File: NormalPrng.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (153 lines) | stat: -rw-r--r-- 5,354 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//******************************************************************************
//
// File:    NormalPrng.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.NormalPrng
//
// This Java source file is copyright (C) 2008 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

import edu.rit.util.Random;

/**
 * Class NormalPrng provides a pseudorandom number generator (PRNG) that
 * generates random numbers with a normal distribution.
 * <P>
 * Every two calls of the <TT>next()</TT> method result in two calls of the
 * underlying uniform PRNG's <TT>nextDouble()</TT> method. More precisely, the
 * first of a pair of <TT>next()</TT> calls does two <TT>nextDouble()</TT>
 * calls, the second of a pair of <TT>next()</TT> calls does not call
 * <TT>nextDouble()</TT>.
 * <P>
 * Class NormalPrng uses the Box-Muller method to generate a standard normal
 * distribution. Let <I>x</I><SUB>1</SUB> and <I>x</I><SUB>2</SUB> be drawn from
 * a uniform distribution between 0 and 1. Then <I>y</I><SUB>1</SUB> and
 * <I>y</I><SUB>2</SUB>, defined as follows, are drawn from a standard normal
 * distribution.
 * <CENTER>
 * <I>y</I><SUB>1</SUB> = sqrt(&minus;2 ln <I>x</I><SUB>1</SUB>) cos 2&pi;<I>x</I><SUB>2</SUB>
 * <BR><I>y</I><SUB>2</SUB> = sqrt(&minus;2 ln <I>x</I><SUB>1</SUB>) sin 2&pi;<I>x</I><SUB>2</SUB>
 * </CENTER>
 * And (&mu;&nbsp;+&nbsp;&sigma;<I>y</I><SUB>1</SUB>) and
 * (&mu;&nbsp;+&nbsp;&sigma;<I>y</I><SUB>2</SUB>) are drawn from a normal
 * distribution with mean &mu; and standard deviation &sigma;.
 * <P>
 * <I>Note:</I> While slower than other techniques, this technique does a fixed
 * number of <TT>nextDouble()</TT> calls to generate each normally distributed
 * random number. This behavior is important when parallel programs generate
 * random numbers.
 *
 * @author  Alan Kaminsky
 * @version 10-Jun-2008
 */
public class NormalPrng
	extends DoublePrng
	{

// Hidden data members.

	private double myMean;
	private double myStdev;

	private double u1 = -1.0;
	private double u2;

	private static final double TWO_PI = 2.0*Math.PI;

// Exported constructors.

	/**
	 * Construct a new standard normal PRNG. The mean is 0 and the standard
	 * deviation is 1.
	 *
	 * @param  theUniformPrng  The underlying uniform PRNG.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>theUniformPrng</TT> is null.
	 */
	public NormalPrng
		(Random theUniformPrng)
		{
		this (theUniformPrng, 0.0, 1.0);
		}

	/**
	 * Construct a new normal PRNG with the given mean and standard deviation.
	 *
	 * @param  theUniformPrng  The underlying uniform PRNG.
	 * @param  theMean         Mean of the normal distribution.
	 * @param  theStdev        Standard deviation of the normal distribution.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>theUniformPrng</TT> is null.
	 */
	public NormalPrng
		(Random theUniformPrng,
		 double theMean,
		 double theStdev)
		{
		super (theUniformPrng);
		myMean = theMean;
		myStdev = theStdev;
		}

// Exported operations.

	/**
	 * Returns the next random number.
	 *
	 * @return  Random number.
	 */
	public double next()
		{
		double y;
		if (u1 == -1.0)
			{
			double x1 = myUniformPrng.nextDouble();
			double x2 = myUniformPrng.nextDouble();
			u1 = Math.sqrt(-2.0*Math.log(x1));
			u2 = TWO_PI*x2;
			y = u1*Math.cos(u2);
			}
		else
			{
			y = u1*Math.sin(u2);
			u1 = -1.0;
			}
		return myMean + myStdev*y;
		}

	}