1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
|
//******************************************************************************
//
// File: NonNegativeLeastSquares.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.NonNegativeLeastSquares
//
// This Java source file is copyright (C) 2005 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
/**
* Class NonNegativeLeastSquares provides a method for solving a least squares
* minimization problem with nonnegativity constraints. The <TT>solve()</TT>
* method finds an approximate solution to the linear system of equations
* <B>Ax</B> = <B>b</B>, such that
* ||<B>Ax</B> - <B>b</B>||<SUP>2</SUP> is minimized, and such that
* <B>x</B> >= <B>0</B>. The inputs to and outputs from the <TT>solve()</TT>
* method are stored in the fields of an instance of class
* NonNegativeLeastSquares.
* <P>
* The Java code is a translation of the Fortran subroutine <TT>NNLS</TT> from
* Charles L. Lawson and Richard J. Hanson, <I>Solving Least Squares
* Problems</I> (Society for Industrial and Applied Mathematics, 1995), page
* 161.
*
* @author Alan Kaminsky
* @version 22-Apr-2005
*/
public class NonNegativeLeastSquares
{
// Exported data members.
/**
* The number of rows, typically the number of input data points, in the
* least squares problem.
*/
public final int M;
/**
* The number of columns, typically the number of output parameters, in the
* least squares problem.
*/
public final int N;
/**
* The <I>M</I>x<I>N</I>-element <B>A</B> matrix for the least squares
* problem. On input to the <TT>solve()</TT> method, <TT>a</TT> contains the
* matrix <B>A</B>. On output, <TT>a</TT> has been replaced with <B>QA</B>,
* where <B>Q</B> is an <I>M</I>x<I>M</I>-element orthogonal matrix
* generated during the <TT>solve()</TT> method's execution.
*/
public final double[][] a;
/**
* The <I>M</I>-element <B>b</B> vector for the least squares problem. On
* input to the <TT>solve()</TT> method, <TT>b</TT> contains the vector
* <B>b</B>. On output, <TT>b</TT> has been replaced with <B>Qb</B>, where
* <B>Q</B> is an <I>M</I>x<I>M</I>-element orthogonal matrix generated
* during the <TT>solve()</TT> method's execution.
*/
public final double[] b;
/**
* The <I>N</I>-element <B>x</B> vector for the least squares problem. On
* output from the <TT>solve()</TT> method, <TT>x</TT> contains the solution
* vector <B>x</B>.
*/
public final double[] x;
/**
* The <I>N</I>-element index vector. On output from the <TT>solve()</TT>
* method: <TT>index[0]</TT> through <TT>index[nsetp-1]</TT> contain the
* indexes of the elements in <B>x</B> that are in set <I>P,</I> the set of
* positive values; that is, the elements that are not forced to be zero
* (inactive constraints). <TT>index[nsetp]</TT> through <TT>index[N-1]</TT>
* contain the indexes of the elements in <B>x</B> that are in set <I>Z,</I>
* the set of zero values; that is, the elements that are forced to be zero
* (active constraints).
*/
public final int[] index;
/**
* The number of elements in the set <I>P;</I> that is, the number of
* positive values (inactive constraints). An output of the <TT>solve()</TT>
* method.
*/
public int nsetp;
/**
* The squared Euclidean norm of the residual vector, ||<B>Ax</B> -
* <B>b</B>||<SUP>2</SUP>. An output of the <TT>solve()</TT> method.
*/
public double normsqr;
// Working storage.
private final double[] w;
private final double[] zz;
private final double[] terms;
// Maximum number of iterations.
private final int itmax;
// Magic numbers.
private static final double factor = 0.01;
// Exported constructors.
/**
* Construct a new nonnegative least squares problem of the given size.
* Fields <TT>M</TT> and <TT>N</TT> are set to the given values. The array
* fields <TT>a</TT>, <TT>b</TT>, <TT>x</TT>, and <TT>index</TT> are
* allocated with the proper sizes but are not filled in.
*
* @param M Number of rows (input data points) in the least squares
* problem.
* @param N Number of columns (output parameters) in the least squares
* problem.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <TT>M</TT> <= 0 or <TT>N</TT>
* <= 0.
