File: LinearSolve.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (482 lines) | stat: -rw-r--r-- 13,677 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//******************************************************************************
//
// File:    LinearSolve.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.LinearSolve
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

import java.util.Arrays;

/**
 * Class LinearSolve provides an object for solving a system of linear equations
 * using LU decomposition. The <TT>solve()</TT> method finds a solution to the
 * system of linear equations <B>Ax</B> = <B>b</B>, where <B>A</B> is a square
 * matrix supplied to the constructor and <B>b</B> is a vector supplied to the
 * <TT>solve()</TT> method. Thus, an instance of class LinearSolve can be used
 * to solve many linear systems with the same left-hand-side matrix and
 * different right-hand-side vectors.
 * <P>
 * The Java code for LU decomposition was translated from routine
 * <TT>gsl_linalg_LU_decomp()</TT> in the GNU Scientific Library.
 *
 * @author  Alan Kaminsky
 * @version 07-Jul-2007
 */
public class LinearSolve
	{

// Exported data members.

	/**
	 * The number of rows and columns in the matrix.
	 */
	private int N;

	/**
	 * The <I>N</I>x<I>N</I>-element left-hand-side matrix, containing the LU
	 * decomposition of a rowwise permutation of the original <B>A</B> matrix.
	 */
	private double[][] LU;

	/**
	 * The <I>N</I>-element permutation vector.
	 */
	private int[] p;

	/**
	 * The sign of the permutation.
	 */
	private double signum;

// Exported constructors.

	/**
	 * Construct a new LinearSolve object. <TT>A</TT> must be an
	 * <I>N</I>-by-<I>N</I> matrix with <I>N</I> &gt; 0. This constructor
	 * calculates the LU decomposition of <TT>A</TT> and stores the result
	 * internally; <TT>A</TT> is unchanged.
	 *
	 * @param  A  Left-hand-side matrix.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>A</TT> or any row thereof is
	 *     null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>A</TT> is zero length or is not a
	 *     square matrix.
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if a zero pivot was encountered during
	 *     the LU decomposition.
	 */
	public LinearSolve
		(double[][] A)
		{
		// Copy matrix A and verify preconditions.
		N = A.length;
		if (N == 0)
			{
			throw new IllegalArgumentException
				("LinearSolve(): A is zero length");
			}
		LU = new double [N] [N];
		for (int i = 0; i < N; ++ i)
			{
			if (A[i].length != N)
				{
				throw new IllegalArgumentException
					("LinearSolve(): A is not a square matrix");
				}
			System.arraycopy (A[i], 0, LU[i], 0, N);
			}

		// Allocate storage for permutation.
		p = new int [N];

		// Do the LU decomposition.
		signum = luDecompose (LU, p, N);
		}

// Exported operations.

	/**
	 * Solve the linear system <B>Ax</B> = <B>b</B>. <B>A</B> is the
	 * <I>N</I>-by-<I>N</I> matrix supplied to the constructor. <B>b</B> must be
	 * an <I>N</I>-element array initialized to the right-hand-side vector. The
	 * solution vector is stored in the <I>N</I>-element array <B>x</B>.
	 * <B>b</B> and <B>x</B> must be different arrays.
	 *
	 * @param  x  Solution vector (output).
	 * @param  b  Right-hand-side vector (input).
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>x</TT> or <TT>b</TT> is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>x</TT>'s length or <TT>b</TT>'s
	 *     length is not <I>N</I>.
	 */
	public void solve
		(double[] x,
		 double[] b)
		{
		// Verify preconditions.
		if (x.length != N)
			{
			throw new IllegalArgumentException
				("LinearSolve.solve(): x is not a " + N + "-element array");
			}
		if (b.length != N)
			{
			throw new IllegalArgumentException
				("LinearSolve.solve(): b is not a " + N + "-element array");
			}

		// Apply the permutation to b.
		for (int i = 0; i < N; ++ i)
			{
			x[i] = b[p[i]];
			}

