1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
//******************************************************************************
//
// File: Tridiagonal.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.Tridiagonal
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
/**
* Class Tridiagonal provides static methods for solving tridiagonal systems of
* linear equations.
* <P>
* The Java code was translated from routines
* <TT>gsl_linalg_solve_tridiag()</TT>,
* <TT>gsl_linalg_solve_symm_tridiag()</TT>,
* <TT>gsl_linalg_solve_cyc_tridiag()</TT>, and
* <TT>gsl_linalg_solve_symm_cyc_tridiag()</TT>
* in the GNU Scientific Library Version 1.9.
*
* @author Alan Kaminsky
* @version 07-Jul-2007
*/
public class Tridiagonal
{
// Prevent construction.
private Tridiagonal()
{
}
// Exported operations.
/**
* Solve the given tridiagonal system of linear equations. This method
* solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> = <I>b</I> where
* <I>A</I> is tridiagonal (<I>N</I> >= 2). The form of <I>A</I> for the
* 4-by-4 case is:
* <PRE>
* [ d0 e0 0 0 ]
* A = [ f0 d1 e1 0 ]
* [ 0 f1 d2 e2 ]
* [ 0 0 f2 d3 ]
* </PRE>
*
* @param d (input) Vector of diagonal elements. Length <I>N</I> must be
* >= 2.
* @param e (input) Vector of super-diagonal elements. Length must be
* <I>N</I>-1.
* @param f (input) Vector of sub-diagonal elements. Length must be
* <I>N</I>-1.
* @param b (input) Vector of right hand side elements. Length must be
* <I>N</I>.
* @param x (output) Solution vector. Length must be <I>N</I>.
*
* @exception NullPointerException
* (unchecked exception) Thrown if any argument is null.
* @exception IllegalArgumentException
* (unchecked exception) Thrown if any argument is the wrong length.
* @exception DomainException
* (unchecked exception) Thrown if the linear system cannot be solved.
*/
public static void solve
(double[] d,
double[] e,
double[] f,
double[] b,
double[] x)
{
// Verify preconditions.
int N = d.length;
if (N < 2)
{
throw new IllegalArgumentException
("Tridiagonal.solve(): d.length = " + d.length + " illegal");
}
if (e.length != N-1)
{
throw new IllegalArgumentException
("Tridiagonal.solve(): e.length = " + e.length + " illegal");
}
if (f.length != N-1)
{
throw new IllegalArgumentException
("Tridiagonal.solve(): f.length = " + f.length + " illegal");
}
if (b.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solve(): b.length = " + b.length + " illegal");
}
if (x.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solve(): x.length = " + x.length + " illegal");
}
// Working storage.
double[] alpha = new double [N];
double[] z = new double [N];
// Elimination of sub-diagonal. alpha = new diagonal, z = new right hand
// side.
alpha[0] = d[0];
z[0] = b[0];
if (alpha[0] == 0.0)
{
throw new DomainException
("Tridiagonal.solve(): Zero on diagonal");
}
for (int i = 1; i < N; ++ i)
{
double t = f[i-1] / alpha[i-1];
alpha[i] = d[i] - t * e[i-1];
z[i] = b[i] - t * z[i-1];
if (alpha[i] == 0.0)
{
throw new DomainException
("Tridiagonal.solve(): Zero on diagonal");
}
}
// Back substitution.
int Nminus1 = N - 1;
x[Nminus1] = z[Nminus1] / alpha[Nminus1];
for (int i = N-2; i >= 0; -- i)
{
x[i] = (z[i] - e[i] * x[i+1]) / alpha[i];
}
}
/**
* Solve the given symmetric tridiagonal system of linear equations. This
* method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
* <I>b</I> where <I>A</I> is symmetric tridiagonal (<I>N</I> >= 2). The
* form of <I>A</I> for the 4-by-4 case is:
* <PRE>
* [ d0 e0 0 0 ]
* A = [ e0 d1 e1 0 ]
* [ 0 e1 d2 e2 ]
* [ 0 0 e2 d3 ]
* </PRE>
*
* @param d (input) Vector of diagonal elements. Length <I>N</I> must be
* >= 2.
* @param e (input) Vector of off-diagonal elements. Length must be
* <I>N</I>-1.
* @param b (input) Vector of right hand side elements. Length must be
* <I>N</I>.
* @param x (output) Solution vector. Length must be <I>N</I>.
*
* @exception NullPointerException
* (unchecked exception) Thrown if any argument is null.
