1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
//******************************************************************************
//
// File: XYSeries.java
// Package: edu.rit.numeric
// Unit: Class edu.rit.numeric.XYSeries
//
// This Java source file is copyright (C) 2010 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************
package edu.rit.numeric;
import java.io.PrintStream;
import java.io.PrintWriter;
/**
* Class XYSeries is the abstract base class for a series of (<I>x,y</I>) pairs
* of real values (type <TT>double</TT>).
*
* @author Alan Kaminsky
* @version 20-Jul-2011
*/
public abstract class XYSeries
{
// Exported helper classes.
/**
* Class XYSeries.Stats holds the means, variances, and standard deviations
* of an {@linkplain XYSeries}.
* <P>
* If the series is empty, the means, variances, and standard deviations are
* set to <TT>Double.NaN</TT> (not-a-number).
*
* @author Alan Kaminsky
* @version 20-Jul-2011
*/
public static class Stats
{
/**
* Mean of the series' X values.
*/
public final double meanX;
/**
* Variance of the series' X values.
*/
public final double varX;
/**
* Standard deviation of the series' X values.
*/
public final double stddevX;
/**
* Mean of the series' Y values.
*/
public final double meanY;
/**
* Variance of the series' Y values.
*/
public final double varY;
/**
* Standard deviation of the series' Y values.
*/
public final double stddevY;
/**
* Construct a new XYSeries.Stats object.
*/
private Stats
(XYSeries series)
{
Series.Stats stats;
stats = series.xSeries().stats();
this.meanX = stats.meanX;
this.varX = stats.varX;
this.stddevX = stats.stddevX;
stats = series.ySeries().stats();
this.meanY = stats.meanX;
this.varY = stats.varX;
this.stddevY = stats.stddevX;
}
}
/**
* Class XYSeries.RobustStats holds the medians, mean absolute deviations,
* and quantiles of an {@linkplain XYSeries}.
* <P>
* If the series is empty, the medians, mean absolute deviations, and
* quantiles are set to <TT>Double.NaN</TT> (not-a-number).
*
* @author Alan Kaminsky
* @version 20-Jul-2011
*/
public static class RobustStats
{
/**
* Median of the series' X values, equal to <TT>quantileX(0.5)</TT>.
*/
public final double medianX;
/**
* Mean absolute deviation of the series' X values. The absolute
* deviation of one value <I>x</I> is
* |<I>x</I> − <I>medianX</I>|. The mean absolute
* deviation is the mean of all the X values' absolute deviations.
*/
public final double meanAbsDevX;
/**
* Median of the series' Y values, equal to <TT>quantileY(0.5)</TT>.
*/
public final double medianY;
/**
* Mean absolute deviation of the series' Y values. The absolute
* deviation of one value <I>y</I> is
* |<I>y</I> − <I>medianY</I>|. The mean absolute
* deviation is the mean of all the Y values' absolute deviations.
*/
public final double meanAbsDevY;
/**
* Robust stats for the X and Y data.
*/
private Series.RobustStats xStats;
private Series.RobustStats yStats;
/**
* Construct a new XYSeries.RobustStats object.
*/
private RobustStats
(XYSeries series)
{
xStats = series.xSeries().robustStats();
yStats = series.ySeries().robustStats();
this.medianX = xStats.medianX;
this.meanAbsDevX = xStats.meanAbsDevX;
this.medianY = yStats.medianX;
this.meanAbsDevY = yStats.meanAbsDevX;
}
/**
* Returns the given quantile of the series' X values. The <I>q</I>-th
* quantile is that value <I>x</I> such that a fraction <I>q</I> of the
* series' X values are less than or equal to <I>x</I>.
* <P>
* If the series is empty, then <TT>Double.NaN</TT> (not-a-number) is
* returned. If <I>q</I> is 0, then <TT>Double.NEGATIVE_INFINITY</TT> is
* returned.
*
* @param q Quantile, 0.0 ≤ <I>q</I> ≤ 1.0.
*
* @return The <I>q</I>-th quantile of the series' X values.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <I>q</I> is out of range.
*/
public double quantileX
(double q)
{
return xStats.quantileX (q);
}
/**
* Returns the given quantile of the series' Y values. The <I>q</I>-th
* quantile is that value <I>y</I> such that a fraction <I>q</I> of the
* series' Y values are less than or equal to <I>y</I>.
