File: Statistics.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (699 lines) | stat: -rw-r--r-- 19,557 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
//******************************************************************************
//
// File:    Statistics.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.Statistics
//
// This Java source file is copyright (C) 2012 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

import java.math.BigInteger;

// For unit test main program.
//import edu.rit.util.Random;
//import java.util.Arrays;

/**
 * Class Statistics provides static methods for doing statistical tests.
 * <P>
 * For each statistical test, there is a method that returns the "p-value" of
 * the test statistic. This is the probability that the test statistic would
 * have a value greater than or equal to the observed value if the null
 * hypothesis is true.
 *
 * @author  Alan Kaminsky
 * @version 26-Mar-2012
 */
public class Statistics
	{

// Prevent construction.

	private Statistics()
		{
		}

// Exported operations.

	/**
	 * Do a chi-square test on the given data. The null hypothesis is that the
	 * data was drawn from the distribution given by <TT>expected</TT>. The
	 * <TT>measured</TT> and <TT>expected</TT> arrays must be the same length.
	 *
	 * @param  measured  Measured count in each bin.
	 * @param  expected  Expected count in each bin.
	 *
	 * @return  Chi-square statistic.
	 */
	public static double chiSquareTest
		(double[] measured,
		 double[] expected)
		{
		double chisqr = 0.0;
		for (int i = 0; i < measured.length; ++ i)
			{
			double d = measured[i] - expected[i];
			chisqr += d*d/expected[i];
			}
		return chisqr;
		}

	/**
	 * Returns the p-value of a chi-square statistic.
	 *
	 * @param  N       Degrees of freedom.
	 * @param  chisqr  Chi-square statistic.
	 *
	 * @return  P-value.
	 */
	public static double chiSquarePvalue
		(double N,
		 double chisqr)
		{
		return gammq (0.5*N, 0.5*chisqr);
		}

	/**
	 * Do a Bernoulli chi-square test on the given data. The null hypothesis is
	 * that the data was drawn from a Bernoulli distribution with both outcomes
	 * equally likely (e.g., a fair coin). <TT>total</TT> is the total number of
	 * trials. <TT>measured</TT> is the number of trials yielding one of the
	 * outcomes. (<TT>total</TT>&nbsp;&minus;&nbsp;<TT>measured</TT>) is the
	 * number of trials yielding the other outcome.
	 *
	 * @param  total     Total number of trials.
	 * @param  measured  Number of trials yielding one of the outcomes.
	 *
	 * @return  Chi-square statistic.
	 */
	public static double bernoulliChiSquareTest
		(long total,
		 long measured)
		{
		double expected = 0.5*total;
		double d = measured - expected;
		return 2.0*d*d/expected;
		}

	/**
	 * Returns the p-value of a Bernoulli chi-square statistic.
	 *
	 * @param  chisqr  Chi-square statistic.
	 *
	 * @return  P-value.
	 */
	public static double bernoulliChiSquarePvalue
		(double chisqr)
		{
		return gammq (0.5, 0.5*chisqr);
		}

	/**
	 * Do a Y-square test on the given data. The null hypothesis is that the
	 * data was drawn from the distribution given by <TT>expected</TT>. The
	 * <TT>measured</TT> and <TT>expected</TT> arrays must be the same length.
	 * <P>
	 * The Y-square test is similar to the chi-square test, except the Y-square
	 * statistic is valid even if the expected counts in some of the bins are
	 * small, which is not true of the chi-square statistic. For further
	 * information, see:
	 * <P>
	 * L. Lucy. Hypothesis testing for meagre data sets. <I>Monthly Notices of
	 * the Royal Astronomical Society,</I> 318(1):92-100, October 2000.
	 *
	 * @param  N         Degrees of freedom.
	 * @param  measured  Measured count in each bin.
	 * @param  expected  Expected count in each bin.
	 *
	 * @return  Y-square statistic.
	 */
	public static double ySquareTest
		(int N,
		 double[] measured,
		 double[] expected)
		{
		double twoN = 2.0*N;
		double sum = 0.0;
		for (int i = 0; i < expected.length; ++ i)
			{
			sum += 1.0/expected[i];
			}
		return N + Math.sqrt(twoN/(twoN + sum))*
					(chiSquareTest (measured, expected) - N);
		}

