1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
//******************************************************************************
//
// File: SeriesComplex.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.SeriesComplex
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import java.io.PrintStream;
import java.io.PrintWriter;
/**
* Class SeriesComplex is the abstract base class for a series of complex values
* (type <TT>double</TT>).
*
* @author Alan Kaminsky
* @version 12-Oct-2007
*/
public abstract class SeriesComplex
{
// Exported constructors.
/**
* Construct a new complex series.
*/
public SeriesComplex()
{
}
// Exported operations.
/**
* Returns the number of values in this series.
*/
public abstract int length();
/**
* Determine if this series is empty.
*
* @return True if this series is empty (length = 0), false otherwise.
*/
public boolean isEmpty()
{
return length() == 0;
}
/**
* Returns the real part of the given complex value in this series.
*
* @param i Index.
*
* @return The real part of the complex value in this series at index
* <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public abstract double real
(int i);
/**
* Returns the imaginary part of the given complex value in this series.
*
* @param i Index.
*
* @return The imaginary part of the complex value in this series at index
* <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public abstract double imag
(int i);
/**
* Returns the magnitude of the given complex value in this series. The
* magnitude is greater than or equal to 0.
*
* @param i Index.
*
* @return The magnitude of the complex value in this series at index
* <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public double magnitude
(int i)
{
double a = real (i);
double b = imag (i);
double absa = Math.abs (a);
double absb = Math.abs (b);
if (absa == 0.0)
{
return absb;
}
else if (absb == 0.0)
{
return absa;
}
else if (absa >= absb)
{
double bovera = b/a;
return absa * Math.sqrt (1.0 + bovera*bovera);
}
else
{
double aoverb = a/b;
return absb * Math.sqrt (1.0 + aoverb*aoverb);
}
}
/**
* Returns the squared magnitude of the given complex value in this series.
*
* @param i Index.
*
* @return The squared magnitude of the complex value in this series at
* index <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public double squaredMagnitude
(int i)
{
double a = real (i);
double b = imag (i);
double absa = Math.abs (a);
double absb = Math.abs (b);
if (absa == 0.0)
{
return absb*absb;
}
else if (absb == 0.0)
{
return absa*absa;
}
else if (absa >= absb)
{
double bovera = b/a;
return absa * absa * (1.0 + bovera*bovera);
}
else
{
double aoverb = a/b;
return absb * absb * (1.0 + aoverb*aoverb);
}
}
/**
* Returns the phase of the given complex value in this series. The
* phase is in the range -pi to +pi.
*
* @param i Index.
*
* @return The phase of the complex value in this series at index
* <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public double phase
(int i)
{
return Math.atan2 (imag (i), real (i));
}
/**
* Returns a new series consisting of the real parts of the complex values
* in this series.
*
* @return Series of real parts.
*/
public Series realSeries()
{
final SeriesComplex outer = this;
return new Series()
{
public int length()
{
return outer.length();
}
public double x (int i)
{
return outer.real (i);
}
};
}
/**
* Returns a new series consisting of the imaginary parts of the complex
* values in this series.
*
* @return Series of imaginary parts.
*/
public Series imagSeries()
{
final SeriesComplex outer = this;
return new Series()
{
public int length()
{
return outer.length();
}
public double x (int i)
{
return outer.imag (i);
}
};
}
/**
* Returns a new series consisting of the magnitudes of the complex values
* in this series. Each magnitude is greater than or equal to 0.
*
* @return Series of magnitudes.
*/
public Series magnitudeSeries()
{
final SeriesComplex outer = this;
return new Series()
{
public int length()
{
return outer.length();
}
public double x (int i)
{
return outer.magnitude (i);
}
};
}
/**
* Returns a new series consisting of the squared magnitudes of the complex
* values in this series.
*
* @return Series of squared magnitudes.
*/
public Series squaredMagnitudeSeries()
{
final SeriesComplex outer = this;
return new Series()
{
public int length()
{
return outer.length();
}
public double x (int i)
{
return outer.squaredMagnitude (i);
}
};
}
/**
* Returns a new series consisting of the phases of the complex values in
* this series. Each phase is in the range -pi to +pi.
*
* @return Series of phases.
*/
public Series phaseSeries()
{
final SeriesComplex outer = this;
return new Series()
{
public int length()
{
return outer.length();
}
public double x (int i)
{
return outer.phase (i);
}
};
}
/**
* Print this complex series on the standard output. Each line of output
* consists of the index, the value's real part, the value's imaginary part,
* the value's magnitude, and the value's phase, separated by tabs.
*/
public void print()
{
print (System.out);
}
/**
* Print this complex series on the given print stream. Each line of output
* consists of the index, the value's real part, the value's imaginary part,
* the value's magnitude, and the value's phase, separated by tabs.
*
* @param theStream Print stream.
*/
public void print
(PrintStream theStream)
{
int n = length();
for (int i = 0; i < n; ++ i)
{
theStream.print (i);
theStream.print ('\t');
theStream.print (real(i));
theStream.print ('\t');
theStream.print (imag(i));
theStream.print ('\t');
theStream.print (magnitude(i));
theStream.print ('\t');
theStream.println (phase(i));
}
}
/**
* Print this complex series on the given print writer. Each line of output
* consists of the index, the value's real part, the value's imaginary part,
* the value's magnitude, and the value's phase, separated by tabs.
*
* @param theWriter Print writer.
*/
public void print
(PrintWriter theWriter)
{
int n = length();
for (int i = 0; i < n; ++ i)
{
theWriter.print (i);
theWriter.print ('\t');
theWriter.print (real(i));
theWriter.print ('\t');
theWriter.print (imag(i));
theWriter.print ('\t');
theWriter.print (magnitude(i));
theWriter.print ('\t');
theWriter.println (phase(i));
}
}
}
|