File: NonLinearLeastSquares.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (1366 lines) | stat: -rw-r--r-- 39,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
//******************************************************************************
//
// File:    NonLinearLeastSquares.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.NonLinearLeastSquares
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

/**
 * Class NonLinearLeastSquares provides a method for minimizing the sum of the
 * squares of a series of nonlinear functions. There are <I>M</I> functions,
 * each of which has <I>N</I> inputs. These functions are represented by an
 * object that implements interface {@linkplain VectorFunction}. The
 * <TT>solve()</TT> method finds a vector <B>x</B> such that
 * &Sigma;<SUB><I>i</I></SUB>&nbsp;[<I>f</I><SUB><I>i</I></SUB>(<B>x</B>)]<SUP>2</SUP>
 * is minimized. The inputs to and outputs from the <TT>solve()</TT> method are
 * stored in the fields of an instance of class NonLinearLeastSquares. The
 * Levenberg-Marquardt method is used to find the solution.
 * <P>
 * The Java code is a translation of the Fortran subroutine <TT>LMDER</TT> from
 * the MINPACK library. MINPACK was developed by Jorge Mor&eacute;, Burt Garbow,
 * and Ken Hillstrom at Argonne National Laboratory. For further information,
 * see
 * <A HREF="http://www.netlib.org/minpack/" TARGET="_top">http://www.netlib.org/minpack/</A>.
 *
 * @author  Alan Kaminsky
 * @version 10-Jun-2008
 */
public class NonLinearLeastSquares
	{

// Exported data members.

	/**
	 * The nonlinear functions <I>f</I><SUB><I>i</I></SUB>(<B>x</B>) to be
	 * minimized.
	 */
	public final VectorFunction fcn;

	/**
	 * The number of functions.
	 */
	public final int M;

	/**
	 * The number of arguments for each function.
	 */
	public final int N;

	/**
	 * The <I>N</I>-element <B>x</B> vector for the least squares problem. On
	 * input to the <TT>solve()</TT> method, <TT>x</TT> contains an initial
	 * estimate of the solution vector. On output from the <TT>solve()</TT>
	 * method, <TT>x</TT> contains the final solution vector.
	 */
	public final double[] x;

	/**
	 * The <I>M</I>-element result vector. On output from the <TT>solve()</TT>
	 * method, for <I>i</I> = 0 to <I>M</I>&minus;1,
	 * <TT>fvec</TT><SUB><I>i</I></SUB> = <I>f</I><SUB><I>i</I></SUB>(<B>x</B>),
	 * where <B>x</B> is the final solution vector.
	 */
	public final double[] fvec;

	/**
	 * The <I>M</I>&times;<I>N</I>-element Jacobian matrix. On output from the
	 * <TT>solve()</TT> method, the upper <I>N</I>&times;<I>N</I> submatrix of
	 * <TT>fjac</TT> contains an upper triangular matrix <B>R</B> with diagonal
	 * elements of nonincreasing magnitude such that
	 * <P>
	 * <CENTER>
	 * <B>P</B><SUP>T</SUP>&nbsp;(<B>J</B><SUP>T</SUP>&nbsp;<B>J</B>)&nbsp;<B>P</B>&emsp;=&emsp;<B>R</B><SUP>T</SUP>&nbsp;<B>R</B>
	 * </CENTER>
	 * <P>
	 * where <B>P</B> is a permutation matrix and <B>J</B> is the final
	 * calculated Jacobian. Column <I>j</I> of <B>P</B> is column
	 * <TT>ipvt[j]</TT> (see below) of the identity matrix. The lower
	 * trapezoidal part of <TT>fjac</TT> contains information generated during
	 * the computation of <B>R</B>.
	 * <P>
	 * <TT>fjac</TT> is used to calculate the covariance matrix of the solution.
	 * This calculation is not yet implemented.
	 */
	public final double[][] fjac;

	/**
	 * The <I>N</I>-element permutation vector for <TT>fjac</TT>. On output from
	 * the <TT>solve()</TT> method, <TT>ipvt</TT> defines a permutation matrix
	 * <B>P</B> such that <B>JP</B> = <B>QR</B>, where <B>J</B> is the final
	 * calculated Jacobian, <B>Q</B> is orthogonal (not stored), and <B>R</B> is
	 * upper triangular with diagonal elements of nonincreasing magnitude.
	 * Column <I>j</I> of <B>P</B> is column <TT>ipvt[j]</TT> of the identity
	 * matrix.
	 */
	public final int[] ipvt;

	/**
	 * Tolerance. An input to the <TT>solve()</TT> method. Must be &gt;= 0.
	 * Termination occurs when the algorithm estimates either that the relative
	 * error in the sum of squares is at most <TT>tol</TT> or that the relative
	 * error between <TT>x</TT> and the solution is at most <TT>tol</TT>. The
	 * default tolerance is 1&times;10<SUP>&minus;6</SUP>.
	 */
	public double tol = 1.0e-6;

