1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
//******************************************************************************
//
// File: CurveSmoothing.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.CurveSmoothing
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import java.util.Arrays;
/**
* Class CurveSmoothing provides operations useful for creating smooth cubic
* spline curves.
* <P>
* We are given a sequence of <I>n</I> coordinate values, <TT>u[0]</TT> ..
* <TT>u[n-1]</TT>. These may be either the X coordinates or the Y coordinates
* of a sequence of 2-D points. We wish to join successive pairs of points with
* a sequence of cubic Bezier curves to create an overall cubic spline curve. We
* need to know the X or Y coordinates of the two Bezier control points for each
* Bezier curve. The Bezier control point coordinates are designated by
* <TT>a[i]</TT> and <TT>c[i]</TT>, such that Bezier curve <I>i</I> is defined
* by <TT>u[i]</TT>, <TT>a[i]</TT>, <TT>c[i]</TT>, and <TT>u[i+1]</TT> in that
* order.
* <P>
* There are several cases:
* <OL TYPE=1>
* <LI>
* The curve is closed (there is a Bezier curve from point <I>n</I>-1 back to
* point 0). We need the <I>n</I> Bezier control points <TT>a[0]</TT> ..
* <TT>a[n-1]</TT> and the <I>n</I> Bezier control points <TT>c[0]</TT> ..
* <TT>c[n-1]</TT>. The first Bezier curve will be
* <TT>u[0]--a[0]--c[0]--u[1]</TT>, and the last Bezier curve will be
* <TT>u[n-1]--a[n-1]--c[n-1]--u[0]</TT>.
* <BR>
* <LI>
* The curve is open (there is no Bezier curve from point <I>n</I>-1 back to
* point 0). We need the <I>n</I>-1 Bezier control points <TT>a[0]</TT> ..
* <TT>a[n-2]</TT> and the <I>n</I>-1 Bezier control points <TT>c[0]</TT> ..
* <TT>c[n-2]</TT>. The first Bezier curve will be
* <TT>u[0]--a[0]--c[0]--u[1]</TT>, and the last Bezier curve will be
* <TT>u[n-2]--a[n-2]--c[n-2]--u[n-1]</TT>.
* <P>
* For the initial point <TT>u[0]</TT>, an additional condition must be
* specified, either:
* <OL TYPE=a>
* <LI>
* Zero curvature at the initial point; or
* <LI>
* Initial direction, specified as a straight line from a coordinate
* <TT>uInitial</TT> to <TT>u[0]</TT>.
* </OL>
* <P>
* For the final point <TT>u[n-1]</TT>, an additional condition must be
* specified, either:
* <OL TYPE=a>
* <LI>
* Zero curvature at the final point; or
* <LI>
* Final direction, specified as a straight line from <TT>u[n-1]</TT> to a
* coordinate <TT>uFinal</TT>.
* </OL>
* </OL>
*
* @author Alan Kaminsky
* @version 07-Jul-2007
*/
public class CurveSmoothing
{
// Prevent construction.
private CurveSmoothing()
{
}
// Exported operations.
/**
* Compute the Bezier control point coordinates for a closed smooth curve.
*
* @param u An input array of coordinates. Elements at indexes <TT>i</TT>
* .. <TT>i+n-1</TT> are used.
* @param a An output array of coordinates for the first Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-1</TT> are
* used.
* @param c An output array of coordinates for the second Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-1</TT> are
* used.
* @param i Index of first element used in input and output arrays.
* @param n Number of elements used in input and output arrays. Must be
* greater than or equal to 3.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>n</TT> < 3.
* @exception DomainException
* (unchecked exception) Thrown if the control points cannot be
* calculated.
*/
public static void computeBezierClosed
(double[] u,
double[] a,
double[] c,
int i,
int n)
{
int j;
// First, compute vector of second derivatives of u, upp, by solving
// this cyclic tridiagonal linear system (illustrated for n=6):
// [4 1 1] [upp0] [6 u5 - 12 u0 + 6 u1]
// [1 4 1 ] [upp1] [6 u0 - 12 u1 + 6 u2]
// [ 1 4 1 ] x [upp2] = [6 u1 - 12 u2 + 6 u3]
// [ 1 4 1 ] [upp3] [6 u2 - 12 u3 + 6 u4]
// [ 1 4 1] [upp4] [6 u3 - 12 u4 + 6 u5]
// [1 1 4] [upp5] [6 u4 - 12 u5 + 6 u0]
// Allocate storage for tridiagonal matrix, solution vector, and right-
// hand side vector.
double[] d = new double [n];
double[] e = new double [n];
double[] upp = new double [n];
double[] rhs = new double [n];
// Fill in tridiagonal matrix and right-hand side vector.
Arrays.fill (d, 4.0);
Arrays.fill (e, 1.0);
for (j = 0; j < n; ++ j)
{
rhs[j] =
6.0 * u[i + (j+n-1)%n]
- 12.0 * u[i + j]
+ 6.0 * u[i + (j+1)%n];
}
// Solve the linear system.