	/**
	 * Returns the p-value of a Y-square statistic.
	 *
	 * @param  N     Degrees of freedom.
	 * @param  ysqr  Y-square statistic.
	 *
	 * @return  P-value.
	 */
	public static double ySquarePvalue
		(double N,
		 double ysqr)
		{
		return gammq (0.5*N, 0.5*ysqr);
		}

	/**
	 * Do a Kolmogorov-Smirnov (K-S) test on the given data. The null hypothesis
	 * is that the data was drawn from a uniform distribution between 0.0 and
	 * 1.0.
	 * <P>
	 * The values in the <TT>data</TT> array must all be in the range 0.0
	 * through 1.0 and must be in ascending numerical order. The
	 * <TT>ksTest()</TT> method does not sort the data itself because the
	 * process that produced the data might already have sorted the data. If
	 * necessary, call <TT>Arrays.sort(data)</TT> before calling
	 * <TT>ksTest(data)</TT>.
	 *
	 * @param  data  Data array.
	 *
	 * @return  K-S statistic.
	 */
	public static double ksTest
		(double[] data)
		{
		int M = data.length;
		double N = M;
		double D = 0.0;
		double F_lower = 0.0;
		double F_upper;
		for (int i = 0; i < M; ++ i)
			{
			F_upper = (i+1) / N;
			D = Math.max (D, Math.abs (data[i] - F_lower));
			D = Math.max (D, Math.abs (data[i] - F_upper));
			F_lower = F_upper;
			}
		return D;
		}

	/**
	 * Do a Kolmogorov-Smirnov (K-S) test on the given data. The null hypothesis
	 * is that the data was drawn from the distribution specified by the given
	 * {@linkplain Function}. <TT>cdf.f(x)</TT> must return the value of the
	 * cumulative distribution function at <I>x</I>, in the range 0.0 through
	 * 1.0.
	 * <P>
	 * The values in the <TT>data</TT> array must all be in the domain of
	 * <TT>cdf</TT> and must be in ascending numerical order. The
	 * <TT>ksTest()</TT> method does not sort the data itself because the
	 * process that produced the data might already have sorted the data. If
	 * necessary, call <TT>Arrays.sort(data)</TT> before calling
	 * <TT>ksTest(data,cdf)</TT>.
	 *
	 * @param  data  Data array.
	 * @param  cdf   Cumulative distribution function.
	 *
	 * @return  K-S statistic.
	 */
	public static double ksTest
		(double[] data,
		 Function cdf)
		{
		int M = data.length;
		double N = M;
		double D = 0.0;
		double F_lower = 0.0;
		double F_upper;
		double cdf_i;
		for (int i = 0; i < M; ++ i)
			{
			F_upper = (i+1) / N;
			cdf_i = cdf.f (data[i]);
			D = Math.max (D, Math.abs (cdf_i - F_lower));
			D = Math.max (D, Math.abs (cdf_i - F_upper));
			F_lower = F_upper;
			}
		return D;
		}