*/
public NonNegativeLeastSquares
(int M,
int N)
{
if (M <= 0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares(): M = " + M + " illegal");
}
if (N <= 0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares(): N = " + N + " illegal");
}
this.M = M;
this.N = N;
this.a = new double [M] [N];
this.b = new double [M];
this.x = new double [N];
this.index = new int [N];
this.w = new double [N];
this.zz = new double [M];
this.terms = new double [2];
this.itmax = 3*N;
}
// Exported operations.
/**
* Solve this least squares minimization problem with nonnegativity
* constraints. The <TT>solve()</TT> method finds an approximate solution to
* the linear system of equations <B>Ax</B> = <B>b</B>, such that
* ||<B>Ax</B> - <B>b</B>||<SUP>2</SUP> is minimized, and such
* that <B>x</B> >= <B>0</B>. On input, the field <TT>a</TT> must be
* filled in with the matrix <B>A</B> and the field <TT>b</TT> must be
* filled in with the vector <B>b</B> for the problem to be solved. On
* output, the other fields are filled in with the solution as explained in
* the documentation for each field.
*
* @exception TooManyIterationsException
* (unchecked exception) Thrown if too many iterations occurred without
* finding a minimum (more than 3<I>N</I> iterations).
*/
public void solve()
{
int i, iz, j, l, izmax, jz, jj, ip, ii;
double sm, wmax, asave, unorm, ztest, up, alpha, t, cc, ss, temp;
// Keep count of iterations.
int iter = 0;
// Initialize the arrays index and x.
// index[0] through index[nsetp-1] = set P.
// index[nsetp] through index[N-1] = set Z.
for (i = 0; i < N; ++ i)
{
x[i] = 0.0;
index[i] = i;
}
nsetp = 0;
// Main loop begins here.
mainloop: for (;;)
{
// Quit if all coefficients are already in the solution, or if M
// columns of A have been triangularized.
if (nsetp >= N || nsetp >= M) break mainloop;
// Compute components of the dual (negative gradient) vector W.
for (iz = nsetp; iz < N; ++ iz)
{
j = index[iz];
sm = 0.0;
for (l = nsetp; l < M; ++ l)
{
sm += a[l][j]*b[l];
}
w[j] = sm;
}
// Find a candidate j to be moved from set Z to set P.
candidateloop: for (;;)
{
// Find largest positive W[j].
wmax = 0.0;
izmax = -1;
for (iz = nsetp; iz < N; ++ iz)
{
j = index[iz];
if (w[j] > wmax)
{
wmax = w[j];
izmax = iz;
}
}
// If wmax <= 0, terminate. This indicates satisfaction of the
// Kuhn-Tucker conditions.
if (wmax <= 0.0) break mainloop;
iz = izmax;
j = index[iz];
// The sign of W[j] is okay for j to be moved to set P. Begin
// the transformation and check new diagonal element to avoid
// near linear independence.
asave = a[nsetp][j];
up = constructHouseholderTransform (nsetp, nsetp+1, a, j);
unorm = 0.0;
for (l = 0; l < nsetp; ++ l)
{
unorm += sqr (a[l][j]);
}
unorm = Math.sqrt (unorm);
if (diff (unorm + Math.abs(a[nsetp][j])*factor, unorm) > 0.0)
{
// Column j is sufficiently independent. Copy B into ZZ,
// update ZZ, and solve for ztest = proposed new value for
// X[j].
System.arraycopy (b, 0, zz, 0, M);
applyHouseholderTransform (nsetp, nsetp+1, a, j, up, zz);
ztest = zz[nsetp] / a[nsetp][j];
// If ztest is positive, we've found our candidate.
if (ztest > 0.0) break candidateloop;
}
// Reject j as a candidate to be moved from set Z to set P.
// Restore a[nsetp][j], set w[j] = 0, and try again.
a[nsetp][j] = asave;
w[j] = 0.0;
}
// The index j = index[iz] has been selected to be moved from set Z
// to set P. Update B, update indexes, apply Householder
// transformations to columns in new set Z, zero subdiagonal
// elements in column j, set w[j] = 0.