Tridiagonal.solveSymmetricCyclic (d, e, rhs, upp);
// Lastly, compute Bezier control point vectors a and c from u and upp.
for (j = 0; j < n; ++ j)
{
a[i+j] = 2.0*u[i+j]/3.0 + u[i+(j+1)%n]/3.0 - upp[j]/9.0 -
upp[(j+1)%n]/18.0;
c[i+j] = u[i+j]/3.0 + 2.0*u[i+(j+1)%n]/3.0 - upp[j]/18.0 -
upp[(j+1)%n]/9.0;
}
}
/**
* Compute the Bezier control point coordinates for an open smooth curve
* with zero initial curvature and zero final curvature.
*
* @param u An input array of coordinates. Elements at indexes <TT>i</TT>
* .. <TT>i+n-1</TT> are used.
* @param a An output array of coordinates for the first Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param c An output array of coordinates for the second Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param i Index of first element used in input and output arrays.
* @param n Number of elements used in input array; one fewer elements
* used in output arrays. Must be greater than or equal to 3.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>n</TT> < 3.
* @exception DomainException
* (unchecked exception) Thrown if the control points cannot be
* calculated.
*/
public static void computeBezierOpen
(double[] u,
double[] a,
double[] c,
int i,
int n)
{
int j;
// First, compute vector of second derivatives of u, upp, by solving
// this tridiagonal linear system (illustrated for n=6):
// [1 0 ] [upp0] [0 ]
// [1 4 1 ] [upp1] [6 u0 - 12 u1 + 6 u2]
// [ 1 4 1 ] x [upp2] = [6 u1 - 12 u2 + 6 u3]
// [ 1 4 1 ] [upp3] [6 u2 - 12 u3 + 6 u4]
// [ 1 4 1] [upp4] [6 u3 - 12 u4 + 6 u5]
// [ 0 1] [upp5] [0 ]
// Allocate storage for tridiagonal matrix, solution vector, and right-
// hand side vector.
double[] f = new double [n-1];
double[] d = new double [n];
double[] e = new double [n-1];
double[] upp = new double [n];
double[] rhs = new double [n];
// Fill in tridiagonal matrix and right-hand side vector.
Arrays.fill (f, 0, n-2, 1.0);
d[0] = 1.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 1.0;
Arrays.fill (e, 1, n-1, 1.0);
for (j = 1; j < n-1; ++ j)
{
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
}
// Solve the linear system.
Tridiagonal.solve (d, e, f, rhs, upp);
// Lastly, compute Bezier control point vectors a and c from u and upp.
for (j = 0; j < n-1; ++ j)
{
a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
}
}
/**
* Compute the Bezier control point coordinates for an open smooth curve
* with a specified initial direction and zero final curvature.
*
* @param uInitial Specifies initial direction as a straight line from
* <TT>uInitial</TT> to <TT>u[i]</TT>.
* @param u An input array of coordinates. Elements at indexes <TT>i</TT>
* .. <TT>i+n-1</TT> are used.
* @param a An output array of coordinates for the first Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param c An output array of coordinates for the second Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param i Index of first element used in input and output arrays.
* @param n Number of elements used in input array; one fewer elements
* used in output arrays. Must be greater than or equal to 2.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>n</TT> < 2.
* @exception DomainException
* (unchecked exception) Thrown if the control points cannot be
* calculated.
*/
public static void computeBezierOpen
(double uInitial,
double[] u,
double[] a,
double[] c,
int i,
int n)
{
int j;
// First, compute vector of second derivatives of u, upp, by solving
// this tridiagonal linear system (illustrated for n=6):
// [2 1 ] [upp0] [6 uInitial - 12 u0 + 6 u1]
// [1 4 1 ] [upp1] [6 u0 - 12 u1 + 6 u2 ]
// [ 1 4 1 ] x [upp2] = [6 u1 - 12 u2 + 6 u3 ]
// [ 1 4 1 ] [upp3] [6 u2 - 12 u3 + 6 u4 ]
// [ 1 4 1] [upp4] [6 u3 - 12 u4 + 6 u5 ]
// [ 0 1] [upp5] [0 ]
// Allocate storage for tridiagonal matrix, solution vector, and right-
// hand side vector.
double[] f = new double [n-1];
double[] d = new double [n];
double[] e = new double [n-1];
double[] upp = new double [n];
double[] rhs = new double [n];
// Fill in tridiagonal matrix and right-hand side vector.
Arrays.fill (f, 0, n-2, 1.0);
d[0] = 2.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 1.0;
Arrays.fill (e, 0, n-1, 1.0);
rhs[0] = 6.0*uInitial - 12.0*u[i] + 6.0*u[i+1];
for (j = 1; j < n-1; ++ j)
{
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
}
// Solve the linear system.
Tridiagonal.solve (d, e, f, rhs, upp);
// Lastly, compute Bezier control point vectors a and c from u and upp.
for (j = 0; j < n-1; ++ j)
{
a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
}
}
/**
* Compute the Bezier control point coordinates for an open smooth curve
* with zero initial curvature and a specified final direction.
*
* @param u An input array of coordinates. Elements at indexes <TT>i</TT>
* .. <TT>i+n-1</TT> are used.