	/**
	 * Do a Kolmogorov-Smirnov (K-S) test on the given data. The null hypothesis
	 * is that the data was drawn from a binomial random variable <I>X</I> that
	 * is the sum of <I>n</I> equiprobable Bernoulli random variables. For 0
	 * &le; <I>k</I> &le; <I>n</I>, the probability that <I>X</I> equals
	 * <I>k</I> is
	 * <P>
	 * <CENTER>
	 * Pr[<I>X</I> = <I>k</I>] = 2<SUP>&minus;<I>n</I></SUP> <I>n</I>! / <I>k</I>! / (<I>n</I> &minus; <I>k</I>)!
	 * </CENTER>
	 * <P>
	 * The values in the <TT>data</TT> array must all be in the range 0 ..
	 * <I>n</I> and must be in ascending numerical order. The
	 * <TT>binomialKsTest()</TT> method does not sort the data itself because
	 * the process that produced the data might already have sorted the data. If
	 * necessary, call <TT>Arrays.sort(data)</TT> before calling
	 * <TT>binomialKsTest(data,n)</TT>.
	 * <P>
	 * <I>Note:</I> To prevent roundoff error, the internal calculations are
	 * done using exact rational arithmetic. The final K-S statistic is then
	 * converted to a double-precision floating-point number and is returned.
	 *
	 * @param  data  Data array.
	 * @param  n     Number of Bernoulli random variables.
	 *
	 * @return  K-S statistic.
	 *
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>n</TT> &le; 0.
	 */
	public static double binomialKsTest
		(int[] data,
		 int n)
		{
		if (n <= 0L)
			{
			throw new IllegalArgumentException
				("Statistics.binomialKsTest(): n = "+n+" illegal");
			}
		int M = data.length;
		BigRational D = new BigRational (0);
		BigRational F_lower = new BigRational();
		BigRational F_upper = new BigRational();
		int pf_i = 0;
		BigInteger pf_numer = new BigInteger ("1");
		BigInteger pf_numer_sum = new BigInteger ("0");
		BigInteger pf_denom = new BigInteger ("2") .pow (n);
		BigRational cdf = new BigRational (0);
		int i = 0;
		int j = 0;
		while (i < M)
			{
			j = i;
			while (j+1 < M && data[j+1] == data[i]) ++ j;
			F_lower.assign (i, M);
			F_upper.assign (j+1, M);
			while (pf_i < data[i])
				{
				pf_numer = pf_numer.multiply (BigInteger.valueOf (n - pf_i));
				++ pf_i;
				pf_numer = pf_numer.divide (BigInteger.valueOf (pf_i));
				pf_numer_sum = pf_numer_sum.add (pf_numer);
				}
			cdf.assign (pf_numer_sum, pf_denom);
			F_lower.sub (cdf) .abs();
			F_upper.sub (cdf) .abs();
			D.max (F_lower) .max (F_upper) .normalize();
			i = j+1;
			}
		return D.doubleValue();
		}

	/**
	 * Returns the p-value of a K-S statistic.
	 *
	 * @param  N  Number of data points.
	 * @param  D  K-S statistic.
	 *
	 * @return  P-value.
	 */
	public static double ksPvalue
		(double N,
		 double D)
		{
		double sqrt_N = Math.sqrt(N);
		double x = (sqrt_N + 0.12 + 0.11/sqrt_N) * D;
		x = -2.0*x*x;
		double a = 2.0;
		double sum = 0.0;
		double term;
		double absterm;
		double prevterm = 0.0;
		for (int j = 1; j <= 100; ++ j)
			{
			term = a * Math.exp (x*j*j);
			sum += term;
			absterm = Math.abs(term);
			if (absterm <= 1.0e-6*prevterm || absterm <= 1.0e-12*sum)
				{
				return sum;
				}
			a = -a;
			prevterm = absterm;
			}
		return 1.0; // Failed to converge
		}

	/**
	 * Returns the p-value of a statistic drawn from a normal distribution.
	 *
	 * @param  x       Statistic.
	 * @param  mean    Mean of the normal distribution.
	 * @param  stddev  Standard deviation of the normal distribution.
	 *
	 * @return  P-value.
	 */
	public static double normalPvalue
		(double x,
		 double mean,
		 double stddev)
		{
		return 1.0 - erfc (-INV_SQRT_2*(x - mean)/stddev);
		}

	/**
	 * Do an unequal-variance <I>t</I>-test on the two given data series. The
	 * null hypothesis is that the two data series have the same mean; however,
	 * the two series are assumed to have different variances. An array of two
	 * doubles is returned; element 0 gives the <I>t</I> statistic; element 1
	 * gives the <I>p</I>-value (significance) of the <I>t</I> statistic.
	 * Roughly speaking, the <I>p</I>-value is the probability that the
	 * hypothesis is true. If the <I>p</I>-value falls below a significance
	 * threshold, the hypothesis is not true, and the two data series have
	 * different means.
	 *
	 * @param  data1  First data series.
	 * @param  data2  Second data series.
	 *
	 * @return  <I>t</I> statistic and its <I>p</I>-value.
	 */
	public static double[] tTestUnequalVariance
		(Series data1,
		 Series data2)
		{
		int n1 = data1.length();
		Series.Stats stats1 = data1.stats();
		double mean1 = stats1.mean;
		double var1 = stats1.var;
		int n2 = data2.length();
		Series.Stats stats2 = data2.stats();
		double mean2 = stats2.mean;
		double var2 = stats2.var;
		double t = (mean1 - mean2)/Math.sqrt(var1/n1 + var2/n2);
		double df = sqr(var1/n1 + var2/n2)/
			(sqr(var1/n1)/(n1 - 1) + sqr(var2/n2)/(n2 - 1));
		double p = betai (0.5*df, 0.5, df/(df + sqr(t)));
		return new double[] { t, p };
		}