	/**
	 * Information about the outcome. An output of the <TT>solve()</TT> method.
	 * The possible values are:
	 * <UL>
	 * <LI>
	 * 0 -- Improper input parameters. Also, an IllegalArgumentException is
	 * thrown.
	 * <LI>
	 * 1 -- Algorithm estimates that the relative error in the sum of squares is
	 * at most <TT>tol</TT>.
	 * <LI>
	 * 2 -- Algorithm estimates that the relative error between <TT>x</TT> and
	 * the solution is at most <TT>tol</TT>.
	 * <LI>
	 * 3 -- Conditions for <TT>info</TT> = 1 and <TT>info</TT> = 2 both hold.
	 * <LI>
	 * 4 -- <TT>fvec</TT> is orthogonal to the columns of the Jacobian to
	 * machine precision.
	 * <LI>
	 * 5 -- Number of function evaluations has reached 100(<I>N</I>+1). Also, a
	 * TooManyIterationsException is thrown.
	 * <LI>
	 * 6 -- <TT>tol</TT> is too small. No further reduction in the sum of
	 * squares is possible.
	 * <LI>
	 * 7 -- <TT>tol</TT> is too small. No further improvement in the approximate
	 * solution <TT>x</TT> is possible.
	 * </UL>
	 */
	public int info;

	/**
	 * Debug printout flag. An input to the <TT>solve()</TT> method. If
	 * <TT>nprint</TT> &gt; 0, the <TT>subclassDebug()</TT> method is called at
	 * the beginning of the first iteration and every <TT>nprint</TT> iterations
	 * thereafter and immediately prior to return. If <TT>nprint</TT> &lt;= 0,
	 * the <TT>subclassDebug()</TT> method is not called. The default setting is
	 * 0.
	 */
	public int nprint = 0;

	// Working variables.
	private double[] diag;
	private double[] qtf;
	private double[] wa1;
	private double[] wa2;
	private double[] wa3;
	private double[] wa4;
	private int nfev;
	private int njev;

// Hidden constants.

	// Machine epsilon.
	private static final double dpmpar_1 = 2.22044604926e-16;

	// Smallest positive nonzero double value.
	private static final double dpmpar_2 = 2.22507385852e-308;

	// Largest positive double value.
	private static final double dpmpar_3 = 1.79769313485e+308;

	// Used in the enorm() method.
	private static final double rdwarf = 3.834e-20;
	private static final double rgiant = 1.304e+19;

// Exported constructors.

	/**
	 * Construct a new nonlinear least squares problem for the given functions.
	 * Field <TT>fcn</TT> is set to <TT>theFunction</TT>. Fields <TT>M</TT> and
	 * <TT>N</TT> are set by calling the <TT>resultLength()</TT> and
	 * <TT>argumentLength()</TT> methods of <TT>theFunction</TT>. The vector and
	 * matrix fields <TT>x</TT>, <TT>fvec</TT>, <TT>fjac</TT>, and <TT>ipvt</TT>
	 * are allocated with the proper sizes but are not filled in.
	 *
	 * @param  theFunction  Nonlinear functions to be minimized.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>theFunction</TT> is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <I>M</I> &lt;= 0, <I>N</I> &lt;= 0,
	 *     or <I>M</I> &lt; <I>N</I>.
	 */
	public NonLinearLeastSquares
		(VectorFunction theFunction)
		{
		fcn = theFunction;
		M = theFunction.resultLength();
		N = theFunction.argumentLength();
		if (M <= 0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares(): M (= "+M+") <= 0, illegal");
			}
		if (N <= 0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares(): N (= "+N+") <= 0, illegal");
			}
		if (M < N)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares(): M (= "+M+") < N (= "+N+
				 "), illegal");
			}

		x = new double [N];
		fvec = new double [M];
		fjac = new double [M] [N];
		ipvt = new int [N];

		diag = new double [N];
		qtf = new double [N];
		wa1 = new double [N];
		wa2 = new double [N];
		wa3 = new double [N];
		wa4 = new double [M];
		}

// Exported operations.

	/**
	 * Solve this nonlinear least squares minimization problem. The
	 * <TT>solve()</TT> method finds a vector <B>x</B> such that
	 * &Sigma;<SUB><I>i</I></SUB>&nbsp;[<I>f</I><SUB><I>i</I></SUB>(<B>x</B>)]<SUP>2</SUP>
	 * is minimized. On input, the field <TT>x</TT> must be filled in with an
	 * initial estimate of the solution vector, and the field <TT>tol</TT> must
	 * be set to the desired tolerance. On output, the other fields are filled
	 * in with the solution as explained in the documentation for each field.
	 *
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>tol</TT> &lt;= 0.
	 * @exception  TooManyIterationsException
	 *     (unchecked exception) Thrown if too many iterations occurred without
	 *     finding a minimum (100(<I>N</I>+1) iterations).
	 */
	public void solve()
		{
		info = 0;
		if (tol < 0.0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.solve(): tol (= "+tol+") < 0, illegal");
			}
		lmder
			(/*ftol  */ tol,
			 /*xtol  */ tol,
			 /*gtol  */ 0.0,
			 /*maxfev*/ 100*(N+1),
			 /*mode  */ 1,
			 /*factor*/ 100.0);
		if (info == 5)
			{
			throw new TooManyIterationsException
				("NonLinearLeastSquares.solve(): Too many iterations");
			}
		else if (info == 8)
			{
			info = 4;
			}
		}

// Hidden operations.

