1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
//******************************************************************************
//
// File: Interpolation.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.Interpolation
//
// This Java source file is copyright (C) 2011 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import edu.rit.util.Sorting;
/**
* Class Interpolation provides an object for interpolating in an {@linkplain
* XYSeries} of real values (type <TT>double</TT>). Linear interpolation is
* used. The X-Y series must have at least two elements; the X values must be
* distinct; but the X values need not be in any particular order. When doing
* interpolations, the (X,Y) pairs are arranged in ascending order of X values.
* <P>
* Class Interpolation implements interface {@linkplain Function}. An instance
* of class Interpolation can be used as a function object.
*
* @author Alan Kaminsky
* @version 18-Aug-2011
*/
public class Interpolation
implements Function
{
// Hidden data members.
// X and Y values in which to interpolate. X values in ascending order.
private double[] xData;
private double[] yData;
// Number of data values, minus 2.
private int NM2;
// Index of the lower (x,y) pair of the interval in which the last
// interpolation occurred.
private int myIndex;
// Last interpolation interval was (x1,y1) .. (x2,y2).
private double x1;
private double y1;
private double x2;
private double y2;
// Exported constructors.
/**
* Construct a new interpolation object that will interpolate between values
* in the given X-Y series. The X-Y series must have at least two elements;
* the X values must be distinct; but the X values need not be in any
* particular order.
* <P>
* <I>Note:</I> A copy of the given series' elements is made. Changing
* <TT>theSeries</TT> will not affect this interpolation object.
*
* @param theSeries X-Y series.
*
* @exception NullPointerException
* (unchecked exception) Thrown if <TT>theSeries</TT> is null.
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>theSeries</TT> has fewer than two
* elements. Thrown if the X values in <TT>theSeries</TT> are not
* distinct.
*/
public Interpolation
(XYSeries theSeries)
{
int N = theSeries.length();
if (N < 2)
{
throw new IllegalArgumentException
("Interpolation(): theSeries length < 2");
}
xData = new double [N];
yData = new double [N];
for (int i = 0; i < N; ++ i)
{
xData[i] = theSeries.x(i);
yData[i] = theSeries.y(i);
}
Sorting.sort (xData, new Sorting.Double()
{
public void swap (double[] x, int a, int b)
{
double tmp;
tmp = xData[a];
xData[a] = xData[b];
xData[b] = tmp;
tmp = yData[a];
yData[a] = yData[b];
yData[b] = tmp;
}
});
NM2 = N - 2;
for (int i = 0; i <= NM2; ++ i)
{
if (xData[i] == xData[i+1])
{
throw new IllegalArgumentException
("Interpolation(): Duplicate X value: "+xData[i]);
}
}
myIndex = 0;
x1 = xData[0];
y1 = yData[0];
x2 = xData[1];
y2 = yData[1];
}
// Exported operations.
/**
* Using linear interpolation, compute the Y value for the given X value.
* If <TT>x</TT> is less than the smallest X value in the underlying X-Y
* series, the Y value is computed by extrapolating the first interval. If
* <TT>x</TT> is greater than the largest X value in the underlying X-Y
* series, the Y value is computed by extrapolating the last interval.
*
* @param x X value.
*
* @return Interpolated or extrapolated Y value.
*/
public double f
(double x)
{
// Scan forward if necessary to find the correct interval for x.
while (myIndex < NM2 && x >= x2)
{
++ myIndex;
x1 = x2;
y1 = y2;
x2 = xData[myIndex + 1];
y2 = yData[myIndex + 1];
}
// Scan backward if necessary to find the correct interval for x.
while (myIndex > 0 && x < x1)
{
-- myIndex;
x2 = x1;
y2 = y1;
x1 = xData[myIndex];
y1 = yData[myIndex];
}
// Interpolate on x.
double dx = (x - x1)/(x2 - x1);
return (1.0 - dx)*y1 + dx*y2;
}
}
|