1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
|
double precision function dpmpar(i)
integer i
c **********
c
c Function dpmpar
c
c This function provides double precision machine parameters
c when the appropriate set of data statements is activated (by
c removing the c from column 1) and all other data statements are
c rendered inactive. Most of the parameter values were obtained
c from the corresponding Bell Laboratories Port Library function.
c
c The function statement is
c
c double precision function dpmpar(i)
c
c where
c
c i is an integer input variable set to 1, 2, or 3 which
c selects the desired machine parameter. If the machine has
c t base b digits and its smallest and largest exponents are
c emin and emax, respectively, then these parameters are
c
c dpmpar(1) = b**(1 - t), the machine precision,
c
c dpmpar(2) = b**(emin - 1), the smallest magnitude,
c
c dpmpar(3) = b**emax*(1 - b**(-t)), the largest magnitude.
c
c Argonne National Laboratory. MINPACK Project. November 1996.
c Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More'
c
c **********
integer mcheps(4)
integer minmag(4)
integer maxmag(4)
double precision dmach(3)
equivalence (dmach(1),mcheps(1))
equivalence (dmach(2),minmag(1))
equivalence (dmach(3),maxmag(1))
c
c Machine constants for the IBM 360/370 series,
c the Amdahl 470/V6, the ICL 2900, the Itel AS/6,
c the Xerox Sigma 5/7/9 and the Sel systems 85/86.
c
c data mcheps(1),mcheps(2) / z34100000, z00000000 /
c data minmag(1),minmag(2) / z00100000, z00000000 /
c data maxmag(1),maxmag(2) / z7fffffff, zffffffff /
c
c Machine constants for the Honeywell 600/6000 series.
c
c data mcheps(1),mcheps(2) / o606400000000, o000000000000 /
c data minmag(1),minmag(2) / o402400000000, o000000000000 /
c data maxmag(1),maxmag(2) / o376777777777, o777777777777 /
c
c Machine constants for the CDC 6000/7000 series.
c
c data mcheps(1) / 15614000000000000000b /
c data mcheps(2) / 15010000000000000000b /
c
c data minmag(1) / 00604000000000000000b /
c data minmag(2) / 00000000000000000000b /
c
c data maxmag(1) / 37767777777777777777b /
c data maxmag(2) / 37167777777777777777b /
c
c Machine constants for the PDP-10 (KA processor).
c
c data mcheps(1),mcheps(2) / "114400000000, "000000000000 /
c data minmag(1),minmag(2) / "033400000000, "000000000000 /
c data maxmag(1),maxmag(2) / "377777777777, "344777777777 /
c
c Machine constants for the PDP-10 (KI processor).
c
c data mcheps(1),mcheps(2) / "104400000000, "000000000000 /
c data minmag(1),minmag(2) / "000400000000, "000000000000 /
c data maxmag(1),maxmag(2) / "377777777777, "377777777777 /
c
c Machine constants for the PDP-11.
c
c data mcheps(1),mcheps(2) / 9472, 0 /
c data mcheps(3),mcheps(4) / 0, 0 /
c
c data minmag(1),minmag(2) / 128, 0 /
c data minmag(3),minmag(4) / 0, 0 /
c
c data maxmag(1),maxmag(2) / 32767, -1 /
c data maxmag(3),maxmag(4) / -1, -1 /
c
c Machine constants for the Burroughs 6700/7700 systems.
c
c data mcheps(1) / o1451000000000000 /
c data mcheps(2) / o0000000000000000 /
c
c data minmag(1) / o1771000000000000 /
c data minmag(2) / o7770000000000000 /
c
c data maxmag(1) / o0777777777777777 /
c data maxmag(2) / o7777777777777777 /
c
c Machine constants for the Burroughs 5700 system.
