1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
|
//******************************************************************************
//
// File: Rational.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.Rational
//
// This Java source file is copyright (C) 2002-2004 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import java.io.Serializable;
/**
* Class Rational provides a 32-bit rational number. A 32-bit rational number is
* the ratio of two 32-bit integers (type <TT>int</TT>). Operations are provided
* for exact arithmetic and comparison with rational numbers.
* <P>
* Class Rational overrides the <TT>equals()</TT> and <TT>hashCode()</TT>
* methods, making it suitable for use as a key in a hashed data structure like
* a {@link java.util.HashMap </CODE>HashMap<CODE>} or {@link java.util.HashSet
* </CODE>HashSet<CODE>}. However, a Rational object is mutable. Take care not
* to change the value of a Rational object if it is used as a key in a hashed
* data structure.
* <P>
* Class Rational is not multiple thread safe.
*
* @author Alan Kaminsky
* @version 01-Dec-2004
*/
public class Rational
implements Comparable, Serializable
{
// Hidden data members.
private int numer;
private int denom;
// Exported constructors.
/**
* Construct a new rational number. Its value is 0.
*/
public Rational()
{
numer = 0;
denom = 1;
}
/**
* Construct a new rational number. Its value is <TT>value</TT>.
*
* @param value Value.
*/
public Rational
(int value)
{
numer = value;
denom = 1;
}
/**
* Construct a new rational number. Its value is <TT>numer/denom</TT>.
*
* @param numer Numerator.
* @param denom Denominator.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>denom</TT> is 0.
*/
public Rational
(int numer,
int denom)
{
if (denom == 0)
{
throw new ArithmeticException ("Divide by zero");
}
this.numer = numer;
this.denom = denom;
normalize();
}
/**
* Construct a new rational number. Its value is <TT>value</TT>.
*
* @param value Rational number.
*/
public Rational
(Rational value)
{
this.numer = value.numer;
this.denom = value.denom;
}
/**
* Construct a new rational number. Its value comes from the string
* <TT>s</TT>. The string must obey this syntax: optional minus sign
* (<TT>-</TT>), numerator (decimal integer), slash (<TT>/</TT>),
* denominator (decimal integer). The slash-and-denominator is optional. If
* present, the denominator must be greater than 0. There is no whitespace
* within the string.
*
* @param s String.
*
* @exception NumberFormatException
* (unchecked exception) Thrown if <TT>s</TT> cannot be parsed into a
* rational number.
*/
public Rational
(String s)
{
assign (s);
}
// Exported operations.
/**
* Set this rational number to the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>x</TT>.
*/
public Rational assign
(Rational x)
{
this.numer = x.numer;
this.denom = x.denom;
return this;
}
/**
* Set this rational number to the given number.
*
* @param x Integer.
*
* @return This rational number, with its value set to <TT>x</TT>.
*/
public Rational assign
(int x)
{
this.numer = x;
this.denom = 1;
return this;
}
/**
* Set this rational number to the value parsed from the given string. The
* string must obey this syntax: optional minus sign (<TT>-</TT>), numerator
* (decimal integer), slash (<TT>/</TT>), denominator (decimal integer). The
* slash-and-denominator is optional. If present, the denominator must be
* greater than 0. There is no whitespace within the string.
*
* @param s String.
*
* @return This rational number, with its value set to <TT>s</TT>.
*
* @exception NumberFormatException
* (unchecked exception) Thrown if <TT>s</TT> cannot be parsed into a
* rational number.
*/
public Rational assign
(String s)
{
int numer, denom;
int iSlash = s.indexOf ('/');
if (iSlash == -1)
{
// No denominator.
numer = Integer.parseInt (s);
denom = 1;
}
else if (iSlash+1 < s.length())
{
// Slash and denominator.
numer = Integer.parseInt (s.substring (0, iSlash));
denom = Integer.parseInt (s.substring (iSlash+1));
if (denom <= 0)
{
throw new NumberFormatException();
}
}
else
{
// Slash but no denominator.
throw new NumberFormatException();
}
this.numer = numer;
this.denom = denom;
normalize();
return this;
}
/**
* Set this rational number to the negative of the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>-x</TT>.
*/
public Rational neg
(Rational x)
{
this.numer = -x.numer;
this.denom = x.denom;
return this;
}
/**
* Set this rational number to the negative of the given number.
*
* @param x Integer.
*
* @return This rational number, with its value set to <TT>-x</TT>.
*/
public Rational neg
(int x)
{
this.numer = -x;
this.denom = 1;
return this;
}
/**
* Set this rational number to the absolute value of the given number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>abs(x)</TT>.
*/
public Rational abs
(Rational x)
{
this.numer = absval (x.numer);
this.denom = x.denom;
return this;
}
/**
* Set this rational number to the absolute value of the given number.
*
* @param x Integer.