		// Compute the solution.
		luSolve (LU, p, x, N);
		}

	/**
	 * Compute <B>A</B><SUP>-1</SUP>, the inverse of <B>A</B>. <B>A</B> is the
	 * <I>N</I>-by-<I>N</I> matrix supplied to the constructor. The inverse of
	 * <B>A</B> is stored in the <I>N</I>-by-<I>N</I> matrix <TT>Ainv</TT>.
	 *
	 * @param  Ainv  Inverse matrix (output).
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>Ainv</TT> or any row thereof is
	 *     null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>Ainv</TT> is not an
	 *     <I>N</I>-by-<I>N</I> matrix.
	 */
	public void invert
		(double[][] Ainv)
		{
		// Verify preconditions.
		if (Ainv.length != N)
			{
			throw new IllegalArgumentException
				("LinearSolve.invert(): Ainv is not a " + N + "-by-" + N +
				 " matrix");
			}
		for (int i = 0; i < N; ++ i)
			{
			if (Ainv[i].length != N)
				{
				throw new IllegalArgumentException
					("LinearSolve.invert(): Ainv is not a " + N + "-by-" + N +
					 " matrix");
				}
			}

		// Allocate temporary storage.
		double[] x = new double [N];

		// Compute and store the columns of the inverse.
		for (int i = 0; i < N; ++ i)
			{
			// Apply the permutation to column i of an identity matrix.
			for (int j = 0; j < N; ++ j)
				{
				x[j] = i == p[j] ? 1.0 : 0.0;
				}
			luSolve (LU, p, x, N);
			for (int j = 0; j < N; ++ j)
				{
				Ainv[j][i] = x[j];
				}
			}
		}

	/**
	 * Compute <B>A</B><SUP>-1</SUP><B>B</B>. <B>A</B> is the
	 * <I>N</I>-by-<I>N</I> matrix supplied to the constructor. <B>B</B> must be
	 * an <I>N</I>-by-<I>N</I> matrix. The matrix product of
	 * <B>A</B><SUP>-1</SUP> and <B>B</B> is stored in the <I>N</I>-by-<I>N</I>
	 * matrix <TT>AinvB</TT>.
	 *
	 * @param  AinvB  Product matrix (output).
	 * @param  B      Matrix (input).
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>AinvB</TT>, <TT>B</TT>, or any
	 *     row thereof is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>AinvB</TT> or <TT>B</TT> is not
	 *     an <I>N</I>-by-<I>N</I> matrix.
	 */
	public void invertMultiply
		(double[][] AinvB,
		 double[][] B)
		{
		// Verify preconditions.
		if (AinvB.length != N)
			{
			throw new IllegalArgumentException
				("LinearSolve.invertMultiply(): AinvB is not a " +
				 N + "-by-" + N + " matrix");
			}
		if (B.length != N)
			{
			throw new IllegalArgumentException
				("LinearSolve.invertMultiply(): B is not a " +
				 N + "-by-" + N + " matrix");
			}
		for (int i = 0; i < N; ++ i)
			{
			if (AinvB[i].length != N)
				{
				throw new IllegalArgumentException
					("LinearSolve.invertMultiply(): AinvB is not a " +
					 N + "-by-" + N + " matrix");
				}
			if (B[i].length != N)
				{
				throw new IllegalArgumentException
					("LinearSolve.invertMultiply(): B is not a " +
					 N + "-by-" + N + " matrix");
				}
			}

		// Allocate temporary storage.
		double[] x = new double [N];

		// Compute and store the columns of the inverse product.
		for (int i = 0; i < N; ++ i)
			{
			// Apply the permutation to column i of B.
			for (int j = 0; j < N; ++ j)
				{
				x[j] = B[p[j]][i];
				}
			luSolve (LU, p, x, N);
			for (int j = 0; j < N; ++ j)
				{
				AinvB[j][i] = x[j];
				}
			}
		}

	/**
	 * Compute det <B>A</B>, the determinant of <B>A</B>. <B>A</B> is the
	 * <I>N</I>-by-<I>N</I> matrix supplied to the constructor. Note that for
	 * larger matrices, det <B>A</B> may overflow or underflow the dynamic range
	 * of type <TT>double</TT>.
	 *
	 * @return  The determinant of <B>A</B>.
	 */
	public double determinant()
		{
		double det = signum;
		for (int i = 0; i < N; ++ i)
			{
			det *= LU[i][i];
			}
		return det;
		}

// Hidden operations.