* <P>
* If the series is empty, then <TT>Double.NaN</TT> (not-a-number) is
* returned. If <I>q</I> is 0, then <TT>Double.NEGATIVE_INFINITY</TT> is
* returned.
*
* @param q Quantile, 0.0 ≤ <I>q</I> ≤ 1.0.
*
* @return The <I>q</I>-th quantile of the series' Y values.
*
* @exception IllegalArgumentException
* (unchecked exception) Thrown if <I>q</I> is out of range.
*/
public double quantileY
(double q)
{
return yStats.quantileX (q);
}
}
/**
* Class XYSeries.Regression holds the results of a regression on an
* {@linkplain XYSeries}.
*
* @author Alan Kaminsky
* @version 12-Jun-2007
*/
public static class Regression
{
/**
* Intercept <I>a</I>.
*/
public final double a;
/**
* Slope <I>b</I>.
*/
public final double b;
/**
* Correlation.
*/
public final double corr;
/**
* Construct a new Regression object.
*/
private Regression
(double a,
double b,
double corr)
{
this.a = a;
this.b = b;
this.corr = corr;
}
}
/**
* Class XYSeries.XSeriesView provides a series view of the X values in an
* XY series.
*
* @author Alan Kaminsky
* @version 12-Jun-2007
*/
private static class XSeriesView
extends Series
{
private XYSeries outer;
public XSeriesView
(XYSeries outer)
{
this.outer = outer;
}
public int length()
{
return outer.length();
}
public double x
(int i)
{
return outer.x (i);
}
}
/**
* Class XYSeries.YSeriesView provides a series view of the Y values in an
* XY series.
*
* @author Alan Kaminsky
* @version 12-Jun-2007
*/
private static class YSeriesView
extends Series
{
private XYSeries outer;
public YSeriesView
(XYSeries outer)
{
this.outer = outer;
}
public int length()
{
return outer.length();
}
public double x
(int i)
{
return outer.y (i);
}
}
// Exported constructors.
/**
* Construct a new XY series.
*/
public XYSeries()
{
}
// Exported operations.
/**
* Returns the number of values in this series.
*
* @return Length.
*/
public abstract int length();
/**
* Determine if this series is empty.
*
* @return True if this series is empty (length = 0), false otherwise.
*/
public boolean isEmpty()
{
return length() == 0;
}
/**
* Returns the given X value in this series.
*
* @param i Index.
*
* @return The X value in this series at index <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public abstract double x
(int i);
/**
* Returns the given Y value in this series.
*
* @param i Index.
*
* @return The Y value in this series at index <TT>i</TT>.
*
* @exception ArrayIndexOutOfBoundsException
* (unchecked exception) Thrown if <TT>i</TT> is not in the range
* <TT>0</TT> .. <TT>length()-1</TT>.
*/
public abstract double y
(int i);
/**
* Returns the minimum X value in this series.
*
* @return Minimum X value.
*/
public double minX()
{
int n = length();
double result = Double.POSITIVE_INFINITY;
for (int i = 0; i < n; ++ i) result = Math.min (result, x(i));
return result;
}
/**
* Returns the maximum X value in this series.
*
* @return Maximum X value.
*/
public double maxX()
{
int n = length();
double result = Double.NEGATIVE_INFINITY;
for (int i = 0; i < n; ++ i) result = Math.max (result, x(i));
return result;
}
/**
* Returns the minimum Y value in this series.
*
* @return Minimum Y value.
*/
public double minY()
{
int n = length();
double result = Double.POSITIVE_INFINITY;
for (int i = 0; i < n; ++ i) result = Math.min (result, y(i));
return result;
}
/**
* Returns the maximum Y value in this series.
*
* @return Maximum Y value.
*/
public double maxY()
{
int n = length();
double result = Double.NEGATIVE_INFINITY;
for (int i = 0; i < n; ++ i) result = Math.max (result, y(i));
return result;
}
/**
* Returns a {@linkplain Stats Stats} object containing statistics of this
* series.
* <P>
* <I>Note:</I> The returned object contains the statistics of a
* <I>snapshot</I> of this series at the time <TT>stats()</TT> was called.