	/**
	 * Levenberg-Marquardt algorithm with user-supplied derivatives.
     * <P>
	 * The purpose of lmder() is to minimize the sum of the squares of m
	 * nonlinear functions in n variables by a modification of the
	 * Levenberg-Marquardt algorithm. The user must provide a subroutine which
	 * calculates the functions and the Jacobian.
	 *
	 * @param  ftol
	 *     A nonnegative input variable. Termination occurs when both the actual
	 *     and predicted relative reductions in the sum of squares are at most
	 *     ftol. Therefore, ftol measures the relative error desired in the sum
	 *     of squares.
	 * @param  xtol
	 *     A nonnegative input variable. Termination occurs when the relative
	 *     error between two consecutive iterates is at most xtol. Therefore,
	 *     xtol measures the relative error desired in the approximate solution.
	 * @param  gtol
	 *     A nonnegative input variable. Termination occurs when the cosine of
	 *     the angle between fvec and any column of the jacobian is at most gtol
	 *     in absolute value. Therefore, gtol measures the orthogonality desired
	 *     between the function vector and the columns of the jacobian.
	 * @param  maxfev
	 *     A positive integer input variable. Termination occurs when the number
	 *     of calls to fcn.f() has reached maxfev.
	 * @param  mode
	 *     An integer input variable. If mode = 1, the variables will be scaled
	 *     internally. If mode = 2, the scaling is specified by the input diag.
	 *     Other values of mode are equivalent to mode = 1.
	 * @param  factor
	 *     A positive input variable used in determining the initial step bound.
	 *     This bound is set to the product of factor and the Euclidean norm of
	 *     diag*x if nonzero, or else to factor itself. In most cases factor
	 *     should lie in the interval (0.1,100.0). 100.0 is a generally
	 *     recommended value.
	 */
	private void lmder
		(double ftol,
		 double xtol,
		 double gtol,
		 int maxfev,
		 int mode,
		 double factor)
		{
		int iter, l;
		double actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, par, pnorm;
		double prered, ratio, sum, temp, temp1, temp2, xnorm;

		// epsmch is the machine precision.
		epsmch = dpmpar_1;

		info = 0;
		nfev = 0;
		njev = 0;
		delta = 0.0;
		xnorm = 0.0;

		// Check the input parameters for errors.
		if (ftol < 0.0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.lmder(): ftol (= "+ftol+
				 ") < 0, illegal");
			}
		if (xtol < 0.0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.lmder(): xtol (= "+xtol+
				 ") < 0, illegal");
			}
		if (gtol < 0.0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.lmder(): gtol (= "+gtol+
				 ") < 0, illegal");
			}
		if (maxfev <= 0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.lmder(): maxfev (= "+maxfev+
				 ") <= 0, illegal");
			}
		if (factor <= 0.0)
			{
			throw new IllegalArgumentException
				("NonLinearLeastSquares.lmder(): factor (= "+factor+
				 ") <= 0, illegal");
			}
		if (mode == 2)
			{
			for (int j = 0; j < N; ++ j)
				{
				if (diag[j] <= 0.0)
					{
					throw new IllegalArgumentException
						("NonLinearLeastSquares.lmder(): diag["+j+"] (= "+
						 diag[j]+") <= 0, illegal");
					}
				}
			}

		// Evaluate the function at the starting point and calculate its norm.
		fcn.f(x,fvec);
		++ nfev;
		fnorm = enorm(M,fvec);

		// Initialize Levenberg-Marquardt parameter and iteration counter.
		par = 0.0;
		iter = 1;

		// Beginning of the outer loop.
		outerloop: for (;;)
			{
			// Calculate the Jacobian matrix.
			fcn.df(x,fjac);
			++ njev;

			// If requested, print debug information.
			if (nprint > 0 && ((iter-1) % nprint) == 0) subclassDebug (iter);

			// Compute the QR factorization of the Jacobian.
			qrfac(M,N,fjac,true,ipvt,wa1,wa2,wa3);

			if (iter == 1)
				{
				// On the first iteration and if mode is 1, scale according to
				// the norms of the columns of the initial Jacobian.
				if (mode != 2)
					{
					for (int j = 1; j < N; ++ j)
						{
						diag[j] = wa2[j];
						if (wa2[j] == 0.0) diag[j] = 1.0;
						}
					}

				// On the first iteration, calculate the norm of the scaled x
				// and initialize the step bound delta.
				for (int j = 0; j < N; ++ j)
					{
					wa3[j] = diag[j]*x[j];
					}
				xnorm = enorm(N,wa3);
				delta = factor*xnorm;
				if (delta == 0.0) delta = factor;
				}

			// Form (q transpose)*fvec and store the first N components in qtf.
			for (int i = 0; i < M; ++ i)
				{
				wa4[i] = fvec[i];
				}
			for (int j = 0; j < N; ++ j)
				{
				if (fjac[j][j] != 0.0)
					{
					sum = 0.0;
					for (int i = j; i < M; ++ i)
						{
						sum += fjac[i][j]*wa4[i];
						}
					temp = -sum/fjac[j][j];
					for (int i = j; i < M; ++ i)
						{
						wa4[i] += fjac[i][j]*temp;
						}
					}
				fjac[j][j] = wa1[j];
				qtf[j] = wa4[j];
				}

			// Compute the norm of the scaled gradient.
			gnorm = 0.0;
			if (fnorm != 0.0)
				{
				for (int j = 0; j < N; ++ j)
					{
					l = ipvt[j];
					if (wa2[l] != 0.0)
						{
						sum = 0.0;
						for (int i = 0; i <= j; ++ i)
							{
							sum += fjac[i][j]*(qtf[i]/fnorm);
							}
						gnorm = Math.max(gnorm,Math.abs(sum/wa2[l]));
						}
					}
				}

			// Test for convergence of the gradient norm.
			if (gnorm <= gtol)
				{
				info = 4;
				break outerloop;
				}

			// Rescale if necessary.
			if (mode != 2)
				{
				for (int j = 0; j < N; ++ j)
					{
					diag[j] = Math.max(diag[j],wa2[j]);
					}
				}