System.arraycopy (zz, 0, b, 0, M);
index[iz] = index[nsetp];
index[nsetp] = j;
++ nsetp;
jj = -1;
for (jz = nsetp; jz < N; ++ jz)
{
jj = index[jz];
applyHouseholderTransform (nsetp-1, nsetp, a, j, up, a, jj);
}
for (l = nsetp; l < M; ++ l)
{
a[l][j] = 0.0;
}
w[j] = 0.0;
// Solve the triangular system. Store the solution temporarily in
// zz.
for (l = 0; l < nsetp; ++ l)
{
ip = nsetp - l;
if (l != 0)
{
for (ii = 0; ii < ip; ++ ii)
{
zz[ii] -= a[ii][jj] * zz[ip];
}
}
-- ip;
jj = index[ip];
zz[ip] /= a[ip][jj];
}
// Secondary loop begins here.
secondaryloop: for (;;)
{
// Increment iteration counter.
++ iter;
if (iter > itmax)
{
throw new TooManyIterationsException
("NonNegativeLeastSquares.solve(): Too many iterations");
}
// See if all new constrained coefficients are feasible. If not,
// compute alpha.
alpha = 2.0;
for (ip = 0; ip < nsetp; ++ ip)
{
l = index[ip];
if (zz[ip] <= 0.0)
{
t = -x[l] / (zz[ip] - x[l]);
if (alpha > t)
{
alpha = t;
jj = ip;
}
}
}
// If all new constrained coefficients are feasible then alpha
// will still be 2. If so, exit from secondary loop to main
// loop.
if (alpha == 2.0) break secondaryloop;
// Otherwise, use alpha (which will be between 0 and 1) to
// interpolate between the old x and the new zz.
for (ip = 0; ip < nsetp; ++ ip)
{
l = index[ip];
x[l] += alpha * (zz[ip] - x[l]);
}
// Modify A and B and the index arrays to move coefficient i
// from set P to set Z.
i = index[jj];
tertiaryloop: for (;;)
{
x[i] = 0.0;
if (jj != nsetp-1)
{
++ jj;
for (j = jj; j < nsetp; ++ j)
{
ii = index[j];
index[j-1] = ii;
a[j-1][ii] =
computeGivensRotation
(a[j-1][ii], a[j][ii], terms);
a[j][ii] = 0.0;
cc = terms[0];
ss = terms[1];
for (l = 0; l < N; ++ l)
{
if (l != ii)
{
// Apply Givens rotation to column l of A.
temp = a[j-1][l];
a[j-1][l] = cc*temp + ss*a[j][l];
a[j ][l] = -ss*temp + cc*a[j][l];
}
}
// Apply Givens rotation to B.
temp = b[j-1];
b[j-1] = cc*temp + ss*b[j];
b[j ] = -ss*temp + cc*b[j];
}
}
-- nsetp;
index[nsetp] = i;
// See if the remaining coefficients in set P are feasible.
// They should be because of the way alpha was determined.
// If any are infeasible it is due to roundoff error. Any
// that are nonpositive will be set to 0 and moved from set
// P to set Z.
for (jj = 0; jj < nsetp; ++ jj)
{
i = index[jj];
if (x[i] <= 0.0) continue tertiaryloop;
}
break tertiaryloop;
}
// Copy b into zz, then solve the tridiagonal system again and
// continue the secondary loop.
System.arraycopy (b, 0, zz, 0, M);
for (l = 0; l < nsetp; ++ l)
{
ip = nsetp - l;
if (l != 0)
{
for (ii = 0; ii < ip; ++ ii)
{
zz[ii] -= a[ii][jj] * zz[ip];
}
}
-- ip;
jj = index[ip];
zz[ip] /= a[ip][jj];
}
}
// Update x from zz.
for (ip = 0; ip < nsetp; ++ ip)
{
i = index[ip];
x[i] = zz[ip];
}
// All new coefficients are positive. Continue the main loop.
}
// Compute the squared Euclidean norm of the final residual vector.
normsqr = 0.0;
for (i = nsetp; i < M; ++ i)
{
normsqr += sqr (b[i]);
}
}
// Hidden operations.
/**
* Construct a Householder transformation. <TT>u</TT> is an
* <I>M</I>x<I>N</I>-element matrix used as an input and an output of this
* method.
*
* @param ipivot
* Index of the pivot element within the pivot vector.
* @param i1
* If <TT>i1</TT> < <I>M,</I> the transformation will be constructed
* to zero elements indexed from <TT>i1</TT> through <I>M</I>-1. If
* <TT>i1</TT> >= <I>M,</I> an identity transformation will be
* constructed.
