File: Tridiagonal.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (482 lines) | stat: -rw-r--r-- 14,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//******************************************************************************
//
// File:    Tridiagonal.java
// Package: edu.rit.numeric
// Unit:    Class edu.rit.numeric.Tridiagonal
//
// This Java source file is copyright (C) 2007 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.numeric;

/**
 * Class Tridiagonal provides static methods for solving tridiagonal systems of
 * linear equations.
 * <P>
 * The Java code was translated from routines
 * <TT>gsl_linalg_solve_tridiag()</TT>,
 * <TT>gsl_linalg_solve_symm_tridiag()</TT>,
 * <TT>gsl_linalg_solve_cyc_tridiag()</TT>, and
 * <TT>gsl_linalg_solve_symm_cyc_tridiag()</TT>
 * in the GNU Scientific Library Version 1.9.
 *
 * @author  Alan Kaminsky
 * @version 07-Jul-2007
 */
public class Tridiagonal
	{

// Prevent construction.

	private Tridiagonal()
		{
		}

// Exported operations.

	/**
	 * Solve the given tridiagonal system of linear equations. This method
	 * solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> = <I>b</I> where
	 * <I>A</I> is tridiagonal (<I>N</I> &gt;= 2). The form of <I>A</I> for the
	 * 4-by-4 case is:
	 * <PRE>
	 *     [ d0  e0  0   0  ]
	 * A = [ f0  d1  e1  0  ]
	 *     [ 0   f1  d2  e2 ]
	 *     [ 0   0   f2  d3 ]
	 * </PRE>
	 *
	 * @param  d  (input) Vector of diagonal elements. Length <I>N</I> must be
	 *            &gt;= 2.
	 * @param  e  (input) Vector of super-diagonal elements. Length must be
	 *            <I>N</I>-1.
	 * @param  f  (input) Vector of sub-diagonal elements. Length must be
	 *            <I>N</I>-1.
	 * @param  b  (input) Vector of right hand side elements. Length must be
	 *            <I>N</I>.
	 * @param  x  (output) Solution vector. Length must be <I>N</I>.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if any argument is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if any argument is the wrong length.
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the linear system cannot be solved.
	 */
	public static void solve
		(double[] d,
		 double[] e,
		 double[] f,
		 double[] b,
		 double[] x)
		{
		// Verify preconditions.
		int N = d.length;
		if (N < 2)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solve(): d.length = " + d.length + " illegal");
			}
		if (e.length != N-1)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solve(): e.length = " + e.length + " illegal");
			}
		if (f.length != N-1)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solve(): f.length = " + f.length + " illegal");
			}
		if (b.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solve(): b.length = " + b.length + " illegal");
			}
		if (x.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solve(): x.length = " + x.length + " illegal");
			}

		// Working storage.
		double[] alpha = new double [N];
		double[] z = new double [N];

		// Elimination of sub-diagonal. alpha = new diagonal, z = new right hand
		// side.
		alpha[0] = d[0];
		z[0] = b[0];
		if (alpha[0] == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solve(): Zero on diagonal");
			}
		for (int i = 1; i < N; ++ i)
			{
			double t = f[i-1] / alpha[i-1];
			alpha[i] = d[i] - t * e[i-1];
			z[i] = b[i] - t * z[i-1];
			if (alpha[i] == 0.0)
				{
				throw new DomainException
					("Tridiagonal.solve(): Zero on diagonal");
				}
			}

		// Back substitution.
		int Nminus1 = N - 1;
		x[Nminus1] = z[Nminus1] / alpha[Nminus1];
		for (int i = N-2; i >= 0; -- i)
			{
			x[i] = (z[i] - e[i] * x[i+1]) / alpha[i];
			}
		}

	/**
	 * Solve the given symmetric tridiagonal system of linear equations. This
	 * method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
	 * <I>b</I> where <I>A</I> is symmetric tridiagonal (<I>N</I> &gt;= 2). The
	 * form of <I>A</I> for the 4-by-4 case is:
	 * <PRE>
	 *     [ d0  e0  0   0  ]
	 * A = [ e0  d1  e1  0  ]
	 *     [ 0   e1  d2  e2 ]
	 *     [ 0   0   e2  d3 ]
	 * </PRE>
	 *
	 * @param  d  (input) Vector of diagonal elements. Length <I>N</I> must be
	 *            &gt;= 2.
	 * @param  e  (input) Vector of off-diagonal elements. Length must be
	 *            <I>N</I>-1.
	 * @param  b  (input) Vector of right hand side elements. Length must be
	 *            <I>N</I>.
	 * @param  x  (output) Solution vector. Length must be <I>N</I>.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if any argument is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if any argument is the wrong length.
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the linear system cannot be solved.
	 */
	public static void solveSymmetric
		(double[] d,
		 double[] e,
		 double[] b,
		 double[] x)
		{
		solve (d, e, e, b, x);
		}

