero final curvature.
	 *
	 * @param  u  An input array of coordinates. Elements at indexes <TT>i</TT>
	 *            .. <TT>i+n-1</TT> are used.
	 * @param  a  An output array of coordinates for the first Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  c  An output array of coordinates for the second Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  i  Index of first element used in input and output arrays.
	 * @param  n  Number of elements used in input array; one fewer elements
	 *            used in output arrays. Must be greater than or equal to 3.
	 *
 	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &lt; 3.
 	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the control points cannot be
	 *     calculated.
	 */
	public static void computeBezierOpen
		(double[] u,
		 double[] a,
		 double[] c,
		 int i,
		 int n)
		{
		int j;

		// First, compute vector of second derivatives of u, upp, by solving
		// this tridiagonal linear system (illustrated for n=6):
		//     [1 0        ]   [upp0]   [0                  ]
		//     [1 4 1      ]   [upp1]   [6 u0 - 12 u1 + 6 u2]
		//     [  1 4 1    ] x [upp2] = [6 u1 - 12 u2 + 6 u3]
		//     [    1 4 1  ]   [upp3]   [6 u2 - 12 u3 + 6 u4]
		//     [      1 4 1]   [upp4]   [6 u3 - 12 u4 + 6 u5]
		//     [        0 1]   [upp5]   [0                  ]

		// Allocate storage for tridiagonal matrix, solution vector, and right-
		// hand side vector.
		double[] f = new double [n-1];
		double[] d = new double [n];
		double[] e = new double [n-1];
		double[] upp = new double [n];
		double[] rhs = new double [n];

		// Fill in tridiagonal matrix and right-hand side vector.
		Arrays.fill (f, 0, n-2, 1.0);
		d[0] = 1.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 1.0;
		Arrays.fill (e, 1, n-1, 1.0);
		for (j = 1; j < n-1; ++ j)
			{
			rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
			}

		// Solve the linear system.
		Tridiagonal.solve (d, e, f, rhs, upp);

		// Lastly, compute Bezier control point vectors a and c from u and upp.
		for (j = 0; j < n-1; ++ j)
			{
			a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
			c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
			}

		}

	/**
	 * Compute the Bezier control point coordinates for an open smooth curve
	 * with a specified initial direction and zero final curvature.
	 *
	 * @param  uInitial  Specifies initial direction as a straight line from
	 *                   <TT>uInitial</TT> to <TT>u[i]</TT>.
	 * @param  u  An input array of coordinates. Elements at indexes <TT>i</TT>
	 *            .. <TT>i+n-1</TT> are used.
	 * @param  a  An output array of coordinates for the first Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  c  An output array of coordinates for the second Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  i  Index of first element used in input and output arrays.
	 * @param  n  Number of elements used in input array; one fewer elements
	 *            used in output arrays. Must be greater than or equal to 2.
	 *
 	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &lt; 2.
 	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the control points cannot be
	 *     calculated.
	 */
	public static void computeBezierOpen
		(double uInitial,
		 double[] u,
		 double[] a,
		 double[] c,
		 int i,
		 int n)
		{
		int j;

		// First, compute vector of second derivatives of u, upp, by solving
		// this tridiagonal linear system (illustrated for n=6):
		//     [2 1        ]   [upp0]   [6 uInitial - 12 u0 + 6 u1]
		//     [1 4 1      ]   [upp1]   [6 u0 - 12 u1 + 6 u2      ]
		//     [  1 4 1    ] x [upp2] = [6 u1 - 12 u2 + 6 u3      ]
		//     [    1 4 1  ]   [upp3]   [6 u2 - 12 u3 + 6 u4      ]
		//     [      1 4 1]   [upp4]   [6 u3 - 12 u4 + 6 u5      ]
		//     [        0 1]   [upp5]   [0                        ]

		// Allocate storage for tridiagonal matrix, solution vector, and right-
		// hand side vector.
		double[] f = new double [n-1];
		double[] d = new double [n];
		double[] e = new double [n-1];
		double[] upp = new double [n];
		double[] rhs = new double [n];

		// Fill in tridiagonal matrix and right-hand side vector.
		Arrays.fill (f, 0, n-2, 1.0);
		d[0] = 2.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 1.0;
		Arrays.fill (e, 0, n-1, 1.0);
		rhs[0] = 6.0*uInitial - 12.0*u[i] + 6.0*u[i+1];
		for (j = 1; j < n-1; ++ j)
			{
			rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
			}

		// Solve the linear system.
		Tridiagonal.solve (d, e, f, rhs, upp);

		// Lastly, compute Bezier control point vectors a and c from u and upp.
		for (j = 0; j < n-1; ++ j)
			{
			a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
			c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
			}