c
c data mcheps(1) / o1451000000000000 /
c data mcheps(2) / o0000000000000000 /
c
c data minmag(1) / o1771000000000000 /
c data minmag(2) / o0000000000000000 /
c
c data maxmag(1) / o0777777777777777 /
c data maxmag(2) / o0007777777777777 /
c
c Machine constants for the Burroughs 1700 system.
c
c data mcheps(1) / zcc6800000 /
c data mcheps(2) / z000000000 /
c
c data minmag(1) / zc00800000 /
c data minmag(2) / z000000000 /
c
c data maxmag(1) / zdffffffff /
c data maxmag(2) / zfffffffff /
c
c Machine constants for the Univac 1100 series.
c
c data mcheps(1),mcheps(2) / o170640000000, o000000000000 /
c data minmag(1),minmag(2) / o000040000000, o000000000000 /
c data maxmag(1),maxmag(2) / o377777777777, o777777777777 /
c
c Machine constants for the Data General Eclipse S/200.
c
c Note - it may be appropriate to include the following card -
c static dmach(3)
c
c data minmag/20k,3*0/,maxmag/77777k,3*177777k/
c data mcheps/32020k,3*0/
c
c Machine constants for the Harris 220.
c
c data mcheps(1),mcheps(2) / '20000000, '00000334 /
c data minmag(1),minmag(2) / '20000000, '00000201 /
c data maxmag(1),maxmag(2) / '37777777, '37777577 /
c
c Machine constants for the Cray-1.
c
c data mcheps(1) / 0376424000000000000000b /
c data mcheps(2) / 0000000000000000000000b /
c
c data minmag(1) / 0200034000000000000000b /
c data minmag(2) / 0000000000000000000000b /
c
c data maxmag(1) / 0577777777777777777777b /
c data maxmag(2) / 0000007777777777777776b /
c
c Machine constants for the Prime 400.
c
c data mcheps(1),mcheps(2) / :10000000000, :00000000123 /
c data minmag(1),minmag(2) / :10000000000, :00000100000 /
c data maxmag(1),maxmag(2) / :17777777777, :37777677776 /
c
c Machine constants for the VAX-11.
c
c data mcheps(1),mcheps(2) / 9472, 0 /
c data minmag(1),minmag(2) / 128, 0 /
c data maxmag(1),maxmag(2) / -32769, -1 /
c
c Machine constants for IEEE machines.
c
data dmach(1) /2.22044604926d-16/
data dmach(2) /2.22507385852d-308/
data dmach(3) /1.79769313485d+308/
c
dpmpar = dmach(i)
return
c
c Last card of function dpmpar.
c
end
double precision function enorm(n,x)
integer n
double precision x(n)
c **********
c
c function enorm
c
c given an n-vector x, this function calculates the
c euclidean norm of x.
c
c the euclidean norm is computed by accumulating the sum of
c squares in three different sums. the sums of squares for the
c small and large components are scaled so that no overflows
c occur. non-destructive underflows are permitted. underflows
c and overflows do not occur in the computation of the unscaled
c sum of squares for the intermediate components.
c the definitions of small, intermediate and large components
c depend on two constants, rdwarf and rgiant. the main
c restrictions on these constants are that rdwarf**2 not
c underflow and rgiant**2 not overflow. the constants
c given here are suitable for every known computer.
c
c the function statement is
c
c double precision function enorm(n,x)
c
c where
c
c n is a positive integer input variable.
c
c x is an input array of length n.
c
c subprograms called
c
c fortran-supplied ... dabs,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i
double precision agiant,floatn,one,rdwarf,rgiant,s1,s2,s3,xabs,
* x1max,x3max,zero
data one,zero,rdwarf,rgiant /1.0d0,0.0d0,3.834d-20,1.304d19/
s1 = zero
s2 = zero
s3 = zero
x1max = zero
x3max = zero
floatn = n
agiant = rgiant/floatn
do 90 i = 1, n
xabs = dabs(x(i))
if (xabs .gt. rdwarf .and. xabs .lt. agiant) go to 70
if (xabs .le. rdwarf) go to 30
c
c sum for large components.