	/**
	 * Solve the given cyclic tridiagonal system of linear equations. This
	 * method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
	 * <I>b</I> where <I>A</I> is cyclic tridiagonal (<I>N</I> &gt;= 3). The
	 * form of <I>A</I> for the 4-by-4 case is:
	 * <PRE>
	 *     [ d0  e0  0   f3 ]
	 * A = [ f0  d1  e1  0  ]
	 *     [ 0   f1  d2  e2 ]
	 *     [ e3  0   f2  d3 ]
	 * </PRE>
	 *
	 * @param  d  (input) Vector of diagonal elements. Length <I>N</I> must be
	 *            &gt;= 3.
	 * @param  e  (input) Vector of super-diagonal elements. Length must be
	 *            <I>N</I>.
	 * @param  f  (input) Vector of sub-diagonal elements. Length must be
	 *            <I>N</I>.
	 * @param  b  (input) Vector of right hand side elements. Length must be
	 *            <I>N</I>.
	 * @param  x  (output) Solution vector. Length must be <I>N</I>.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if any argument is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if any argument is the wrong length.
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the linear system cannot be solved.
	 */
	public static void solveCyclic
		(double[] d,
		 double[] e,
		 double[] f,
		 double[] b,
		 double[] x)
		{
		// Verify preconditions.
		int N = d.length;
		if (N < 3)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveCyclic(): d.length = " + d.length +
				 " illegal");
			}
		if (e.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveCyclic(): e.length = " + e.length +
				 " illegal");
			}
		if (f.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveCyclic(): f.length = " + f.length +
				 " illegal");
			}
		if (b.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveCyclic(): b.length = " + b.length +
				 " illegal");
			}
		if (x.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveCyclic(): x.length = " + x.length +
				 " illegal");
			}

		// Working storage.
		double[] alpha = new double [N];
		double[] zb = new double [N];
		double[] zu = new double [N];
		double[] w = new double [N];
		double beta;

		// Elimination of sub-diagonal. alpha = new diagonal, zb = new right
		// hand side. A*q = zu.
		if (d[0] == 0.0 || d[1] == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solveCyclic(): Zero on diagonal");
			}
		zb[0] = b[0];
		beta = -d[0];
		double q = 1.0 - (e[0] * f[0]) / (d[0] * d[1]);
		double abs_q_over_beta = Math.abs (q / beta);
		if (abs_q_over_beta <= 0.5)
			{
			}
		else if (abs_q_over_beta < 1.0)
			{
			beta *= 0.5;
			}
		else if (abs_q_over_beta < 2.0)
			{
			beta *= 2.0;
			}
		zu[0] = beta;
		alpha[0] = d[0] - beta;
		if (alpha[0] == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solveCyclic(): Zero on diagonal");
			}
		int Nminus1 = N - 1;
		for (int i = 1; i < Nminus1; ++ i)
			{
			double t = f[i-1] / alpha[i-1];
			alpha[i] = d[i] - t * e[i-1];
			zb[i] = b[i] - t * zb[i-1];
			zu[i] = -t * zu[i-1];
			if (alpha[i] == 0.0)
				{
				throw new DomainException
					("Tridiagonal.solveCyclic(): Zero on diagonal");
				}
			}
		int Nminus2 = N - 2;
		double t = f[Nminus2] / alpha[Nminus2];
		alpha[Nminus1] =
			d[Nminus1] - e[Nminus1] * f[Nminus1] / beta - t * e[Nminus2];
		zb[Nminus1] = b[Nminus1] - t * zb[Nminus2];
		zu[Nminus1] = e[Nminus1] - t * zu[Nminus2];
		if (alpha[Nminus1] == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solveCyclic(): Zero on diagonal");
			}

		// Back substitution.
		w[Nminus1] = zu[Nminus1] / alpha[Nminus1];
		x[Nminus1] = zb[Nminus1] / alpha[Nminus1];
		for (int i = Nminus2; i >= 0; -- i)
			{
			w[i] = (zu[i] - e[i] * w[i+1]) / alpha[i];
			x[i] = (zb[i] - e[i] * x[i+1]) / alpha[i];
			}