			// Beginning of the inner loop.
			innerloop: for (;;)
				{
				// Determine the Levenberg-Marquardt parameter.
				par = lmpar(N,fjac,ipvt,diag,qtf,delta,par,wa1,wa2,wa3,wa4);

				// Store the direction p and x + p. Calculate the norm of p.
				for (int j = 0; j < N; ++ j)
					{
					wa1[j] = -wa1[j];
					wa2[j] = x[j] + wa1[j];
					wa3[j] = diag[j]*wa1[j];
					}
				pnorm = enorm(N,wa3);

				// On the first iteration, adjust the initial step bound.
				if (iter == 1) delta = Math.min(delta,pnorm);

				// Evaluate the function at x + p and calculate its norm.
				fcn.f(wa2,wa4);
				++ nfev;
				fnorm1 = enorm(M,wa4);

				// Compute the scaled actual reduction.
				actred = -1.0;
				if (0.1*fnorm1 < fnorm) actred = 1.0 - sqr(fnorm1/fnorm);

				// Compute the scaled predicted reduction and the scaled
				// directional derivative.
				for (int j = 0; j < N; ++ j)
					{
					wa3[j] = 0.0;
					l = ipvt[j];
					temp = wa1[l];
					for (int i = 0; i <= j; ++ i)
						{
						wa3[i] += fjac[i][j]*temp;
						}
					}
				temp1 = enorm(N,wa3)/fnorm;
				temp2 = (Math.sqrt(par)*pnorm)/fnorm;
				prered = sqr(temp1) + sqr(temp2)*2.0;
				dirder = -(sqr(temp1) + sqr(temp2));

				// Compute the ratio of the actual to the predicted reduction.
				ratio = 0.0;
				if (prered != 0.0) ratio = actred/prered;

				// Update the step bound.
				if (ratio <= 0.25)
					{
					temp =
						actred >= 0.0 ?
							0.5 :
							0.5*dirder/(dirder + 0.5*actred);
					if (0.1*fnorm1 >= fnorm || temp < 0.1) temp = 0.1;
					delta = temp*Math.min(delta,pnorm*10.0);
					par = par/temp;
					}
				else if (par == 0.0 || ratio >= 0.75)
					{
					delta = pnorm*2.0;
					par = 0.5*par;
					}

				// Test for successful iteration.
				if (ratio >= 0.0001)
					{
					// Successful iteration. Update x, fvec, and their norms.
					for (int j = 0; j < N; ++ j)
						{
						x[j] = wa2[j];
						wa2[j] = diag[j]*x[j];
						}
					for (int i = 0; i < M; ++ i)
						{
						fvec[i] = wa4[i];
						}
					xnorm = enorm(N,wa2);
					fnorm = fnorm1;
					++ iter;
					}

				// Tests for convergence.
				boolean fconv =
					Math.abs(actred) <= ftol && prered <= ftol && ratio <= 2.0;
				boolean xconv =
					delta <= xtol*xnorm;
				info = (fconv ? 1 : 0) + (xconv ? 2 : 0);
				if (info != 0) break outerloop;

				// Tests for termination and stringent tolerances.
				if (nfev >= maxfev) info = 5;
				if (Math.abs(actred) <= epsmch &&
					prered <= epsmch && ratio <= 2.0) info = 6;
				if (delta <= epsmch*xnorm) info = 7;
				if (gnorm <= epsmch) info = 8;
				if (info != 0) break outerloop;

				// End of the inner loop. Repeat if iteration unsuccessful.
				if (ratio >= 0.0001) break innerloop;
				}

			// End of the outer loop.
			}

		// Finished.
		if (nprint > 0) subclassDebug (iter);
		}

	/**
	 * Calculate the Levenberg-Marquardt parameter.
	 * <P>
	 * Given an M by N matrix a, an N by N nonsingular diagonal matrix d, an
	 * M-vector b, and a positive number delta, the problem is to determine a
	 * value for the parameter par such that if x solves the system
	 * <PRE>
	 *     a*x = b ,     sqrt(par)*d*x = 0 ,
	 * </PRE>
	 * in the least squares sense, and dxnorm is the euclidean norm of d*x, then
	 * either par is zero and
	 * <PRE>
	 *     (dxnorm-delta) .le. 0.1*delta ,
	 * </PRE>
	 * or par is positive and
	 * <PRE>
	 *     abs(dxnorm-delta) .le. 0.1*delta .
	 * </PRE>
	 * <P>
	 * This subroutine completes the solution of the problem if it is provided
	 * with the necessary information from the QR factorization, with column
	 * pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, q
	 * has orthogonal columns, and r is an upper triangular matrix with diagonal
	 * elements of nonincreasing magnitude, then lmpar() expects the full upper
	 * triangle of r, the permutation matrix p, and the first n components of (q
	 * transpose)*b. On output lmpar() also provides an upper triangular matrix
	 * s such that
	 * <PRE>
	 *      t   t                   t
	 *     p *(a *a + par*d*d)*p = s *s .
	 * </PRE>
	 * s is employed within lmpar and may be of separate interest.
	 * <P>
	 * Only a few iterations are generally needed for convergence of the
	 * algorithm. If, however, the limit of 10 iterations is reached, then the
	 * output par will contain the best value obtained so far.
	 *
	 * @param  n
	 *     A positive integer input variable set to the order of r.
	 * @param  r
	 *     An n by n array. On input the full upper triangle must contain the
	 *     full upper triangle of the matrix r. On output the full upper
	 *     triangle is unaltered, and the strict lower triangle contains the
	 *     strict upper triangle (transposed) of the upper triangular matrix s.
	 * @param  ipvt
	 *     An integer input array of length n which defines the permutation
	 *     matrix p such that a*p = q*r. Column j of p is column ipvt[j] of the
	 *     identity matrix.
	 * @param  diag
	 *     An input array of length n which must contain the diagonal elements
	 *     of the matrix d.
	 * @param  qtb
	 *     An input array of length n which must contain the first n elements of
	 *     the vector (q transpose)*b.
	 * @param  delta
	 *     A positive input variable which specifies an upper bound on the
	 *     Euclidean norm of d*x.
	 * @param  par
	 *     A nonnegative variable. On input par contains an initial estimate of
	 *     the levenberg-marquardt parameter. The return value of lmpar() is the
	 *     final estimate for par.
	 * @param  x
	 *     An output array of length n which contains the least squares solution
	 *     of the system a*x = b, sqrt(par)*d*x = 0, for the returned par.
	 * @param  sdiag
	 *     An output array of length n which contains the diagonal elements of
	 *     the upper triangular matrix s.
	 * @param  wa1
	 *     A work array of length n.
	 * @param  wa2
	 *     A work array of length n.
	 *
	 * @return  Final estimate of the Levenberg-Marquardt parameter par.
	 */
	private static double lmpar
		(int n,
		 double[][] r,
		 int[] ipvt,
		 double[] diag,
		 double[] qtb,
		 double delta,
		 double par,
		 double[] x,
		 double[] sdiag,
		 double[] wa1,
		 double[] wa2)
		{
		int iter, nsing;
		double dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp;