*
* @return This rational number, with its value set to <TT>abs(x)</TT>.
*/
public Rational abs
(int x)
{
this.numer = absval (x);
this.denom = 1;
return this;
}
/**
* Set this rational number to the integer part of the given rational
* number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>int(x)</TT>.
*/
public Rational intPart
(Rational x)
{
this.numer = x.numer / x.denom;
this.denom = 1;
return this;
}
/**
* Set this rational number to the fractional part of the given rational
* number.
*
* @param x Rational number.
*
* @return This rational number, with its value set to <TT>frac(x)</TT>.
*/
public Rational fracPart
(Rational x)
{
this.numer = x.numer % x.denom;
this.denom = x.denom;
normalize();
return this;
}
/**
* Set this rational number to the sum of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x+y</TT>.
*/
public Rational add
(Rational x,
Rational y)
{
int lcm = leastCommonMultiple (x.denom, y.denom);
this.numer = (lcm / x.denom) * x.numer + (lcm / y.denom) * y.numer;
this.denom = lcm;
normalize();
return this;
}
/**
* Set this rational number to the sum of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x+y</TT>.
*/
public Rational add
(Rational x,
int y)
{
this.numer = x.numer + y * x.denom;
this.denom = x.denom;
normalize();
return this;
}
/**
* Set this rational number to the sum of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x+y</TT>.
*/
public Rational add
(int x,
Rational y)
{
this.numer = x * y.denom + y.numer;
this.denom = y.denom;
normalize();
return this;
}
/**
* Set this rational number to the sum of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x+y</TT>.
*/
public Rational add
(int x,
int y)
{
this.numer = x + y;
this.denom = 1;
return this;
}
/**
* Set this rational number to the difference of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x-y</TT>.
*/
public Rational sub
(Rational x,
Rational y)
{
int lcm = leastCommonMultiple (x.denom, y.denom);
this.numer = (lcm / x.denom) * x.numer - (lcm / y.denom) * y.numer;
this.denom = lcm;
normalize();
return this;
}
/**
* Set this rational number to the difference of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x-y</TT>.
*/
public Rational sub
(Rational x,
int y)
{
this.numer = x.numer - y * x.denom;
this.denom = x.denom;
normalize();
return this;
}
/**
* Set this rational number to the difference of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x-y</TT>.
*/
public Rational sub
(int x,
Rational y)
{
this.numer = x * y.denom - y.numer;
this.denom = y.denom;
normalize();
return this;
}
/**
* Set this rational number to the difference of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x-y</TT>.
*/
public Rational sub
(int x,
int y)
{
this.numer = x - y;
this.denom = 1;
return this;
}
/**
* Set this rational number to the product of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x*y</TT>.
*/
public Rational mul
(Rational x,
Rational y)
{
this.numer = x.numer * y.numer;
this.denom = x.denom * y.denom;
normalize();
return this;
}
/**
* Set this rational number to the product of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x*y</TT>.
*/
public Rational mul
(Rational x,
int y)
{
this.numer = x.numer * y;
this.denom = x.denom;
normalize();
return this;
}
/**
* Set this rational number to the product of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x*y</TT>.
*/
public Rational mul
(int x,
Rational y)
{
this.numer = x * y.numer;
this.denom = y.denom;
normalize();
return this;
}
/**
* Set this rational number to the product of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x*y</TT>.
*/
public Rational mul
(int x,
int y)
{
this.numer = x * y;
this.denom = 1;
return this;
}
/**
* Set this rational number to the quotient of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x/y</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>y</TT> is 0.
*/
public Rational div
(Rational x,
Rational y)
{
if (y.numer == 0)
{
throw new ArithmeticException ("Divide by zero");
}
int numer = x.numer * y.denom;
int denom = x.denom * y.numer;
this.numer = numer;
this.denom = denom;
normalize();
return this;
}
/**
* Set this rational number to the quotient of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x/y</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>y</TT> is 0.
*/
public Rational div
(Rational x,
int y)
{
if (y == 0)
{
throw new ArithmeticException ("Divide by zero");
}
this.numer = x.numer;
this.denom = x.denom * y;
normalize();
return this;
}
/**
* Set this rational number to the quotient of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to <TT>x/y</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>y</TT> is 0.
*/
public Rational div
(int x,
Rational y)
{
if (y.numer == 0)
{
throw new ArithmeticException ("Divide by zero");
}
int numer = x * y.denom;
int denom = y.numer;
this.numer = numer;
this.denom = denom;
normalize();
return this;
}
/**
* Set this rational number to the quotient of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to <TT>x/y</TT>.
*
* @exception ArithmeticException
* (unchecked exception) Thrown if <TT>y</TT> is 0.