		// Sherman-Morrison to fix up from corner elements.
		double vw = w[0] + f[Nminus1] / beta * w[Nminus1] + 1.0;
		double vx = x[0] + f[Nminus1] / beta * x[Nminus1];
		if (vw == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solveCyclic(): Zero on diagonal");
			}
		double vx_over_vw = vx / vw;
		for (int i = 0; i < N; ++ i)
			{
			x[i] -= vx_over_vw * w[i];
			}
		}

	/**
	 * Solve the given symmetric cyclic tridiagonal system of linear equations.
	 * This method solves the general <I>N</I>-by-<I>N</I> system <I>Ax</I> =
	 * <I>b</I> where <I>A</I> is symmetric cyclic tridiagonal (<I>N</I> &gt;=
	 * 3). The form of <I>A</I> for the 4-by-4 case is:
	 * <PRE>
	 *     [ d0  e0  0   e3 ]
	 * A = [ e0  d1  e1  0  ]
	 *     [ 0   e1  d2  e2 ]
	 *     [ e3  0   e2  d3 ]
	 * </PRE>
	 *
	 * @param  d  (input) Vector of diagonal elements. Length <I>N</I> must be
	 *            &gt;= 3.
	 * @param  e  (input) Vector of off-diagonal elements. Length must be
	 *            <I>N</I>.
	 * @param  b  (input) Vector of right hand side elements. Length must be
	 *            <I>N</I>.
	 * @param  x  (output) Solution vector. Length must be <I>N</I>.
	 *
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if any argument is null.
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if any argument is the wrong length.
	 * @exception  DomainException
	 *     (unchecked exception) Thrown if the linear system cannot be solved.
	 */
	public static void solveSymmetricCyclic
		(double[] d,
		 double[] e,
		 double[] b,
		 double[] x)
		{
		// Verify preconditions.
		int N = d.length;
		if (N < 3)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveSymmetricCyclic(): d.length = " + d.length +
				 " illegal");
			}
		if (e.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveSymmetricCyclic(): e.length = " + e.length +
				 " illegal");
			}
		if (b.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveSymmetricCyclic(): b.length = " + b.length +
				 " illegal");
			}
		if (x.length != N)
			{
			throw new IllegalArgumentException
				("Tridiagonal.solveSymmetricCyclic(): x.length = " + x.length +
				 " illegal");
			}

		// Working storage.
		double[] alpha = new double [N];
		double[] gamma = new double [N];
		double[] delta = new double [N];
		double[] c = new double [N];
		double[] z = new double [N];
		double sum = 0.0;

		// Factor.
		int Nminus1 = N - 1;
		int Nminus2 = N - 2;
		int Nminus3 = N - 3;
		if (d[0] == 0.0)
			{
			throw new DomainException
				("Tridiagonal.solveSymmetricCyclic(): Zero on diagonal");
			}
		alpha[0] = d[0];
		gamma[0] = e[0] / alpha[0];
		delta[0] = e[Nminus1] / alpha[0];
		sum += alpha[0] * delta[0] * delta[0];
		for (int i = 1; i < Nminus2; ++ i)
			{
			alpha[i] = d[i] - e[i-1] * gamma[i-1];
			if (alpha[i] == 0.0)
				{
				throw new DomainException
					("Tridiagonal.solveSymmetricCyclic(): Zero on diagonal");
				}
			gamma[i] = e[i] / alpha[i];
			delta[i] = -delta[i-1] * e[i-1] / alpha[i];
			sum += alpha[i] * delta[i] * delta[i];
			}
		alpha[Nminus2] =
			d[Nminus2] - e[Nminus3] * gamma[Nminus3];
		gamma[Nminus2] =
			(e[Nminus2] - e[Nminus3] * delta[Nminus3]) / alpha[Nminus2];
		alpha[Nminus1] =
			d[Nminus1] - sum - alpha[Nminus2] * gamma[Nminus2] * gamma[Nminus2];

		// Update.
		z[0] = b[0];
		for (int i = 1; i < Nminus1; ++ i)
			{
			z[i] = b[i] - z[i-1] * gamma[i-1];
			}
		sum = 0.0;
		for (int i = 0; i < Nminus2; ++ i)
			{
			sum += delta[i] * z[i];
			}
		z[Nminus1] = b[Nminus1] - sum - gamma[Nminus2] * z[Nminus2];
		for (int i = 0; i < N; ++ i)
			{
			c[i] = z[i] / alpha[i];
			}

		// Back substitution.
		x[Nminus1] = c[Nminus1];
		x[Nminus2] = c[Nminus2] - gamma[Nminus2] * x[Nminus1];
		for (int i = Nminus3; i >= 0; -- i)
			{
			x[i] = c[i] - gamma[i] * x[i+1] - delta[i] * x[Nminus1];
			}
		}

	}