		// dwarf is the smallest positive magnitude.
		dwarf = dpmpar_2;

		// Compute and store in x the Gauss-Newton direction. If the Jacobian is
		// rank-deficient, obtain a least-squares solution.
		nsing = n;
		for (int j = 0; j < n; ++ j)
			{
			wa1[j] = qtb[j];
			if (r[j][j] == 0.0 && nsing == n) nsing = j;
			if (nsing < n) wa1[j] = 0.0;
			}
		for (int j = nsing-1; j >= 0; -- j)
			{
			wa1[j] = wa1[j]/r[j][j];
			temp = wa1[j];
			for (int i = 0; i < j; ++ i)
				{
				wa1[i] -= r[i][j]*temp;
				}
			}
		for (int j = 0; j < n; ++ j)
			{
			x[ipvt[j]] = wa1[j];
			}

		// Initialize the iteration counter. Evaluate the function at the
		// origin, and test for acceptance of the Gauss-Newton direction.
		iter = 0;
		for (int j = 0; j < n; ++ j)
			{
			wa2[j] = diag[j]*x[j];
			}
		dxnorm = enorm(n,wa2);
		fp = dxnorm - delta;
		if (fp <= 0.1*delta) return 0.0;

		// If the Jacobian is not rank deficient, the Newton step provides a
		// lower bound, parl, for the zero of the function. Otherwise set this
		// bound to zero.
		parl = 0.0;
		if (nsing == n)
			{
			for (int j = 0; j < n; ++ j)
				{
				int l = ipvt[j];
				wa1[j] = diag[l]*(wa2[l]/dxnorm);
				}
			for (int j = 0; j < n; ++ j)
				{
				sum = 0.0;
				for (int i = 0; i < j; ++ i)
					{
					sum += r[i][j]*wa1[i];
					}
				wa1[j] = (wa1[j] - sum)/r[j][j];
				}
			temp = enorm(n,wa1);
			parl = ((fp/delta)/temp)/temp;
			}

		// Calculate an upper bound, paru, for the zero of the function.
		for (int j = 0; j < n; ++ j)
			{
			sum = 0.0;
			for (int i = 0; i <= j; ++ i)
				{
				sum += r[i][j]*qtb[i];
				}
			wa1[j] = sum/diag[ipvt[j]];
			}
		gnorm = enorm(n,wa1);
		paru = gnorm/delta;
		if (paru == 0.0) paru = dwarf/Math.min(delta,0.1);

		// If the input par lies outside of the interval (parl,paru), set par to
		// the closer endpoint.
		par = Math.max(par,parl);
		par = Math.min(par,paru);
		if (par == 0.0) par = gnorm/dxnorm;

		iterloop: for (;;)
			{
			// Beginning of an iteration.
			++ iter;

			// Evaluate the function at the current value of par.
			if (par == 0.0) par = Math.max(dwarf,0.001*paru);
			temp = Math.sqrt(par);
			for (int j = 0; j < n; ++ j)
				{
				wa1[j] = temp*diag[j];
				}
			qrsolv(n,r,ipvt,wa1,qtb,x,sdiag,wa2);
			for (int j = 0; j < n; ++ j)
				{
				wa2[j] = diag[j]*x[j];
				}
			dxnorm = enorm(n,wa2);
			temp = fp;
			fp = dxnorm - delta;

			// If the function is small enough, accept the current value of par.
			// Also test for the exceptional cases where parl is zero or the
			// number of iterations has reached 10.
			if (Math.abs(fp) <= 0.1*delta ||
					(parl == 0.0 && fp <= temp && temp < 0.0) ||
					iter == 10)
				{
				break iterloop;
				}

