1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
//******************************************************************************
//
// File: MDMinimizationDownhillSimplex.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.MDMinimizationDownhillSimplex
//
// This Java source file is copyright (C) 2010 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import static java.lang.Math.*;
import java.util.Arrays;
/**
* Class MDMinimizationDownhillSimplex finds a minimum of a multidimensional
* function using the downhill simplex method of Nelder and Mead. The function
* has <I>N</I> inputs and is represented by an object that implements interface
* {@linkplain MDFunction}. The <TT>minimize()</TT> method finds a (local)
* minimum in the function. The input to the <TT>minimize()</TT> method is an
* <I>N</I>-dimensional <I>simplex,</I> namely a group of <I>N</I>+1 points in
* <I>N</I> dimensions, each point different from all the others. Typically, one
* point of the simplex is an initial guess for the solution, and the other
* points of the simplex are perturbations of the initial guess. The
* <TT>minimize()</TT> method evaluates the function at each point of the
* simplex and moves the simplex through <I>N</I>-dimensional space to minimize
* the smallest function value of any point in the simplex, stopping when the
* relative difference between the smallest and largest function values of any
* points in the simplex falls below a tolerance. The output from the
* <TT>minimize()</TT> method is the final simplex, with the
* smallest-function-value point at position 0. The inputs to and outputs from
* the <TT>minimize()</TT> method are stored in the fields of an instance of
* class MDMinimizationDownhillSimplex.
*
* @author Alan Kaminsky
* @version 05-Oct-2010
*/
public class MDMinimizationDownhillSimplex
{
// Exported data members.
/**
* The multidimensional function to be minimized.
*/
public final MDFunction fcn;
/**
* The number of function arguments.
*/
public final int N;
/**
* The simplex. This is an <I>N</I>+1-element array of <I>N</I>-element
* points. On input to the <TT>minimize()</TT> method, <TT>x</TT> contains a
* simplex with an initial estimate of the solution. On output from the
* <TT>minimize()</TT> method, <TT>x</TT> contains the final simplex, and
* <TT>x[0]</TT> contains the solution, namely the simplex point with the
* smallest function value.
*/
public final double[][] x;
/**
* Function values of the simplex points. An <I>N</I>+1-element array. On
* output from the <TT>minimize()</TT> method, <TT>f[i]</TT> contains the
* function value for simplex point <TT>x[i]</TT>, 0 ≤ <TT>i</TT> ≤
* <I>N</I>−1. In particular, <TT>f[0]</TT> contains the minimized
* function value for the solution.
*/
public final double[] f;
/**
* Tolerance. An input to the <TT>minimize()</TT> method. Must be > 0.
* Termination occurs when the relative difference between the smallest and
* largest function values of points in the simplex is less than the
* tolerance. The default tolerance is 1×10<SUP>−6</SUP>.
*/
public double tol = 1.0e-6;
/**
* Debug flag. An input to the <TT>minimize()</TT> method. If true, the
* <TT>subclassDebug()</TT> method is called at the beginning of every
* iteration. The default setting is false.
*/
public boolean debug;
// Hidden data members.
// Indexes of simplex points with largest, second-largest, and smallest
// function values.
private int i_max;
private int i_2ndmax;
private int i_min;
// Number of function evaluations.
private int evalCount;
// Sum of the simplex points.
private double[] x_sum;
// Trial simplex point, and its function value.
private double[] x_trial;
private double f_trial;
// Maximum number of function evaluations allowed.
private static final int MAXEVAL = 5000;
// Exported constructors.
/**
* Construct a new multidimensional minimization object for the given
* function. Field <TT>fcn</TT> is set to <TT>theFunction</TT>. Field
* <TT>N</TT> is set by calling the function's <TT>argumentLength()</TT>
* method. Field <TT>x</TT>, the simplex, is allocated with the proper size;
* all simplex points are initially 0. Field <TT>f</TT>, the function
* values, is allocated with the proper size.
*
* @param theFunction Multidimensional function to be minimized.
*
* @exception NullPointerException
* (unchecked exception) Thrown if <TT>theFunction</TT> is null.
*/
public MDMinimizationDownhillSimplex
(MDFunction theFunction)
{
fcn = theFunction;
N = theFunction.argumentLength();
x = new double [N + 1] [N];
f = new double [N + 1];
x_sum = new double [N];
x_trial = new double [N];
}
// Exported operations.