* @param u
* An <I>M</I>x<I>N</I>-element matrix. On input, column
* <TT>pivotcol</TT> of <TT>u</TT> contains the pivot vector. On output,
* column <TT>pivotcol</TT> of <TT>u</TT>, along with the return value
* (<TT>up</TT>), contains the Householder transformation.
* @param pivotcol
* Index of the column of <TT>u</TT> that contains the pivot vector.
*
* @return
* The quantity <TT>up</TT> which is part of the Householder
* transformation.
*/
private static double constructHouseholderTransform
(int ipivot,
int i1,
double[][] u,
int pivotcol)
{
int M = u.length;
int j;
double cl, clinv, sm, up;
cl = Math.abs (u[ipivot][pivotcol]);
// Construct the transformation.
for (j = i1; j < M; ++ j)
{
cl = Math.max (Math.abs (u[j][pivotcol]), cl);
}
if (cl <= 0.0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares.constructHouseholderTransform(): Illegal pivot vector");
}
clinv = 1.0 / cl;
sm = sqr (u[ipivot][pivotcol] * clinv);
for (j = i1; j < M; ++ j)
{
sm += sqr (u[j][pivotcol] * clinv);
}
cl = cl * Math.sqrt (sm);
if (u[ipivot][pivotcol] > 0.0) cl = -cl;
up = u[ipivot][pivotcol] - cl;
u[ipivot][pivotcol] = cl;
return up;
}
/**
* Apply a Householder transformation to one column of a matrix. <TT>u</TT>
* is an <I>M</I>x<I>N</I>-element matrix used as an input of this method.
* <TT>c</TT> is an <I>M</I>x<I>N</I>-element matrix used as an input and
* output of this method. <TT>ipivot</TT>, <TT>i1</TT>, <TT>u</TT>, and
* <TT>pivotcol</TT> must be the same as in a previous call of
* <TT>constructHouseholderTransform()</TT>, and <TT>up</TT> must be the
* value returned by that method call.
*
* @param ipivot
* Index of the pivot element within the pivot vector.
* @param i1
* If <TT>i1</TT> < <I>M,</I> the transformation will zero elements
* indexed from <TT>i1</TT> through <I>M</I>-1. If <TT>i1</TT> >=
* <I>M,</I> the transformation is an identity transformation.
* @param u
* An <I>M</I>x<I>N</I>-element matrix. On input, column
* <TT>pivotcol</TT> of <TT>u</TT>, along with <TT>up</TT>, contains the
* Householder transformation. This must be the output of a previous
* call of <TT>constructHouseholderTransform()</TT>.
* @param pivotcol
* Index of the column of <TT>u</TT> that contains the Householder
* transformation.
* @param up
* The rest of the Householder transformation. This must be the return
* value of the same previous call of
* <TT>constructHouseholderTransform()</TT>.
* @param c
* An <I>M</I>x<I>N</I>-element matrix. On input, column
* <TT>applycol</TT> of <TT>c</TT> contains the vector to which the
* Householder transformation is to be applied. On output, column
* <TT>applycol</TT> of <TT>c</TT> contains the transformed vector.
* @param applycol
* Index of the column of <TT>c</TT> to which the Householder
* transformation is to be applied.
*/
private static void applyHouseholderTransform
(int ipivot,
int i1,
double[][] u,
int pivotcol,
double up,
double[][] c,
int applycol)
{
int M = u.length;
int i;
double cl, b, sm;
cl = Math.abs (u[ipivot][pivotcol]);
if (cl <= 0.0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares.applyHouseholderTransform(): Illegal pivot vector");
}
b = up * u[ipivot][pivotcol];
// b must be nonpositive here. If b = 0, return.
if (b == 0.0)
{
return;
}
else if (b > 0.0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares.applyHouseholderTransform(): Illegal pivot element");
}
b = 1.0 / b;
sm = c[ipivot][applycol] * up;
for (i = i1; i < M; ++ i)
{
sm += c[i][applycol] * u[i][pivotcol];
}
if (sm != 0.0)
{
sm = sm * b;
c[ipivot][applycol] += sm * up;
for (i = i1; i < M; ++ i)
{
c[i][applycol] += sm * u[i][pivotcol];
}
}
}
/**
* Apply a Householder transformation to a vector. <TT>u</TT> is an
* <I>M</I>x<I>N</I>-element matrix used as an input of this method.