	/**
	 * Calculate the LU decomposition of matrix A. On input, A must be an NxN
	 * matrix, and P must be an N-element array. On output, A has been replaced
	 * with the LU decomposition of A, and P has been replaced by a description
	 * of a row permutation of A. The upper triangular factor, U, replaces the
	 * diagonal and upper triangle of A. The lower triangular factor, L,
	 * replaces the lower triangle of A; the diagonal elements of L are all 1
	 * and are not stored. The return value is -1 if the row permutation has an
	 * odd number of interchanges or +1 if the row permutation has an even
	 * number of interchanges. The Java code was translated from routine
	 * <TT>gsl_linalg_LU_decomp()</TT> in the GNU Scientific Library.
	 *
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if a zero pivot was encountered during
	 *     the LU decomposition.
	 */
	private static double luDecompose
		(double[][] A,
		 int[] p,
		 int N)
		{
		// Initialize sign of permutation.
		double signum = 1.0;

		// Initialize permutation.
		for (int i = 0; i < N; ++ i)
			{
			p[i] = i;
			}

		// Do all columns.
		for (int j = 0; j < N-1; ++ j)
			{
			// Find pivot element (maximum element) in the j-th column.
			double max = Math.abs (A[j][j]);
			int i_pivot = j;
			for (int i = j+1; i < N; ++ i)
				{
				double aij = Math.abs (A[i][j]);
				if (aij > max)
					{
					max = aij;
					i_pivot = i;
					}
				}

			// If the pivot element is not on the diagonal, interchange rows.
			if (i_pivot != j)
				{
				// Swap pivot row with diagonal row.
				double[] swap = A[i_pivot];
				A[i_pivot] = A[j];
				A[j] = swap;

				// Update permutation.
				int swap2 = p[i_pivot];
				p[i_pivot] = p[j];
				p[j] = swap2;
				signum = - signum;
				}

			// Update the decomposition.
			double ajj = A[j][j];
			if (ajj != 0.0)
				{
				for (int i = j+1; i < N; ++ i)
					{
					double aij = A[i][j] / ajj;
					A[i][j] = aij;
					for (int k = j+1; k < N; ++ k)
						{
						A[i][k] -= aij * A[j][k];
						}
					}
				}
			else // (ajj == 0.0)
				{
				throw new DomainException
					("LinearSolve(): Zero pivot encountered");
				}
			}

		// Return sign of permutation.
		return signum;
		}

	/**
	 * Solve the linear system Ax = b using LU decomposition. On input, LU must
	 * be an NxN matrix which is the output of luDecompose(A,p,N), p must be an
	 * N-element array which is the output of luDecompose(A,p,N), and x must be
	 * an N-element array which is initialized to the right-hand side vector
	 * permuted according to the permutation vector p. On output, LU, p, and b
	 * are unchanged, and x has been replaced with the solution vector.
	 */
	private static void luSolve
		(double[][] LU,
		 int[] p,
		 double[] x,
		 int N)
		{
		// Solve Ly = b using forward substitution. (y uses the same storage as
		// x.)
		for (int i = 1; i < N; ++ i)
			{
			double sum = x[i];
			for (int j = 0; j < i; ++ j)
				{
				sum -= LU[i][j] * x[j];
				}
			x[i] = sum;
			}

		// Solve Ux = y using back substitution.
		x[N-1] /= LU[N-1][N-1];
		for (int i = N-2; i >= 0; -- i)
			{
			double sum = x[i];
			for (int j = i+1; j < N; ++ j)
				{
				sum -= LU[i][j] * x[j];
				}
			x[i] = sum / LU[i][i];
			}
		}

// Unit test main program.

//	/**
//	 * Unit test main program.
//	 */
//	public static void main
//		(String[] args)
//		{
//		int N = Integer.parseInt (args[0]);
//		double[][] A = new double [N] [N];
//		double x = 1.0;
//		System.out.println ("A =");
//		for (int i = 0; i < N; ++ i)
//			{
//			for (int j = 0; j < N; ++ j)
//				{
//				A[i][j] = (i + j) % N + 1;
//				System.out.print (A[i][j]);
//				System.out.print ('\t');
//				x += 1.0;
//				}
//			System.out.println();
//			}
//		LinearSolve solver = new LinearSolve (A);
//		solver.invert (A);
//		System.out.println ("A^{-1} =");
//		for (int i = 0; i < N; ++ i)
//			{
//			for (int j = 0; j < N; ++ j)
//				{
//				System.out.print (A[i][j]);
//				System.out.print ('\t');
//				}
//			System.out.println();
//			}
//		}

	}