c
if (xabs .le. x1max) go to 10
s1 = one + s1*(x1max/xabs)**2
x1max = xabs
go to 20
10 continue
s1 = s1 + (xabs/x1max)**2
20 continue
go to 60
30 continue
c
c sum for small components.
c
if (xabs .le. x3max) go to 40
s3 = one + s3*(x3max/xabs)**2
x3max = xabs
go to 50
40 continue
if (xabs .ne. zero) s3 = s3 + (xabs/x3max)**2
50 continue
60 continue
go to 80
70 continue
c
c sum for intermediate components.
c
s2 = s2 + xabs**2
80 continue
90 continue
c
c calculation of norm.
c
if (s1 .eq. zero) go to 100
enorm = x1max*dsqrt(s1+(s2/x1max)/x1max)
go to 130
100 continue
if (s2 .eq. zero) go to 110
if (s2 .ge. x3max)
* enorm = dsqrt(s2*(one+(x3max/s2)*(x3max*s3)))
if (s2 .lt. x3max)
* enorm = dsqrt(x3max*((s2/x3max)+(x3max*s3)))
go to 120
110 continue
enorm = x3max*dsqrt(s3)
120 continue
130 continue
return
c
c last card of function enorm.
c
end
subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,
* maxfev,diag,mode,factor,nprint,info,nfev,njev,
* ipvt,qtf,wa1,wa2,wa3,wa4)
integer m,n,ldfjac,maxfev,mode,nprint,info,nfev,njev
integer ipvt(n)
double precision ftol,xtol,gtol,factor
double precision x(n),fvec(m),fjac(ldfjac,n),diag(n),qtf(n),
* wa1(n),wa2(n),wa3(n),wa4(m)
c **********
c
c subroutine lmder
c
c the purpose of lmder is to minimize the sum of the squares of
c m nonlinear functions in n variables by a modification of
c the levenberg-marquardt algorithm. the user must provide a
c subroutine which calculates the functions and the jacobian.
c
c the subroutine statement is
c
c subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,
c maxfev,diag,mode,factor,nprint,info,nfev,
c njev,ipvt,qtf,wa1,wa2,wa3,wa4)
c
c where
c
c fcn is the name of the user-supplied subroutine which
c calculates the functions and the jacobian. fcn must
c be declared in an external statement in the user
c calling program, and should be written as follows.
c
c subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
c integer m,n,ldfjac,iflag
c double precision x(n),fvec(m),fjac(ldfjac,n)
c ----------
c if iflag = 1 calculate the functions at x and
c return this vector in fvec. do not alter fjac.
c if iflag = 2 calculate the jacobian at x and
c return this matrix in fjac. do not alter fvec.
c ----------
c return
c end
c
c the value of iflag should not be changed by fcn unless
c the user wants to terminate execution of lmder.
c in this case set iflag to a negative integer.
c
c m is a positive integer input variable set to the number
c of functions.
c
c n is a positive integer input variable set to the number
c of variables. n must not exceed m.
c
c x is an array of length n. on input x must contain
c an initial estimate of the solution vector. on output x
c contains the final estimate of the solution vector.
c
c fvec is an output array of length m which contains
c the functions evaluated at the output x.
c
c fjac is an output m by n array. the upper n by n submatrix
c of fjac contains an upper triangular matrix r with
c diagonal elements of nonincreasing magnitude such that
c
c t t t
c p *(jac *jac)*p = r *r,
c
c where p is a permutation matrix and jac is the final
c calculated jacobian. column j of p is column ipvt(j)
c (see below) of the identity matrix. the lower trapezoidal
c part of fjac contains information generated during
c the computation of r.
c
c ldfjac is a positive integer input variable not less than m
c which specifies the leading dimension of the array fjac.