* @exception IllegalArgumentException
* (unchecked exception) Thrown if any argument is the wrong length.
* @exception DomainException
* (unchecked exception) Thrown if the linear system cannot be solved.
*/
public static void solveSymmetric
(double[] d,
double[] e,
double[] b,
double[] x)
{
solve (d, e, e, b, x);
}
/**
* Solve the given cyclic tridiagonal system of linear equations. This
* method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
* <I>b</I> where <I>A</I> is cyclic tridiagonal (<I>N</I> >= 3). The
* form of <I>A</I> for the 4-by-4 case is:
* <PRE>
* [ d0 e0 0 f3 ]
* A = [ f0 d1 e1 0 ]
* [ 0 f1 d2 e2 ]
* [ e3 0 f2 d3 ]
* </PRE>
*
* @param d (input) Vector of diagonal elements. Length <I>N</I> must be
* >= 3.
* @param e (input) Vector of super-diagonal elements. Length must be
* <I>N</I>.
* @param f (input) Vector of sub-diagonal elements. Length must be
* <I>N</I>.
* @param b (input) Vector of right hand side elements. Length must be
* <I>N</I>.
* @param x (output) Solution vector. Length must be <I>N</I>.
*
* @exception NullPointerException
* (unchecked exception) Thrown if any argument is null.
* @exception IllegalArgumentException
* (unchecked exception) Thrown if any argument is the wrong length.
* @exception DomainException
* (unchecked exception) Thrown if the linear system cannot be solved.
*/
public static void solveCyclic
(double[] d,
double[] e,
double[] f,
double[] b,
double[] x)
{
// Verify preconditions.
int N = d.length;
if (N < 3)
{
throw new IllegalArgumentException
("Tridiagonal.solveCyclic(): d.length = " + d.length +
" illegal");
}
if (e.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveCyclic(): e.length = " + e.length +
" illegal");
}
if (f.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveCyclic(): f.length = " + f.length +
" illegal");
}
if (b.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveCyclic(): b.length = " + b.length +
" illegal");
}
if (x.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveCyclic(): x.length = " + x.length +
" illegal");
}
// Working storage.
double[] alpha = new double [N];
double[] zb = new double [N];
double[] zu = new double [N];
double[] w = new double [N];
double beta;
// Elimination of sub-diagonal. alpha = new diagonal, zb = new right
// hand side. A*q = zu.
if (d[0] == 0.0 || d[1] == 0.0)
{
throw new DomainException
("Tridiagonal.solveCyclic(): Zero on diagonal");
}
zb[0] = b[0];
beta = -d[0];
double q = 1.0 - (e[0] * f[0]) / (d[0] * d[1]);
double abs_q_over_beta = Math.abs (q / beta);
if (abs_q_over_beta <= 0.5)
{
}
else if (abs_q_over_beta < 1.0)
{
beta *= 0.5;
}
else if (abs_q_over_beta < 2.0)
{
beta *= 2.0;
}
zu[0] = beta;
alpha[0] = d[0] - beta;
if (alpha[0] == 0.0)
{
throw new DomainException
("Tridiagonal.solveCyclic(): Zero on diagonal");
}
int Nminus1 = N - 1;
for (int i = 1; i < Nminus1; ++ i)
{
double t = f[i-1] / alpha[i-1];
alpha[i] = d[i] - t * e[i-1];
zb[i] = b[i] - t * zb[i-1];
zu[i] = -t * zu[i-1];
if (alpha[i] == 0.0)
{
throw new DomainException
("Tridiagonal.solveCyclic(): Zero on diagonal");
}
}
int Nminus2 = N - 2;
double t = f[Nminus2] / alpha[Nminus2];
alpha[Nminus1] =
d[Nminus1] - e[Nminus1] * f[Nminus1] / beta - t * e[Nminus2];
zb[Nminus1] = b[Nminus1] - t * zb[Nminus2];
zu[Nminus1] = e[Nminus1] - t * zu[Nminus2];
if (alpha[Nminus1] == 0.0)
{
throw new DomainException
("Tridiagonal.solveCyclic(): Zero on diagonal");
}
// Back substitution.
w[Nminus1] = zu[Nminus1] / alpha[Nminus1];
x[Nminus1] = zb[Nminus1] / alpha[Nminus1];
for (int i = Nminus2; i >= 0; -- i)
{
w[i] = (zu[i] - e[i] * w[i+1]) / alpha[i];
x[i] = (zb[i] - e[i] * x[i+1]) / alpha[i];
}
// Sherman-Morrison to fix up from corner elements.
double vw = w[0] + f[Nminus1] / beta * w[Nminus1] + 1.0;
double vx = x[0] + f[Nminus1] / beta * x[Nminus1];
if (vw == 0.0)
{
throw new DomainException
("Tridiagonal.solveCyclic(): Zero on diagonal");
}
double vx_over_vw = vx / vw;
for (int i = 0; i < N; ++ i)
{
x[i] -= vx_over_vw * w[i];
}
}
/**
* Solve the given symmetric cyclic tridiagonal system of linear equations.