* @param uFinal Specifies final direction as a straight line from
* <TT>u[i+n-1]</TT> to <TT>uFinal</TT>.
* @param a An output array of coordinates for the first Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param c An output array of coordinates for the second Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param i Index of first element used in input and output arrays.
* @param n Number of elements used in input array; one fewer elements
* used in output arrays. Must be greater than or equal to 2.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>n</TT> < 2.
* @exception DomainException
* (unchecked exception) Thrown if the control points cannot be
* calculated.
*/
public static void computeBezierOpen
(double[] u,
double uFinal,
double[] a,
double[] c,
int i,
int n)
{
int j;
// First, compute vector of second derivatives of u, upp, by solving
// this tridiagonal linear system (illustrated for n=6):
// [1 0 ] [upp0] [0 ]
// [1 4 1 ] [upp1] [6 u0 - 12 u1 + 6 u2 ]
// [ 1 4 1 ] x [upp2] = [6 u1 - 12 u2 + 6 u3 ]
// [ 1 4 1 ] [upp3] [6 u2 - 12 u3 + 6 u4 ]
// [ 1 4 1] [upp4] [6 u3 - 12 u4 + 6 u5 ]
// [ 1 2] [upp5] [6 u4 - 12 u5 + 6 uFinal]
// Allocate storage for tridiagonal matrix, solution vector, and right-
// hand side vector.
double[] f = new double [n-1];
double[] d = new double [n];
double[] e = new double [n-1];
double[] upp = new double [n];
double[] rhs = new double [n];
// Fill in tridiagonal matrix and right-hand side vector.
Arrays.fill (f, 0, n-1, 1.0);
d[0] = 1.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 2.0;
Arrays.fill (e, 1, n-1, 1.0);
for (j = 1; j < n-1; ++ j)
{
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
}
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*uFinal;
// Solve the linear system.
Tridiagonal.solve (d, e, f, rhs, upp);
// Lastly, compute Bezier control point vectors a and c from u and upp.
for (j = 0; j < n-1; ++ j)
{
a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
}
}
/**
* Compute the Bezier control point coordinates for an open smooth curve
* with a specified initial direction and a specified final direction.
*
* @param uInitial Specifies initial direction as a straight line from
* <TT>uInitial</TT> to <TT>u[i]</TT>.
* @param u An input array of coordinates. Elements at indexes <TT>i</TT>
* .. <TT>i+n-1</TT> are used.
* @param uFinal Specifies final direction as a straight line from
* <TT>u[i+n-1]</TT> to <TT>uFinal</TT>.
* @param a An output array of coordinates for the first Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param c An output array of coordinates for the second Bezier control
* points. Elements at indexes <TT>i</TT> .. <TT>i+n-2</TT> are
* used.
* @param i Index of first element used in input and output arrays.
* @param n Number of elements used in input array; one fewer elements
* used in output arrays. Must be greater than or equal to 2.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>n</TT> < 2.
* @exception DomainException
* (unchecked exception) Thrown if the control points cannot be
* calculated.
*/
public static void computeBezierOpen
(double uInitial,
double[] u,
double uFinal,
double[] a,
double[] c,
int i,
int n)
throws DomainException
{
int j;
// First, compute vector of second derivatives of u, upp, by solving
// this tridiagonal linear system (illustrated for n=6):
// [2 1 ] [upp0] [6 uInitial - 12 u0 + 6 u1]
// [1 4 1 ] [upp1] [6 u0 - 12 u1 + 6 u2 ]
// [ 1 4 1 ] x [upp2] = [6 u1 - 12 u2 + 6 u3 ]
// [ 1 4 1 ] [upp3] [6 u2 - 12 u3 + 6 u4 ]
// [ 1 4 1] [upp4] [6 u3 - 12 u4 + 6 u5 ]
// [ 1 2] [upp5] [6 u4 - 12 u5 + 6 uFinal ]
// Allocate storage for tridiagonal matrix, solution vector, and right-
// hand side vector.
double[] f = new double [n-1];
double[] d = new double [n];
double[] e = new double [n-1];
double[] upp = new double [n];
double[] rhs = new double [n];
// Fill in tridiagonal matrix and right-hand side vector.
Arrays.fill (f, 1.0);
d[0] = 2.0; Arrays.fill (d, 1, n-1, 4.0); d[n-1] = 2.0;
Arrays.fill (e, 1.0);
rhs[0] = 6.0*uInitial - 12.0*u[i] + 6.0*u[i+1];
for (j = 1; j < n-1; ++ j)
{
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*u[i+j+1];
}
rhs[j] = 6.0*u[i+j-1] - 12.0*u[i+j] + 6.0*uFinal;
// Solve the linear system.
Tridiagonal.solve (d, e, f, rhs, upp);
// Lastly, compute Bezier control point vectors a and c from u and upp.
for (j = 0; j < n-1; ++ j)
{
a[i+j] = 2.0*u[i+j]/3.0 + u[i+j+1]/3.0 - upp[j]/9.0 - upp[j+1]/18.0;
c[i+j] = u[i+j]/3.0 + 2.0*u[i+j+1]/3.0 - upp[j]/18.0 - upp[j+1]/9.0;
}
}
}
|