			// Compute the Newton correction.
			for (int j = 0; j < n; ++ j)
				{
				int l = ipvt[j];
				wa1[j] = diag[l]*(wa2[l]/dxnorm);
				}
			for (int j = 0; j < n; ++ j)
				{
				wa1[j] /= sdiag[j];
				temp = wa1[j];
				for (int i = j+1; i < n; ++ i)
					{
					wa1[i] -= r[i][j]*temp;
					}
				}
			temp = enorm(n,wa1);
			parc = ((fp/delta)/temp)/temp;

			// Depending on the sign of the function, update parl or paru.
			if (fp > 0.0) parl = Math.max(parl,par);
			if (fp < 0.0) paru = Math.min(paru,par);

			// Compute an improved estimate for par.
			par = Math.max(parl,par+parc);

			// End of an iteration.
			}

		// Finished.
		return par;
		}

	/**
	 * Compute the QR factorization of a matrix.
	 * <P>
	 * This subroutine uses Householder transformations with column pivoting
	 * (optional) to compute a QR factorization of the m by n matrix a. That is,
	 * qrfac() determines an orthogonal matrix q, a permutation matrix p, and an
	 * upper trapezoidal matrix r with diagonal elements of nonincreasing
	 * magnitude, such that a*p = q*r. The Householder transformation for column
	 * k, k = 1,2,...,min(m,n), is of the form
	 * <PRE>
	 *                     t
	 *     i - (1/u(k))*u*u
	 * </PRE>
	 * where u has zeros in the first k-1 positions. The form of this
	 * transformation and the method of pivoting first appeared in the
	 * corresponding LINPACK subroutine.
	 *
	 * @param  m
	 *     A positive integer input variable set to the number of rows of a.
	 * @param  n
	 *     A positive integer input variable set to the number of columns of a.
	 * @param  a
	 *     An m by n array. On input a contains the matrix for which the QR
	 *     factorization is to be computed. On output the strict upper
	 *     trapezoidal part of a contains the strict upper trapezoidal part of
	 *     r, and the lower trapezoidal part of a contains a factored form of q
	 *     (the non-trivial elements of the u vectors described above).
	 * @param  pivot
	 *     A Boolean input variable. If pivot is set true, then column pivoting
	 *     is enforced. If pivot is set false, then no column pivoting is done.
	 * @param  ipvt
	 *     An integer output array of length n. ipvt defines the permutation
	 *     matrix p such that a*p = q*r. Column j of p is column ipvt(j) of the
	 *     identity matrix. If pivot is false, ipvt is not referenced.
	 * @param  rdiag
	 *     An output array of length n which contains the diagonal elements of
	 *     r.
	 * @param  acnorm
	 *     An output array of length n which contains the norms of the
	 *     corresponding columns of the input matrix a. If this information is
	 *     not needed, then acnorm can coincide with rdiag.
	 * @param  wa
	 *     A work array of length n. If pivot is false, then wa can coincide
	 *     with rdiag.
	 */
	private static void qrfac
		(int m,
		 int n,
		 double[][] a,
		 boolean pivot,
		 int[] ipvt,
		 double[] rdiag,
		 double[] acnorm,
		 double[] wa)
		{
		int kmax, minmn, itemp;
		double ajnorm, epsmch, sum, temp;

		// epsmch is the machine precision.
		epsmch = dpmpar_1;

		// Compute the initial column norms and initialize several arrays.
		for (int j = 0; j < n; ++ j)
			{
			acnorm[j] = enorm(m,a,0,j);
			rdiag[j] = acnorm[j];
			wa[j] = rdiag[j];
			if (pivot) ipvt[j] = j;
			}

		// Reduce a to r with Householder transformations.
		minmn = Math.min(m,n);
		for (int j = 0; j < minmn; ++ j)
			{
			if (pivot)
				{
				// Bring the column of largest norm into the pivot position.
				kmax = j;
				for (int k = j; k < n; ++ k)
					{
					if (rdiag[k] > rdiag[kmax]) kmax = k;
					}
				if (kmax != j)
					{
					for (int i = 0; i < m; ++ i)
						{
						temp = a[i][j];
						a[i][j] = a[i][kmax];
						a[i][kmax] = temp;
						}
					rdiag[kmax] = rdiag[j];
					wa[kmax] = wa[j];
					itemp = ipvt[j];
					ipvt[j] = ipvt[kmax];
					ipvt[kmax] = itemp;
					}
				}

			// Compute the Householder transformation to reduce the j-th column
			// of a to a multiple of the j-th unit vector.
			ajnorm = enorm(m,a,j,j);
			if (ajnorm != 0.0)
				{
				if (a[j][j] < 0.0) ajnorm = -ajnorm;
				for (int i = j; i < m; ++ i)
					{
					a[i][j] /= ajnorm;
					}
				a[j][j] += 1.0;