c
c ftol is a nonnegative input variable. termination
c occurs when both the actual and predicted relative
c reductions in the sum of squares are at most ftol.
c therefore, ftol measures the relative error desired
c in the sum of squares.
c
c xtol is a nonnegative input variable. termination
c occurs when the relative error between two consecutive
c iterates is at most xtol. therefore, xtol measures the
c relative error desired in the approximate solution.
c
c gtol is a nonnegative input variable. termination
c occurs when the cosine of the angle between fvec and
c any column of the jacobian is at most gtol in absolute
c value. therefore, gtol measures the orthogonality
c desired between the function vector and the columns
c of the jacobian.
c
c maxfev is a positive integer input variable. termination
c occurs when the number of calls to fcn with iflag = 1
c has reached maxfev.
c
c diag is an array of length n. if mode = 1 (see
c below), diag is internally set. if mode = 2, diag
c must contain positive entries that serve as
c multiplicative scale factors for the variables.
c
c mode is an integer input variable. if mode = 1, the
c variables will be scaled internally. if mode = 2,
c the scaling is specified by the input diag. other
c values of mode are equivalent to mode = 1.
c
c factor is a positive input variable used in determining the
c initial step bound. this bound is set to the product of
c factor and the euclidean norm of diag*x if nonzero, or else
c to factor itself. in most cases factor should lie in the
c interval (.1,100.).100. is a generally recommended value.
c
c nprint is an integer input variable that enables controlled
c printing of iterates if it is positive. in this case,
c fcn is called with iflag = 0 at the beginning of the first
c iteration and every nprint iterations thereafter and
c immediately prior to return, with x, fvec, and fjac
c available for printing. fvec and fjac should not be
c altered. if nprint is not positive, no special calls
c of fcn with iflag = 0 are made.
c
c info is an integer output variable. if the user has
c terminated execution, info is set to the (negative)
c value of iflag. see description of fcn. otherwise,
c info is set as follows.
c
c info = 0 improper input parameters.
c
c info = 1 both actual and predicted relative reductions
c in the sum of squares are at most ftol.
c
c info = 2 relative error between two consecutive iterates
c is at most xtol.
c
c info = 3 conditions for info = 1 and info = 2 both hold.
c
c info = 4 the cosine of the angle between fvec and any
c column of the jacobian is at most gtol in
c absolute value.
c
c info = 5 number of calls to fcn with iflag = 1 has
c reached maxfev.
c
c info = 6 ftol is too small. no further reduction in
c the sum of squares is possible.
c
c info = 7 xtol is too small. no further improvement in
c the approximate solution x is possible.
c
c info = 8 gtol is too small. fvec is orthogonal to the
c columns of the jacobian to machine precision.
c
c nfev is an integer output variable set to the number of
c calls to fcn with iflag = 1.
c
c njev is an integer output variable set to the number of
c calls to fcn with iflag = 2.
c
c ipvt is an integer output array of length n. ipvt
c defines a permutation matrix p such that jac*p = q*r,
c where jac is the final calculated jacobian, q is
c orthogonal (not stored), and r is upper triangular
c with diagonal elements of nonincreasing magnitude.
c column j of p is column ipvt(j) of the identity matrix.
c
c qtf is an output array of length n which contains
c the first n elements of the vector (q transpose)*fvec.
c
c wa1, wa2, and wa3 are work arrays of length n.
c
c wa4 is a work array of length m.
c
c subprograms called
c
c user-supplied ...... fcn
c
c minpack-supplied ... dpmpar,enorm,lmpar,qrfac
c
c fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,iflag,iter,j,l
double precision actred,delta,dirder,epsmch,fnorm,fnorm1,gnorm,
* one,par,pnorm,prered,p1,p5,p25,p75,p0001,ratio,
* sum,temp,temp1,temp2,xnorm,zero
double precision dpmpar,enorm
data one,p1,p5,p25,p75,p0001,zero
* /1.0d0,1.0d-1,5.0d-1,2.5d-1,7.5d-1,1.0d-4,0.0d0/
c
c epsmch is the machine precision.