*/
public Rational div
(int x,
int y)
{
if (y == 0)
{
throw new ArithmeticException ("Divide by zero");
}
this.numer = x;
this.denom = y;
normalize();
return this;
}
/**
* Set this rational number to the minimum of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to the smaller of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational min
(Rational x,
Rational y)
{
if (x.lt (y))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the minimum of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to the smaller of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational min
(Rational x,
int y)
{
if (x.lt (y))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the minimum of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to the smaller of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational min
(int x,
Rational y)
{
if (y.gt (x))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the minimum of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to the smaller of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational min
(int x,
int y)
{
this.assign (Math.min (x, y));
return this;
}
/**
* Set this rational number to the maximum of the given numbers.
*
* @param x Rational number.
* @param y Rational number.
*
* @return This rational number, with its value set to the larger of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational max
(Rational x,
Rational y)
{
if (x.gt (y))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the maximum of the given numbers.
*
* @param x Rational number.
* @param y Integer.
*
* @return This rational number, with its value set to the larger of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational max
(Rational x,
int y)
{
if (x.gt (y))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the maximum of the given numbers.
*
* @param x Integer.
* @param y Rational number.
*
* @return This rational number, with its value set to the larger of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational max
(int x,
Rational y)
{
if (y.lt (x))
{
this.assign (x);
}
else
{
this.assign (y);
}
return this;
}
/**
* Set this rational number to the maximum of the given numbers.
*
* @param x Integer.
* @param y Integer.
*
* @return This rational number, with its value set to the larger of
* <TT>x</TT> and <TT>y</TT>.
*/
public Rational max
(int x,
int y)
{
this.assign (Math.max (x, y));
return this;
}
/**
* Determine if this rational number is equal to zero.
*
* @return True if this rational number is equal to 0, false otherwise.
*/
public boolean eqZero()
{
return this.numer == 0;
}
/**
* Determine if this rational number is not equal to zero.
*
* @return True if this rational number is not equal to 0, false otherwise.
*/
public boolean neZero()
{
return this.numer != 0;
}
/**
* Determine if this rational number is less than zero.
*
* @return True if this rational number is less than 0, false otherwise.
*/
public boolean ltZero()
{
return this.numer < 0;
}
/**
* Determine if this rational number is less than or equal to zero.
*
* @return True if this rational number is less than or equal to 0, false
* otherwise.
*/
public boolean leZero()
{
return this.numer <= 0;
}
/**
* Determine if this rational number is greater than zero.
*
* @return True if this rational number is greater than 0, false otherwise.
*/
public boolean gtZero()
{
return this.numer > 0;
}
/**
* Determine if this rational number is greater than or equal to zero.
*
* @return True if this rational number is greater than or equal to 0,
* false otherwise.
*/
public boolean geZero()
{
return this.numer >= 0;
}
/**
* Determine if this rational number is equal to the given number.
*
* @param x Rational number.
*
* @return True if this rational number is equal to <TT>x</TT>, false
* otherwise.
*/
public boolean eq
(Rational x)
{
return this.numer == x.numer && this.denom == x.denom;
}
/**
* Determine if this rational number is equal to the given number.
*
* @param x Integer.
*
* @return True if this rational number is equal to <TT>x</TT>, false
* otherwise.
*/
public boolean eq
(int x)
{
return this.numer == x && this.denom == 1;
}
/**
* Determine if this rational number is not equal to the given number.
*
* @param x Rational number.
*
* @return True if this rational number is not equal to <TT>x</TT>, false
* otherwise.
*/
public boolean ne
(Rational x)
{
return this.numer != x.numer || this.denom != x.denom;
}
/**
* Determine if this rational number is not equal to the given number.
*
* @param x Integer.
*
* @return True if this rational number is not equal to <TT>x</TT>, false
* otherwise.
*/
public boolean ne
(int x)
{
return this.numer != x || this.denom != 1;
}
/**
* Determine if this rational number is less than the given number.
*
* @param x Rational number.
*
* @return True if this rational number is less than <TT>x</TT>, false
* otherwise.
*/
public boolean lt
(Rational x)
{
return new Rational() .sub (this, x) .ltZero();
}
/**
* Determine if this rational number is less than the given number.
*
* @param x Integer.
*
* @return True if this rational number is less than <TT>x</TT>, false
* otherwise.
*/
public boolean lt
(int x)
{
return new Rational() .sub (this, x) .ltZero();
}
/**
* Determine if this rational number is less than or equal to the given
* number.
*
* @param x Rational number.
*
* @return True if this rational number is less than or equal to
* <TT>x</TT>, false otherwise.
*/
public boolean le
(Rational x)
{
return new Rational() .sub (this, x) .leZero();
}
/**
* Determine if this rational number is less than or equal to the given
* number.
*
* @param x Integer.
*
* @return True if this rational number is less than or equal to
* <TT>x</TT>, false otherwise.