/**
* Set the simplex to the given point plus the same perturbation along each
* dimension. The field <TT>x[0]</TT> is set to <TT>x</TT>; the field
* <TT>x[1]</TT> is set to <TT>x</TT> with <TT>delta</TT> added to element
* 0; the field <TT>x[2]</TT> is set to <TT>x</TT> with <TT>delta</TT> added
* to element 1; and so on.
*
* @param x Simplex point. Must be an <I>N</I>-element array.
* @param delta Perturbation along every dimension. Must be nonzero.
*/
public void setSimplex
(double[] x,
double delta)
{
System.arraycopy (x, 0, this.x[0], 0, N);
for (int i = 0; i < N; ++ i) this.x[i+1][i] += delta;
}
/**
* Set the simplex to the given point plus a different perturbation along
* each dimension. The field <TT>x[0]</TT> is set to <TT>x</TT>; the field
* <TT>x[1]</TT> is set to <TT>x</TT> with <TT>delta[0]</TT> added to
* element 0; the field <TT>x[2]</TT> is set to <TT>x</TT> with
* <TT>delta[1]</TT> added to element 1; and so on.
*
* @param x Simplex point. Must be an <I>N</I>-element array.
* @param delta Perturbations along each dimension. All must be nonzero.
*/
public void setSimplex
(double[] x,
double[] delta)
{
System.arraycopy (x, 0, this.x[0], 0, N);
for (int i = 0; i < N; ++ i) this.x[i+1][i] += delta[i];
}
/**
* Minimize the multidimensional function. On input, the field <TT>x</TT>
* must be filled in with an initial simplex, and the field <TT>tol</TT>
* must be set to the desired tolerance. On output, the field <TT>x</TT>
* contains the solution. For further information, see the documentation for
* each field.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>tol</TT> ≤ 0.
* @exception TooManyIterationsException
* (unchecked exception) Thrown if too many function evaluations (5,000)
* occurred without finding a minimum.
*/
public void minimize()
{
// Verify preconditions.
if (tol <= 0.0)
{
throw new IllegalArgumentException
("MDMinimizationDownhillSimplex.minimize(): tol = "+tol+
" illegal");
}
// Compute function values for initial simplex.
for (int i = 0; i <= N; ++ i)
{
f[i] = fcn.f (x[i]);
}
evalCount = N + 1;
// Compute sum of initial simplex points.
compute_x_sum();
// Iterate until solution is found or too many function evaluations.
for (int iter = 1; ; ++ iter)
{
if (debug) subclassDebug (iter, evalCount);
// Find largest, second-largest, and smallest simplex points.
if (f[0] > f[1])
{
i_max = 0;
i_2ndmax = i_min = 1;
}
else
{
i_max = 1;
i_2ndmax = i_min = 0;
}
for (int i = 2; i <= N; ++ i)
{
if (f[i] > f[i_max])
{
i_2ndmax = i_max;
i_max = i;
}
else if (f[i] > f[i_2ndmax])
{
i_2ndmax = i;
}
if (f[i] < f[i_min])
{
i_min = i;
}
}
// Compute relative difference between largest and smallest simplex
// points and check for termination.
if (reldif (f[i_max], f[i_min]) < tol)
{
// We're done. Put solution in position 0.
swap_x (0, i_min);
swap_f (0, i_min);
return;
}
// Check for too many function evaluations.
if (evalCount >= MAXEVAL)
{
throw new TooManyIterationsException
("MDMinimizationDownhillSimplex.minimize(): Too many function evaluations ("+
MAXEVAL+") with no solution");
}
// Try reflecting largest point through opposite face of simplex.
compute_x_trial (-1.0);
// If reflection gave a new smallest point, try an additional
// expansion.
if (f_trial <= f[i_min])
{
compute_x_trial (2.0);
}
// If reflection was worse than second-largest point, try a
// one-dimensional contraction of largest point.
else if (f_trial >= f[i_2ndmax])
{
double prev_f_trial = f_trial;
compute_x_trial (0.5);
// If one-dimensional contraction gave no improvement, try an
// all-dimensional contraction toward smallest point.
if (f_trial >= prev_f_trial)
{
double[] x_min = x[i_min];
for (int i = 0; i <= N; ++ i)
{
if (i != i_min)
{
double[] x_i = x[i];
for (int j = 0; j < N; ++ j)
{
x_i[j] = 0.5*(x_i[j] + x_min[j]);
}
f[i] = fcn.f (x_i);
}
}
evalCount += N;
compute_x_sum();
}
}
}
}
// Hidden operations.