c
epsmch = dpmpar(1)
c
info = 0
iflag = 0
nfev = 0
njev = 0
c
c check the input parameters for errors.
c
if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. m
* .or. ftol .lt. zero .or. xtol .lt. zero .or. gtol .lt. zero
* .or. maxfev .le. 0 .or. factor .le. zero) go to 300
if (mode .ne. 2) go to 20
do 10 j = 1, n
if (diag(j) .le. zero) go to 300
10 continue
20 continue
c
c evaluate the function at the starting point
c and calculate its norm.
c
iflag = 1
call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
nfev = 1
if (iflag .lt. 0) go to 300
fnorm = enorm(m,fvec)
c
c initialize levenberg-marquardt parameter and iteration counter.
c
par = zero
iter = 1
c
c beginning of the outer loop.
c
30 continue
c
c calculate the jacobian matrix.
c
iflag = 2
call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
njev = njev + 1
if (iflag .lt. 0) go to 300
c
c if requested, call fcn to enable printing of iterates.
c
if (nprint .le. 0) go to 40
iflag = 0
if (mod(iter-1,nprint) .eq. 0)
* call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
if (iflag .lt. 0) go to 300
40 continue
c
c compute the qr factorization of the jacobian.
c
call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3)
c
c on the first iteration and if mode is 1, scale according
c to the norms of the columns of the initial jacobian.
c
if (iter .ne. 1) go to 80
if (mode .eq. 2) go to 60
do 50 j = 1, n
diag(j) = wa2(j)
if (wa2(j) .eq. zero) diag(j) = one
50 continue
60 continue
c
c on the first iteration, calculate the norm of the scaled x
c and initialize the step bound delta.
c
do 70 j = 1, n
wa3(j) = diag(j)*x(j)
70 continue
xnorm = enorm(n,wa3)
delta = factor*xnorm
if (delta .eq. zero) delta = factor
80 continue
c
c form (q transpose)*fvec and store the first n components in
c qtf.
c
do 90 i = 1, m
wa4(i) = fvec(i)
90 continue
do 130 j = 1, n
if (fjac(j,j) .eq. zero) go to 120
sum = zero
do 100 i = j, m
sum = sum + fjac(i,j)*wa4(i)
100 continue
temp = -sum/fjac(j,j)
do 110 i = j, m
wa4(i) = wa4(i) + fjac(i,j)*temp
110 continue
120 continue
fjac(j,j) = wa1(j)
qtf(j) = wa4(j)
130 continue
c
c compute the norm of the scaled gradient.
c
gnorm = zero
if (fnorm .eq. zero) go to 170
do 160 j = 1, n
l = ipvt(j)
if (wa2(l) .eq. zero) go to 150
sum = zero
do 140 i = 1, j
sum = sum + fjac(i,j)*(qtf(i)/fnorm)
140 continue
gnorm = dmax1(gnorm,dabs(sum/wa2(l)))
150 continue
160 continue
170 continue
c
c test for convergence of the gradient norm.
c
if (gnorm .le. gtol) info = 4
if (info .ne. 0) go to 300
c
c rescale if necessary.
c
if (mode .eq. 2) go to 190
do 180 j = 1, n
diag(j) = dmax1(diag(j),wa2(j))
180 continue
190 continue
c
c beginning of the inner loop.
c
200 continue
c
c determine the levenberg-marquardt parameter.
c
call lmpar(n,fjac,ldfjac,ipvt,diag,qtf,delta,par,wa1,wa2,
* wa3,wa4)
c
c store the direction p and x + p. calculate the norm of p.
c
do 210 j = 1, n
wa1(j) = -wa1(j)
wa2(j) = x(j) + wa1(j)
wa3(j) = diag(j)*wa1(j)
210 continue
pnorm = enorm(n,wa3)
c
c on the first iteration, adjust the initial step bound.