				// Apply the transformation to the remaining columns and update
				// the norms.
				for (int k = j+1; k < n; ++ k)
					{
					sum = 0.0;
					for (int i = j; i < m; ++ i)
						{
						sum += a[i][j]*a[i][k];
						}
					temp = sum/a[j][j];
					for (int i = j; i < m; ++ i)
						{
						a[i][k] -= temp*a[i][j];
						}
					if (pivot && rdiag[k] != 0.0)
						{
						temp = a[j][k]/rdiag[k];
						rdiag[k] *= Math.sqrt(Math.max(0.0,1.0-sqr(temp)));
						if (0.05*sqr(rdiag[k]/wa[k]) <= epsmch)
							{
							rdiag[k] = enorm(m,a,j+1,k);
							wa[k] = rdiag[k];
							}
						}
					}
				}

			rdiag[j] = -ajnorm;
			}
		}

	/**
	 * Solve a linear system of equations using a QR factorization.
	 * <P>
	 * Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b,
	 * the problem is to determine an x which solves the system
	 * <PRE>
	 *     a*x = b ,     d*x = 0 ,
	 * </PRE>
	 * in the least squares sense.
	 * <P>
	 * This subroutine completes the solution of the problem if it is provided
	 * with the necessary information from the QR factorization, with column
	 * pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, q
	 * has orthogonal columns, and r is an upper triangular matrix with diagonal
	 * elements of nonincreasing magnitude, then qrsolv() expects the full upper
	 * triangle of r, the permutation matrix p, and the first n components of (q
	 * transpose)*b. The system a*x = b, d*x = 0, is then equivalent to
	 * <PRE>
	 *            t       t
	 *     r*z = q *b ,  p *d*p*z = 0 ,
	 * </PRE>
	 * where x = p*z. if this system does not have full rank, then a least
	 * squares solution is obtained. On output qrsolv() also provides an upper
	 * triangular matrix s such that
	 * <PRE>
	 *      t   t               t
	 *     p *(a *a + d*d)*p = s *s .
	 * </PRE>
	 * s is computed within qrsolv() and may be of separate interest.
	 *
	 * @param  n
	 *     A positive integer input variable set to the order of r.
	 * @param  r
	 *     An n by n array. On input the full upper triangle must contain the
	 *     full upper triangle of the matrix r. On output the full upper
	 *     triangle is unaltered, and the strict lower triangle contains the
	 *     strict upper triangle (transposed) of the upper triangular matrix s.
	 * @param  ipvt
	 *     An integer input array of length n which defines the permutation
	 *     matrix p such that a*p = q*r. Column j of p is column ipvt(j) of the
	 *     identity matrix.
	 * @param  diag
	 *     An input array of length n which must contain the diagonal elements
	 *     of the matrix d.
	 * @param  qtb
	 *     An input array of length n which must contain the first n elements of
	 *     the vector (q transpose)*b.
	 * @param  x
	 *     An output array of length n which contains the least squares solution
	 *     of the system a*x = b, d*x = 0.
	 * @param  sdiag
	 *     An output array of length n which contains the diagonal elements of
	 *     the upper triangular matrix s.
	 * @param  wa
	 *     A work array of length n.
	 */
	private static void qrsolv
		(int n,
		 double[][] r,
		 int[] ipvt,
		 double[] diag,
		 double[] qtb,
		 double[] x,
		 double[] sdiag,
		 double[] wa)
		{
		int nsing;
		double cos, cotan, qtbpj, sin, sum, tan, temp;

		// Copy r and (q transpose)*b to preserve input and initialize s. In
		// particular, save the diagonal elements of r in x.
		for (int j = 0; j < n; ++ j)
			{
			for (int i = j; i < n; ++ i)
				{
				r[i][j] = r[j][i];
				}
			x[j] = r[j][j];
			wa[j] = qtb[j];
			}

		// Eliminate the diagonal matrix d using a Givens rotation.
		for (int j = 0; j < n; ++ j)
			{
			// Prepare the row of d to be eliminated, locating the diagonal
			// element using p from the QR factorization.
			int l = ipvt[j];
			if (diag[l] != 0.0)
				{
				for (int k = j; k < n; ++ k)
					{
					sdiag[k] = 0.0;
					}
				sdiag[j] = diag[l];

				// The transformations to eliminate the row of d modify only a
				// single element of (q transpose)*b beyond the first n, which
				// is initially zero.
				qtbpj = 0.0;
				for (int k = j; k < n; ++ k)
					{
					// Determine a Givens rotation which eliminates the
					// appropriate element in the current row of d.
					if (sdiag[k] != 0.0)
						{
						if (Math.abs(r[k][k]) < Math.abs(sdiag[k]))
							{
							cotan = r[k][k]/sdiag[k];
							sin = 0.5/Math.sqrt(0.25+0.25*sqr(cotan));
							cos = sin*cotan;
							}
						else
							{
							tan = sdiag[k]/r[k][k];
							cos = 0.5/Math.sqrt(0.25+0.25*sqr(tan));
							sin = cos*tan;
							}

						// Compute the modified diagonal element of r and the
						// modified element of ((q transpose)*b, 0).
						r[k][k] = cos*r[k][k] + sin*sdiag[k];
						temp = cos*wa[k] + sin*qtbpj;
						qtbpj = -sin*wa[k] + cos*qtbpj;
						wa[k] = temp;

						// Accumulate the transformation in the row of s.
						for (int i = k+1; i < n; ++ i)
							{
							temp = cos*r[i][k] + sin*sdiag[i];
							sdiag[i] = -sin*r[i][k] + cos*sdiag[i];
							r[i][k] = temp;
							}
						}
					}
				}

			// Store the diagonal element of s and restore the corresponding
			// diagonal element of r.
			sdiag[j] = r[j][j];
			r[j][j] = x[j];
			}

		// Solve the triangular system for z. If the system is singular, then
		// obtain a least squares solution.
		nsing = n;
		for (int j = 0; j < n; ++ j)
			{
			if (sdiag[j] == 0.0 && nsing == n) nsing = j;
			if (nsing < n) wa[j] = 0.0;
			}
		for (int j = nsing-1; j >= 0; -- j)
			{
			sum = 0.0;
			for (int i = j+1; i < nsing; ++ i)
				{
				sum += r[i][j]*wa[i];
				}
			wa[j] = (wa[j] - sum)/sdiag[j];
			}