// Hidden operations.

	private static final double INV_SQRT_2 = 1.0/Math.sqrt(2.0);

	private static final double[] LGAMMA_COF = new double[]
		{ 57.1562356658629235,
		 -59.5979603554754912,
		  14.1360979747417471,
		  -0.491913816097620199,
		   0.339946499848118887e-4,
		   0.465236289270485756e-4,
		  -0.983744753048795646e-4,
		   0.158088703224912494e-3,
		  -0.210264441724104883e-3,
		   0.217439618115212643e-3,
		  -0.164318106536763890e-3,
		   0.844182239838527433e-4,
		  -0.261908384015814087e-4,
		   0.368991826595316234e-5};

	/**
	 * Returns the log-gamma function ln(gamma(x)). Assumes <TT>x</TT> &gt; 0.
	 */
	private static double lgamma
		(double x)
		{
		double y, tmp, ser;
		int i;

		y = x;
		tmp = x + 5.2421875;
		tmp = (x + 0.5)*Math.log(tmp) - tmp;
		ser = 0.999999999999997092;
		for (i = 0; i < LGAMMA_COF.length; ++ i)
			{
			y += 1.0;
			ser += LGAMMA_COF[i]/y;
			}
		return tmp + Math.log(2.5066282746310005*ser/x);
		}

	private static final int GAMMA_ITMAX = 200;
	private static final double GAMMA_EPS = 2.22e-16;
	private static final double GAMMA_FPMIN = (2.23e-308/GAMMA_EPS);

	/**
	 * Returns the incomplete gamma function P(a,x), evaluated by its series
	 * representation. Assumes <TT>a</TT> &gt; 0 and <TT>x</TT> &ge; 0.
	 */
	private static double gser
		(double a,
		 double x)
		{
		double ap, del, sum;
		int i;

		ap = a;
		del = 1.0/a;
		sum = del;
		for (i = 1; i <= GAMMA_ITMAX; ++ i)
			{
			ap += 1.0;
			del *= x/ap;
			sum += del;
			if (Math.abs(del) < Math.abs(sum)*GAMMA_EPS)
				{
				return sum*Math.exp(-x + a*Math.log(x) - lgamma(a));
				}
			}
		return 1.0; // Too many iterations
		}

	/**
	 * Returns the complementary incomplete gamma function Q(a,x), evaluated by
	 * its continued fraction representation. Assumes <TT>a</TT> &gt; 0 and
	 * <TT>x</TT> &ge; 0.
	 */
	private static double gcf
		(double a,
		 double x)
		{
		double b, c, d, h, an, del;
		int i;

		b = x + 1.0 - a;
		c = 1.0/GAMMA_FPMIN;
		d = 1.0/b;
		h = d;
		for (i = 1; i <= GAMMA_ITMAX; ++ i)
			{
			an = -i*(i - a);
			b += 2.0;
			d = an*d + b;
			if (Math.abs(d) < GAMMA_FPMIN) d = GAMMA_FPMIN;
			c = b + an/c;
			if (Math.abs(c) < GAMMA_FPMIN) c = GAMMA_FPMIN;
			d = 1.0/d;
			del = d*c;
			h *= del;
			if (Math.abs(del - 1.0) < GAMMA_EPS)
				{
				return Math.exp(-x + a*Math.log(x) - lgamma(a))*h;
				}
			}
		return 0.0; // Too many iterations
		}

	/**
	 * Returns the incomplete gamma function P(a,x).
	 */
	private static double gammp
		(double a,
		 double x)
		{
		if (a <= 0.0)
			{
			throw new IllegalArgumentException ("gammp(): a = "+a+" illegal");
			}
		if (x < 0.0)
			{
			throw new IllegalArgumentException ("gammp(): x = "+x+" illegal");
			}
		return x == 0.0 ? 0.0 : x < a + 1.0 ? gser(a,x) : 1.0 - gcf(a,x);
		}

	/**
	 * Returns the complementary incomplete gamma function Q(a,x) = 1 - P(a,x).
	 */
	private static double gammq
		(double a,
		 double x)
		{
		if (a <= 0.0)
			{
			throw new IllegalArgumentException ("gammq(): a = "+a+" illegal");
			}
		if (x < 0.0)
			{
			throw new IllegalArgumentException ("gammq(): x = "+x+" illegal");
			}
		return x == 0.0 ? 1.0 : x < a + 1.0 ? 1.0 - gser(a,x) : gcf(a,x);
		}