c
if (iter .eq. 1) delta = dmin1(delta,pnorm)
c
c evaluate the function at x + p and calculate its norm.
c
iflag = 1
call fcn(m,n,wa2,wa4,fjac,ldfjac,iflag)
nfev = nfev + 1
if (iflag .lt. 0) go to 300
fnorm1 = enorm(m,wa4)
c
c compute the scaled actual reduction.
c
actred = -one
if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
c
c compute the scaled predicted reduction and
c the scaled directional derivative.
c
do 230 j = 1, n
wa3(j) = zero
l = ipvt(j)
temp = wa1(l)
do 220 i = 1, j
wa3(i) = wa3(i) + fjac(i,j)*temp
220 continue
230 continue
temp1 = enorm(n,wa3)/fnorm
temp2 = (dsqrt(par)*pnorm)/fnorm
prered = temp1**2 + temp2**2/p5
dirder = -(temp1**2 + temp2**2)
c
c compute the ratio of the actual to the predicted
c reduction.
c
ratio = zero
if (prered .ne. zero) ratio = actred/prered
c
c update the step bound.
c
if (ratio .gt. p25) go to 240
if (actred .ge. zero) temp = p5
if (actred .lt. zero)
* temp = p5*dirder/(dirder + p5*actred)
if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1
delta = temp*dmin1(delta,pnorm/p1)
par = par/temp
go to 260
240 continue
if (par .ne. zero .and. ratio .lt. p75) go to 250
delta = pnorm/p5
par = p5*par
250 continue
260 continue
c
c test for successful iteration.
c
if (ratio .lt. p0001) go to 290
c
c successful iteration. update x, fvec, and their norms.
c
do 270 j = 1, n
x(j) = wa2(j)
wa2(j) = diag(j)*x(j)
270 continue
do 280 i = 1, m
fvec(i) = wa4(i)
280 continue
xnorm = enorm(n,wa2)
fnorm = fnorm1
iter = iter + 1
290 continue
c
c tests for convergence.
c
if (dabs(actred) .le. ftol .and. prered .le. ftol
* .and. p5*ratio .le. one) info = 1
if (delta .le. xtol*xnorm) info = 2
if (dabs(actred) .le. ftol .and. prered .le. ftol
* .and. p5*ratio .le. one .and. info .eq. 2) info = 3
if (info .ne. 0) go to 300
c
c tests for termination and stringent tolerances.
c
if (nfev .ge. maxfev) info = 5
if (dabs(actred) .le. epsmch .and. prered .le. epsmch
* .and. p5*ratio .le. one) info = 6
if (delta .le. epsmch*xnorm) info = 7
if (gnorm .le. epsmch) info = 8
if (info .ne. 0) go to 300
c
c end of the inner loop. repeat if iteration unsuccessful.
c
if (ratio .lt. p0001) go to 200
c
c end of the outer loop.
c
go to 30
300 continue
c
c termination, either normal or user imposed.
c
if (iflag .lt. 0) info = iflag
iflag = 0
if (nprint .gt. 0) call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
return
c
c last card of subroutine lmder.
c
end
subroutine lmder1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info,ipvt,wa,
* lwa)
integer m,n,ldfjac,info,lwa
integer ipvt(n)
double precision tol
double precision x(n),fvec(m),fjac(ldfjac,n),wa(lwa)
external fcn
c **********
c
c subroutine lmder1
c
c the purpose of lmder1 is to minimize the sum of the squares of
c m nonlinear functions in n variables by a modification of the
c levenberg-marquardt algorithm. this is done by using the more
c general least-squares solver lmder. the user must provide a
c subroutine which calculates the functions and the jacobian.
c
c the subroutine statement is
c
c subroutine lmder1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info,
c ipvt,wa,lwa)
c
c where
c
c fcn is the name of the user-supplied subroutine which
c calculates the functions and the jacobian. fcn must
c be declared in an external statement in the user
c calling program, and should be written as follows.