		}

	/**
	 * Compute the Bezier control point coordinates for an open smooth curve
	 * with zero initial curvature and a specified final direction.
	 *
	 * @param  u  An input array of coordinates. Elements at indexes <TT>i</TT>
	 *            .. <TT>i+n-1</TT> are used.
	 * @param  uFinal    Specifies final direction as a straight line from
	 *                   <TT>u[i+n-1]</TT> to <TT>uFinal</TT>.
	 * @param  a  An output array of coordinates for the first Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  c  An output array of coordinates for the second Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  i  Index of first element used in input and output arrays.
	 * @param  n  Number of elements used in input array; one fewer elements
	 *            used in output arrays. Must be greater than or equal to 2.
	 *
 	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &lt; 2.
 	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the control points cannot be
	 *     calculated.
	 */
	public static void computeBezierOpen
		(double[] u,
		 double uFinal,
		 double[] a,
		 double[] c,
		 int i,
		 int n)
		{
		int j;

		// First, compute vector of second derivatives of u, upp, by solving
		// this tridiagonal linear system (illustrated for n=6):
		//     [1 0        ]   [upp0]   [0                      ]
		//     [1 4 1      ]   [upp1]   [6 u0 - 12 u1 + 6 u2    ]
		//     [  1 4 1    ] x [upp2] = [6 u1 - 12 u2 + 6 u3    ]
		//     [    1 4 1  ]   [upp3]   [6 u2 - 12 u3 + 6 u4    ]
		//     [      1 4 1]   [upp4]   [6 u3 - 12 u4 + 6 u5    ]
		//     [        1 2]   [upp5]   [6 u4 - 12 u5 + 6 uFinal]

		// Allocate storage for tridiagonal matrix, solution vector, and right-
		// hand side vector.
		double[] f = new double [n-1];
		double[] d = new double [n];
		double[] e = new double [n-1];
		double[] upp = new double [n];
		double[] rhs = new double [n];

		// Fill in tridiagonal matrix and right-hand side vector.
		Arrays.fill (f, 0, n-1, 1.0);
		d[0] = 1.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 2.0;
		Arrays.fill (e, 1, n-1, 1.0);
		for (j = 1; j < n-1; ++ j)
			{
			rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
			}
		rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*uFinal;

		// Solve the linear system.
		Tridiagonal.solve (d, e, f, rhs, upp);

		// Lastly, compute Bezier control point vectors a and c from u and upp.
		for (j = 0; j < n-1; ++ j)
			{
			a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
			c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
			}

		}

	/**
	 * Compute the Bezier control point coordinates for an open smooth curve
	 * with a specified initial direction and a specified final direction.
	 *
	 * @param  uInitial  Specifies initial direction as a straight line from
	 *                   <TT>uInitial</TT> to <TT>u[i]</TT>.
	 * @param  u  An input array of coordinates. Elements at indexes <TT>i</TT>
	 *            .. <TT>i+n-1</TT> are used.
	 * @param  uFinal    Specifies final direction as a straight line from
	 *                   <TT>u[i+n-1]</TT> to <TT>uFinal</TT>.
	 * @param  a  An output array of coordinates for the first Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  c  An output array of coordinates for the second Bezier control
	 *            points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
	 *            used.
	 * @param  i  Index of first element used in input and output arrays.
	 * @param  n  Number of elements used in input array; one fewer elements
	 *            used in output arrays. Must be greater than or equal to 2.
	 *
 	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &lt; 2.
 	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the control points cannot be
	 *     calculated.
	 */
	public static void computeBezierOpen
		(double uInitial,
		 double[] u,
		 double uFinal,
		 double[] a,
		 double[] c,
		 int i,
		 int n)
		throws DomainException
		{
		int j;

		// First, compute vector of second derivatives of u, upp, by solving
		// this tridiagonal linear system (illustrated for n=6):
		//     [2 1        ]   [upp0]   [6 uInitial - 12 u0 + 6 u1]
		//     [1 4 1      ]   [upp1]   [6 u0 - 12 u1 + 6 u2      ]
		//     [  1 4 1    ] x [upp2] = [6 u1 - 12 u2 + 6 u3      ]
		//     [    1 4 1  ]   [upp3]   [6 u2 - 12 u3 + 6 u4      ]
		//     [      1 4 1]   [upp4]   [6 u3 - 12 u4 + 6 u5      ]
		//     [        1 2]   [upp5]   [6 u4 - 12 u5 + 6 uFinal  ]

		// Allocate storage for tridiagonal matrix, solution vector, and right-
		// hand side vector.
		double[] f = new double [n-1];
		double[] d = new double [n];
		double[] e = new double [n-1];
		double[] upp = new double [n];
		double[] rhs = new double [n];

		// Fill in tridiagonal matrix and right-hand side vector.
		Arrays.fill (f, 1.0);
		d[0] = 2.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 2.0;
		Arrays.fill (e, 1.0);
		rhs[0] = 6.0*uInitial - 12.0*u[i] + 6.0*u[i+1];
		for (j = 1; j < n-1; ++ j)
			{
			rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
			}
		rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*uFinal;

		// Solve the linear system.
		Tridiagonal.solve (d, e, f, rhs, upp);

		// Lastly, compute Bezier control point vectors a and c from u and upp.
		for (j = 0; j < n-1; ++ j)
			{
			a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
			c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
			}
		}

	}