	/**
	 * Returns the complementary error function erfc(x).
	 */
	private static double erfc
		(double x)
		{
		return gammq (0.5, x*x);
		}

	private static final int BETA_ITMAX = 10000;
	private static final double BETA_EPS = 2.22e-16;
	private static final double BETA_FPMIN = (2.23e-308/BETA_EPS);

	/**
	 * Returns the incomplete beta function I_x(a,b) evaluated by its continued
	 * fraction representation.
	 */
	private static double betacf
		(double a,
		 double b,
		 double x)
		{
		int m, m2;
		double aa, c, d, del, h, qab, qam, qap;
		qab = a + b;
		qap = a + 1.0;
		qam = a - 1.0;
		c = 1.0;
		d = 1.0 - qab*x/qap;
		if (Math.abs(d) < BETA_FPMIN) d = BETA_FPMIN;
		d = 1.0/d;
		h = d;
		for (m = 1; m < BETA_ITMAX; ++ m)
			{
			m2 = 2*m;
			aa = m*(b - m)*x/((qam + m2)*(a + m2));
			d = 1.0 + aa*d;
			if (Math.abs(d) < BETA_FPMIN) d = BETA_FPMIN;
			c = 1.0 + aa/c;
			if (Math.abs(c) < BETA_FPMIN) c = BETA_FPMIN;
			d = 1.0/d;
			h *= d*c;
			aa = -(a + m)*(qab + m)*x/((a + m2)*(qap + m2));
			d = 1.0 + aa*d;
			if (Math.abs(d) < BETA_FPMIN) d = BETA_FPMIN;
			c = 1.0 + aa/c;
			if (Math.abs(c) < BETA_FPMIN) c = BETA_FPMIN;
			d = 1.0/d;
			del = d*c;
			h *= del;
			if (Math.abs(del - 1.0) <= BETA_EPS) break;
			}
		return h;
		}

	/**
	 * Returns the incomplete beta function I_x(a,b).
	 */
	private static double betai
		(double a,
		 double b,
		 double x)
		{
		if (a <= 0.0)
			{
			throw new IllegalArgumentException ("betai(): a = "+a+" illegal");
			}
		if (b <= 0.0)
			{
			throw new IllegalArgumentException ("betai(): b = "+b+" illegal");
			}
		if (x < 0.0 || x > 1.0)
			{
			throw new IllegalArgumentException ("betai(): x = "+x+" illegal");
			}
		if (x == 0.0 || x == 1.0) return x;
		double bt = Math.exp (lgamma(a+b) - lgamma(a) - lgamma(b) +
			a*Math.log(x) + b*Math.log(1.0 - x));
		if (x < (a + 1.0)/(a + b + 2.0))
			return bt*betacf(a,b,x)/a;
		else
			return 1.0 - bt*betacf(b,a,1.0-x)/b;
		}

	/**
	 * Returns the square of x.
	 */
	private static double sqr
		(double x)
		{
		return x*x;
		}

// Unit test main program.

//	/**
//	 * Unit test main program. Does a K-S test on N random doubles, prints the
//	 * K-S statistic, and prints the p-value.
//	 * <P>
//	 * Usage: java edu.rit.numeric.Statistics <I>seed</I> <I>N</I>
//	 * <BR><I>seed</I> = Random seed
//	 * <BR><I>N</I> = Number of data points
//	 */
//	public static void main
//		(String[] args)
//		throws Exception
//		{
//		if (args.length != 2) usage();
//		long seed = Long.parseLong (args[0]);
//		int N = Integer.parseInt (args[1]);
//		Random prng = Random.getInstance (seed);
//		double[] data = new double [N];
//		for (int i = 0; i < N; ++ i)
//			{
//			data[i] = prng.nextDouble();
//			}
//		Arrays.sort (data);
//		double D = ksTest (data);
//		System.out.println ("D = " + D);
//		System.out.println ("p = " + ksPvalue (N, D));
//		}
//
//	private static void usage()
//		{
//		System.err.println ("Usage: java edu.rit.numeric.Statistics <seed> <N>");
//		System.err.println ("<seed> = Random seed");
//		System.err.println ("<N> = Number of data points");
//		System.exit (1);
//		}

	}