		// Permute the components of z back to components of x.
		for (int j = 0; j < n; ++ j)
			{
			x[ipvt[j]] = wa[j];
			}
		}

	/**
	 * Calculate the Euclidean norm of the given vector.
	 *
	 * The Euclidean norm is computed by accumulating the sum of squares in
	 * three different sums. The sums of squares for the small and large
	 * components are scaled so that no overflows occur. Non-destructive
	 * underflows are permitted. Underflows and overflows do not occur in the
	 * computation of the unscaled sum of squares for the intermediate
	 * components. The definitions of small, intermediate and large components
	 * depend on two constants, rdwarf and rgiant. The main restrictions on
	 * these constants are that rdwarf**2 not underflow and rgiant**2 not
	 * overflow. The constants given here are suitable for every known computer.
	 *
	 * @param  n  Number of elements in the vector.
	 * @param  x  Vector.
	 *
	 * @return  Euclidean norm of <TT>x</TT>.
	 */
	private static double enorm
		(int n,
		 double[] x)
		{
		double s1 = 0.0;
		double s2 = 0.0;
		double s3 = 0.0;
		double x1max = 0.0;
		double x3max = 0.0;
		double agiant = rgiant/n;
		for (int i = 0; i < n; ++ i)
			{
			double xabs = Math.abs (x[i]);

			// Sum for large components.
			if (xabs >= agiant)
				{
				if (xabs > x1max)
					{
					s1 = 1.0 + s1*sqr(x1max/xabs);
					x1max = xabs;
					}
				else
					{
					s1 += sqr(xabs/x1max);
					}
				}

			// Sum for small components.
			else if (xabs <= rdwarf)
				{
				if (xabs > x3max)
					{
					s3 = 1.0 + s3*sqr(x3max/xabs);
					x3max = xabs;
					}
				else
					{
					if (xabs != 0.0) s3 += sqr(xabs/x3max);
					}
				}

			// Sum for intermediate components.
			else
				{
				s2 += sqr(xabs);
				}
			}

		// Calculation of norm.
		if (s1 != 0.0)
			{
			return x1max*Math.sqrt(s1+(s2/x1max)/x1max);
			}
		else if (s2 != 0.0)
			{
			if (s2 >= x3max)
				{
				return Math.sqrt(s2*(1.0+(x3max/s2)*(x3max*s3)));
				}
			else
				{
				return Math.sqrt(x3max*((s2/x3max)+(x3max*s3)));
				}
			}
		else
			{
			return x3max*Math.sqrt(s3);
			}
		}

	/**
	 * Calculate the Euclidean norm of a portion of one column of the given
	 * matrix.
	 *
	 * @param  n  Number of rows in the matrix.
	 * @param  x  Matrix.
	 * @param  r  Initial row index.
	 * @param  j  Column index.
	 *
	 * @return  Euclidean norm of rows <TT>r</TT> through <TT>n</TT>-1 of column
	 *          <TT>j</TT> of matrix <TT>x</TT>.
	 */
	private static double enorm
		(int n,
		 double[][] x,
		 int r,
		 int j)
		{
		double s1 = 0.0;
		double s2 = 0.0;
		double s3 = 0.0;
		double x1max = 0.0;
		double x3max = 0.0;
		double agiant = rgiant/n;
		for (int i = r; i < n; ++ i)
			{
			double xabs = Math.abs (x[i][j]);

			// Sum for large components.
			if (xabs >= agiant)
				{
				if (xabs > x1max)
					{
					s1 = 1.0 + s1*sqr(x1max/xabs);
					x1max = xabs;
					}
				else
					{
					s1 += sqr(xabs/x1max);
					}
				}

			// Sum for small components.
			else if (xabs <= rdwarf)
				{
				if (xabs > x3max)
					{
					s3 = 1.0 + s3*sqr(x3max/xabs);
					x3max = xabs;
					}
				else
					{
					if (xabs != 0.0) s3 += sqr(xabs/x3max);
					}
				}

			// Sum for intermediate components.
			else
				{
				s2 += sqr(xabs);
				}
			}

		// Calculation of norm.
		if (s1 != 0.0)
			{
			return x1max*Math.sqrt(s1+(s2/x1max)/x1max);
			}
		else if (s2 != 0.0)
			{
			if (s2 >= x3max)
				{
				return Math.sqrt(s2*(1.0+(x3max/s2)*(x3max*s3)));
				}
			else
				{
				return Math.sqrt(x3max*((s2/x3max)+(x3max*s3)));
				}
			}
		else
			{
			return x3max*Math.sqrt(s3);
			}
		}

	/**
	 * Returns the square of x.
	 */
	private static double sqr
		(double x)
		{
		return x*x;
		}

	/**
	 * Print debugging information. If the <TT>nprint</TT> field is greater than
	 * zero, the <TT>subclassDebug()</TT> method is called at the beginning of
	 * the first iteration and every <TT>nprint</TT> iterations thereafter and
	 * immediately prior to return. The fields of this object contain the
	 * current state of the algorithm. The fields of this object must not be
	 * altered.
	 * <P>
	 * The default implementation of the <TT>subclassDebug()</TT> method does
	 * nothing. A subclass can override the <TT>subclassDebug()</TT> method to
	 * do something, such as print debugging information.
	 *
	 * @param  iter  Iteration number.
	 */
	protected void subclassDebug
		(int iter)
		{
		}

	}