* This method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
* <I>b</I> where <I>A</I> is symmetric cyclic tridiagonal (<I>N</I> >=
* 3). The form of <I>A</I> for the 4-by-4 case is:
* <PRE>
* [ d0 e0 0 e3 ]
* A = [ e0 d1 e1 0 ]
* [ 0 e1 d2 e2 ]
* [ e3 0 e2 d3 ]
* </PRE>
*
* @param d (input) Vector of diagonal elements. Length <I>N</I> must be
* >= 3.
* @param e (input) Vector of off-diagonal elements. Length must be
* <I>N</I>.
* @param b (input) Vector of right hand side elements. Length must be
* <I>N</I>.
* @param x (output) Solution vector. Length must be <I>N</I>.
*
* @exception NullPointerException
* (unchecked exception) Thrown if any argument is null.
* @exception IllegalArgumentException
* (unchecked exception) Thrown if any argument is the wrong length.
* @exception DomainException
* (unchecked exception) Thrown if the linear system cannot be solved.
*/
public static void solveSymmetricCyclic
(double[] d,
double[] e,
double[] b,
double[] x)
{
// Verify preconditions.
int N = d.length;
if (N < 3)
{
throw new IllegalArgumentException
("Tridiagonal.solveSymmetricCyclic(): d.length = " + d.length +
" illegal");
}
if (e.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveSymmetricCyclic(): e.length = " + e.length +
" illegal");
}
if (b.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveSymmetricCyclic(): b.length = " + b.length +
" illegal");
}
if (x.length != N)
{
throw new IllegalArgumentException
("Tridiagonal.solveSymmetricCyclic(): x.length = " + x.length +
" illegal");
}
// Working storage.
double[] alpha = new double [N];
double[] gamma = new double [N];
double[] delta = new double [N];
double[] c = new double [N];
double[] z = new double [N];
double sum = 0.0;
// Factor.
int Nminus1 = N - 1;
int Nminus2 = N - 2;
int Nminus3 = N - 3;
if (d[0] == 0.0)
{
throw new DomainException
("Tridiagonal.solveSymmetricCyclic(): Zero on diagonal");
}
alpha[0] = d[0];
gamma[0] = e[0] / alpha[0];
delta[0] = e[Nminus1] / alpha[0];
sum += alpha[0] * delta[0] * delta[0];
for (int i = 1; i < Nminus2; ++ i)
{
alpha[i] = d[i] - e[i-1] * gamma[i-1];
if (alpha[i] == 0.0)
{
throw new DomainException
("Tridiagonal.solveSymmetricCyclic(): Zero on diagonal");
}
gamma[i] = e[i] / alpha[i];
delta[i] = -delta[i-1] * e[i-1] / alpha[i];
sum += alpha[i] * delta[i] * delta[i];
}
alpha[Nminus2] =
d[Nminus2] - e[Nminus3] * gamma[Nminus3];
gamma[Nminus2] =
(e[Nminus2] - e[Nminus3] * delta[Nminus3]) / alpha[Nminus2];
alpha[Nminus1] =
d[Nminus1] - sum - alpha[Nminus2] * gamma[Nminus2] * gamma[Nminus2];
// Update.
z[0] = b[0];
for (int i = 1; i < Nminus1; ++ i)
{
z[i] = b[i] - z[i-1] * gamma[i-1];
}
sum = 0.0;
for (int i = 0; i < Nminus2; ++ i)
{
sum += delta[i] * z[i];
}
z[Nminus1] = b[Nminus1] - sum - gamma[Nminus2] * z[Nminus2];
for (int i = 0; i < N; ++ i)
{
c[i] = z[i] / alpha[i];
}
// Back substitution.
x[Nminus1] = c[Nminus1];
x[Nminus2] = c[Nminus2] - gamma[Nminus2] * x[Nminus1];
for (int i = Nminus3; i >= 0; -- i)
{
x[i] = c[i] - gamma[i] * x[i+1] - delta[i] * x[Nminus1];
}
}
}
|