/**
* Do debugging. If the <TT>debug</TT> field is true, the
* <TT>subclassDebug()</TT> method is called at the beginning of every
* iteration. The fields of this object contain the current state of the
* algorithm. The fields of this object must not be altered.
* <P>
* The default implementation of the <TT>subclassDebug()</TT> method does
* nothing. A subclass can override the <TT>subclassDebug()</TT> method to
* do something, such as print debugging information.
*
* @param iter Iteration number.
* @param eval Number of function evaluations.
*/
protected void subclassDebug
(int iter,
int eval)
{
}
/**
* Computes the sum of the simplex points and puts the answer in x_sum.
*/
private void compute_x_sum()
{
Arrays.fill (x_sum, 0.0);
for (int i = 0; i <= N; ++ i)
{
double[] x_i = x[i];
for (int j = 0; j < N; ++ j)
{
x_sum[j] += x_i[j];
}
}
}
/**
* Returns the relative difference of the arguments.
*/
private double reldif
(double a,
double b)
{
return 2.0*abs(a - b)/(abs(a) + abs(b) + 1.0e-10);
}
/**
* Swap the elements of the x array at the given indexes.
*/
private void swap_x
(int i,
int j)
{
double[] tmp = x[i];
x[i] = x[j];
x[j] = tmp;
}
/**
* Swap the elements of the f array at the given indexes.
*/
private void swap_f
(int i,
int j)
{
double tmp = f[i];
f[i] = f[j];
f[j] = tmp;
}
/**
* Computes a trial simplex point by extrapolating the largest point across
* the opposite face of the simplex by the given factor. Results are stored
* in fields x_trial and f_trial. If the trial simplex point's function
* value is less than the largest simplex point's function value, replaces
* the largest simplex point with the trial simplex point.
*/
private void compute_x_trial
(double factor)
{
double a = (1.0 - factor)/N;
double b = a - factor;
double[] x_max = x[i_max];
for (int i = 0; i < N; ++ i)
{
x_trial[i] = a*x_sum[i] - b*x_max[i];
}
f_trial = fcn.f (x_trial);
++ evalCount;
if (f_trial < f[i_max])
{
for (int i = 0; i < N; ++ i)
{
x_sum[i] = x_sum[i] - x_max[i] + x_trial[i];
x_max[i] = x_trial[i];
}
f[i_max] = f_trial;
}
}
// Unit test main program.
// /**
// * Unit test main program.
// */
// public static void main
// (String[] args)
// {
// MDFunction fcn = new MDFunction()
// {
// public int argumentLength()
// {
// return 2;
// }
// public double f (double[] x)
// {
// return 2.0 - gaussian (x[0]) - gaussian (x[1]);
// }
// private double gaussian (double x)
// {
// double d = x - 0.5;
// return exp (-d*d);
// }
// };
// MDMinimizationDownhillSimplex minimizer =
// new MDMinimizationDownhillSimplex (fcn)
// {
// protected void subclassDebug (int iter, int eval)
// {
// System.out.printf ("--------%n");
// System.out.printf ("Iteration %d, %d evaluations%n",
// iter, eval);
// for (int i = 0; i <= N; ++ i)
// {
// System.out.printf ("x[%d] =", i);
// for (int j = 0; j < N; ++ j)
// {
// System.out.printf (" %g", x[i][j]);
// }
// System.out.printf (", f[%d] = %g%n", i, f[i]);
// }
// }
// };
// minimizer.debug = true;
// minimizer.setSimplex (new double[] {0.0, 0.0}, 0.1);
// minimizer.minimize();
// System.out.printf ("--------%n");
// System.out.printf ("Solution: x =");
// for (int j = 0; j < minimizer.N; ++ j)
// {
// System.out.printf (" %g", minimizer.x[0][j]);
// }
// System.out.printf (", f = %g%n", minimizer.f[0]);
// }
}
|