*/
public boolean le
(int x)
{
return new Rational() .sub (this, x) .leZero();
}
/**
* Determine if this rational number is greater than the given number.
*
* @param x Rational number.
*
* @return True if this rational number is greater than <TT>x</TT>, false
* otherwise.
*/
public boolean gt
(Rational x)
{
return new Rational() .sub (this, x) .gtZero();
}
/**
* Determine if this rational number is greater than the given number.
*
* @param x Integer.
*
* @return True if this rational number is greater than <TT>x</TT>, false
* otherwise.
*/
public boolean gt
(int x)
{
return new Rational() .sub (this, x) .gtZero();
}
/**
* Determine if this rational number is greater than or equal to the given
* number.
*
* @param x Rational number.
*
* @return True if this rational number is greater than or equal to
* <TT>x</TT>, false otherwise.
*/
public boolean ge
(Rational x)
{
return new Rational() .sub (this, x) .geZero();
}
/**
* Determine if this rational number is greater than or equal to the given
* number.
*
* @param x Integer.
*
* @return True if this rational number is greater than or equal to
* <TT>x</TT>, false otherwise.
*/
public boolean ge
(int x)
{
return new Rational() .sub (this, x) .geZero();
}
/**
* Converts this rational number to an integer. If this rational number is
* not an exact integer, any fractional part is truncated.
*
* @return Integer value of this rational number.
*/
public int intValue()
{
return this.numer / this.denom;
}
/**
* Converts this rational number to a long integer. If this rational number
* is not an exact integer, any fractional part is truncated.
*
* @return Long integer value of this rational number.
*/
public long longValue()
{
return ((long) this.numer) / ((long) this.denom);
}
/**
* Converts this rational number to a single precision floating point
* number.
*
* @return Single precision floating point value of this rational number.
*/
public float floatValue()
{
return ((float) this.numer) / ((float) this.denom);
}
/**
* Converts this rational number to a double precision floating point
* number.
*
* @return Double precision floating point value of this rational number.
*/
public double doubleValue()
{
return ((double) this.numer) / ((double) this.denom);
}
/**
* Returns a string version of this rational number. If this rational number
* is an exact integer, the string is in the form <TT>"<numer>"</TT>,
* otherwise the string is in the form
* <TT>"<numer>/<denom>"</TT>. If this rational number is less
* than 0, the string begins with a minus sign (<TT>-</TT>).
*/
public String toString()
{
if (this.denom == 1)
{
return Integer.toString (this.numer);
}
else
{
return this.numer + "/" + this.denom;
}
}
/**
* Determine if this rational number is equal to the given object. To be
* equal, <TT>obj</TT> must be a non-null instance of class Rational whose
* value is the same as this rational number's value.
*
* @param obj Object to test.
*
* @return True if this rational number is equal to <TT>obj</TT>, false
* otherwise.
*/
public boolean equals
(Object obj)
{
return
obj instanceof Rational &&
eq ((Rational) obj);
}
/**
* Returns a hash code for this rational number.
*/
public int hashCode()
{
return this.numer + this.denom;
}
/**
* Compare this rational number to the given object.
*
* @param obj Object to compare to.
*
* @return A number less than, equal to, or greater than 0 if this rational
* number is less than, equal to, or greater than <TT>obj</TT>,
* respectively.
*
* @exception NullPointerException
* (unchecked exception) Thrown if <TT>obj</TT> is null.
* @exception ClassCastException
* (unchecked exception) Thrown if <TT>obj</TT> is not an instance of
* class Rational.
*/
public int compareTo
(Object obj)
{
return new Rational() .sub (this, (Rational) obj) .numer;
}
// Hidden operations.
/**
* Normalize this rational number. Afterwards, the denominator is greater
* than 0, and the denominator does not divide the numerator.
*/
private void normalize()
{
int sign = signum (numer) * signum (denom);
numer = absval (numer);
denom = absval (denom);
int gcd = greatestCommonDivisor (numer, denom);
numer = sign * numer / gcd;
denom = denom / gcd;
}
/**
* Returns the signum of the given number.
*/
private static int signum
(int x)
{
return x < 0 ? -1 : 1;
}
/**
* Returns the absolute value of the given number.
*/
private static int absval
(int x)
{
return x < 0 ? -x : x;
}
/**
* Returns the greatest common divisor of the given numbers. <TT>x</TT> and
* <TT>y</TT> are assumed to be greater than 0.
*/
private static int greatestCommonDivisor
(int x,
int y)
{
int r;
while (y != 0)
{
r = x % y;
x = y;
y = r;
}
return x;
}
/**
* Returns the least common multiple of the given numbers. <TT>x</TT> and
* <TT>y</TT> are assumed to be greater than 0.
*/
private static int leastCommonMultiple
(int x,
int y)
{
return (x / greatestCommonDivisor (x, y)) * y;
}
}
|