* Changing the data in this series will <I>not</I> change the contents of
* the returned object.
*
* @return Statistics.
*/
public Stats stats()
{
return new XYSeries.Stats (this);
}
/**
* Returns a {@linkplain RobustStats RobustStats} object containing robust
* statistics of this series.
* <P>
* <I>Note:</I> The returned object contains the statistics of a
* <I>snapshot</I> of this series at the time <TT>robustStats()</TT> was
* called. Changing the data in this series will <I>not</I> change the
* contents of the returned object.
*
* @return Robust statistics.
*/
public RobustStats robustStats()
{
return new XYSeries.RobustStats (this);
}
/**
* Returns the linear regression of the (<I>x,y</I>) values in this XY
* series. The linear function <I>y</I> = <I>a</I> + <I>bx</I> is fitted to
* the data. The return value is a {@linkplain Regression Regression} object
* containing the intercept <I>a,</I> the slope <I>b,</I> and the
* correlation, respectively.
* <P>
* <I>Note:</I> The returned object contains the regression of a
* <I>snapshot</I> of this series at the time <TT>linearRegression()</TT>
* was called. Changing the data in this series will <I>not</I> change the
* contents of the returned object.
*
* @return Regression.
*/
public Regression linearRegression()
{
// Accumulate sums.
int n = length();
double sum_x = 0.0;
double sum_y = 0.0;
for (int i = 0; i < n; ++ i)
{
sum_x += x(i);
sum_y += y(i);
}
// Compute means of X and Y.
double mean_x = sum_x / n;
double mean_y = sum_y / n;
// Compute variances of X and Y.
double xt;
double yt;
double sum_xt_sqr = 0.0;
double sum_yt_sqr = 0.0;
double sum_xt_yt = 0.0;
double b = 0.0;
for (int i = 0; i < n; ++ i)
{
xt = x(i) - mean_x;
yt = y(i) - mean_y;
sum_xt_sqr += xt * xt;
sum_yt_sqr += yt * yt;
sum_xt_yt += xt * yt;
b += xt * y(i);
}
// Compute results.
b /= sum_xt_sqr;
double a = (sum_y - sum_x * b) / n;
double corr = sum_xt_yt / (Math.sqrt (sum_xt_sqr * sum_yt_sqr) + TINY);
return new Regression (a, b, corr);
}
private static final double TINY = 1.0e-20;
/**
* Returns a {@linkplain Series} view of the X values in this XY series.
* <P>
* <I>Note:</I> The returned Series object is backed by this XY series
* object. Changing the contents of this XY series object will change the
* contents of the returned Series object.
*
* @return Series of X values.
*/
public Series xSeries()
{
return new XSeriesView (this);
}
/**
* Returns a {@linkplain Series} view of the Y values in this XY series.
* <P>
* <I>Note:</I> The returned Series object is backed by this XY series
* object. Changing the contents of this XY series object will change the
* contents of the returned Series object.
*
* @return Series of Y values.
*/
public Series ySeries()
{
return new YSeriesView (this);
}
/**
* Print this XY series on the standard output. Each line of output consists
* of the index, the <I>x</I> value, and the <I>y</I> value, separated by
* tabs.
*/
public void print()
{
print (System.out);
}
/**
* Print this XY series on the given print stream. Each line of output
* consists of the index, the <I>x</I> value, and the <I>y</I> value,
* separated by tabs.
*
* @param theStream Print stream.
*/
public void print
(PrintStream theStream)
{
int n = length();
for (int i = 0; i < n; ++ i)
{
theStream.print (i);
theStream.print ('\t');
theStream.print (x(i));
theStream.print ('\t');
theStream.println (y(i));
}
}
/**
* Print this XY series on the given print writer. Each line of output
* consists of the index, the <I>x</I> value, and the <I>y</I> value,
* separated by tabs.
*
* @param theWriter Print writer.
*/
public void print
(PrintWriter theWriter)
{
int n = length();
for (int i = 0; i < n; ++ i)
{
theWriter.print (i);
theWriter.print ('\t');
theWriter.print (x(i));
theWriter.print ('\t');
theWriter.println (y(i));
}
}
}
|