* <TT>c</TT> is an <I>M</I>-element array used as an input and output of
* this method. <TT>ipivot</TT>, <TT>i1</TT>, <TT>u</TT>, and
* <TT>pivotcol</TT> must be the same as in a previous call of
* <TT>constructHouseholderTransform()</TT>, and <TT>up</TT> must be the
* value returned by that method call.
*
* @param ipivot
* Index of the pivot element within the pivot vector.
* @param i1
* If <TT>i1</TT> < <I>M,</I> the transformation will zero elements
* indexed from <TT>i1</TT> through <I>M</I>-1. If <TT>i1</TT> >=
* <I>M,</I> the transformation is an identity transformation.
* @param u
* An <I>M</I>x<I>N</I>-element matrix. On input, column
* <TT>pivotcol</TT> of <TT>u</TT>, along with <TT>up</TT>, contains the
* Householder transformation. This must be the output of a previous
* call of <TT>constructHouseholderTransform()</TT>.
* @param pivotcol
* Index of the column of <TT>u</TT> that contains the Householder
* transformation.
* @param up
* The rest of the Householder transformation. This must be the return
* value of the same previous call of
* <TT>constructHouseholderTransform()</TT>.
* @param c
* An <I>M</I>-element array. On input, <TT>c</TT> contains the vector
* to which the Householder transformation is to be applied. On output,
* <TT>c</TT> contains the transformed vector.
*/
private static void applyHouseholderTransform
(int ipivot,
int i1,
double[][] u,
int pivotcol,
double up,
double[] c)
{
int M = u.length;
int i;
double cl, b, sm;
cl = Math.abs (u[ipivot][pivotcol]);
if (cl <= 0.0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares.applyHouseholderTransform(): Illegal pivot vector");
}
b = up * u[ipivot][pivotcol];
// b must be nonpositive here. If b = 0, return.
if (b == 0.0)
{
return;
}
else if (b > 0.0)
{
throw new IllegalArgumentException
("NonNegativeLeastSquares.applyHouseholderTransform(): Illegal pivot element");
}
b = 1.0 / b;
sm = c[ipivot] * up;
for (i = i1; i < M; ++ i)
{
sm += c[i] * u[i][pivotcol];
}
if (sm != 0.0)
{
sm = sm * b;
c[ipivot] += sm * up;
for (i = i1; i < M; ++ i)
{
c[i] += sm * u[i][pivotcol];
}
}
}
/**
* Compute the sine and cosine terms of a Givens rotation matrix. The terms
* <TT>c</TT> and <TT>s</TT> are returned in <TT>terms[0]</TT> and
* <TT>terms[1]</TT>, respectively, such that:
* <PRE>
* [ c s] * [a] = [sqrt(a^2+b^2)]
* [-s c] [b] [ 0 ]
* </PRE>
*
* @param a Input argument.
* @param b Input argument.
* @param terms A 2-element array. On output, <TT>terms[0]</TT> contains
* <TT>c</TT> and <TT>terms[1]</TT> contains <TT>s</TT>.
*
* @return sqrt(<TT>a</TT><SUP>2</SUP>+<TT>b</TT><SUP>2</SUP>).
*/
private static double computeGivensRotation
(double a,
double b,
double[] terms)
{
double xr, yr;
if (Math.abs(a) > Math.abs(b))
{
xr = b/a;
yr = Math.sqrt (1.0 + sqr (xr));
terms[0] = sign (1.0/yr, a);
terms[1] = terms[0]*xr;
return Math.abs(a)*yr;
}
else if (b != 0.0)
{
xr = a/b;
yr = Math.sqrt (1.0 + sqr (xr));
terms[1] = sign (1.0/yr, b);
terms[0] = terms[1]*xr;
return Math.abs(b)*yr;
}
else
{
terms[0] = 0.0;
terms[1] = 1.0;
return 0.0;
}
}
/**
* Determine if x differs from y, to machine precision.
*
* @return 0.0, if x is the same as y to machine precision; x-y (nonzero),
* if x differs from y to machine precision.
*/
private static double diff
(double x,
double y)
{
return x - y;
}
/**
* Returns x^2.
*/
private static double sqr
(double x)
{
return x*x;
}
/**
* Returns the number whose absolute value is x and whose sign is the same
* as that of y. x is assumed to be nonnegative.
*/
private static double sign
(double x,
double y)
{
return y >= 0.0 ? x : -x;
}
}
|