c
c subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
c integer m,n,ldfjac,iflag
c double precision x(n),fvec(m),fjac(ldfjac,n)
c ----------
c if iflag = 1 calculate the functions at x and
c return this vector in fvec. do not alter fjac.
c if iflag = 2 calculate the jacobian at x and
c return this matrix in fjac. do not alter fvec.
c ----------
c return
c end
c
c the value of iflag should not be changed by fcn unless
c the user wants to terminate execution of lmder1.
c in this case set iflag to a negative integer.
c
c m is a positive integer input variable set to the number
c of functions.
c
c n is a positive integer input variable set to the number
c of variables. n must not exceed m.
c
c x is an array of length n. on input x must contain
c an initial estimate of the solution vector. on output x
c contains the final estimate of the solution vector.
c
c fvec is an output array of length m which contains
c the functions evaluated at the output x.
c
c fjac is an output m by n array. the upper n by n submatrix
c of fjac contains an upper triangular matrix r with
c diagonal elements of nonincreasing magnitude such that
c
c t t t
c p *(jac *jac)*p = r *r,
c
c where p is a permutation matrix and jac is the final
c calculated jacobian. column j of p is column ipvt(j)
c (see below) of the identity matrix. the lower trapezoidal
c part of fjac contains information generated during
c the computation of r.
c
c ldfjac is a positive integer input variable not less than m
c which specifies the leading dimension of the array fjac.
c
c tol is a nonnegative input variable. termination occurs
c when the algorithm estimates either that the relative
c error in the sum of squares is at most tol or that
c the relative error between x and the solution is at
c most tol.
c
c info is an integer output variable. if the user has
c terminated execution, info is set to the (negative)
c value of iflag. see description of fcn. otherwise,
c info is set as follows.
c
c info = 0 improper input parameters.
c
c info = 1 algorithm estimates that the relative error
c in the sum of squares is at most tol.
c
c info = 2 algorithm estimates that the relative error
c between x and the solution is at most tol.
c
c info = 3 conditions for info = 1 and info = 2 both hold.
c
c info = 4 fvec is orthogonal to the columns of the
c jacobian to machine precision.
c
c info = 5 number of calls to fcn with iflag = 1 has
c reached 100*(n+1).
c
c info = 6 tol is too small. no further reduction in
c the sum of squares is possible.
c
c info = 7 tol is too small. no further improvement in
c the approximate solution x is possible.
c
c ipvt is an integer output array of length n. ipvt
c defines a permutation matrix p such that jac*p = q*r,
c where jac is the final calculated jacobian, q is
c orthogonal (not stored), and r is upper triangular
c with diagonal elements of nonincreasing magnitude.
c column j of p is column ipvt(j) of the identity matrix.
c
c wa is a work array of length lwa.
c
c lwa is a positive integer input variable not less than 5*n+m.
c
c subprograms called
c
c user-supplied ...... fcn
c
c minpack-supplied ... lmder
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer maxfev,mode,nfev,njev,nprint
double precision factor,ftol,gtol,xtol,zero
data factor,zero /1.0d2,0.0d0/
info = 0
c
c check the input parameters for errors.
c
if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. m .or. tol .lt. zero
* .or. lwa .lt. 5*n + m) go to 10
c
c call lmder.
c
maxfev = 100*(n + 1)
ftol = tol
xtol = tol
gtol = zero
mode = 1
nprint = 0
call lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,maxfev,
* wa(1),mode,factor,nprint,info,nfev,njev,ipvt,wa(n+1),
* wa(2*n+1),wa(3*n+1),wa(4*n+1),wa(5*n+1))
if (info .eq. 8) info = 4
10 continue
return
c
c last card of subroutine lmder1.
c
end
subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1,
* wa2)
integer n,ldr
integer ipvt(n)
double precision delta,par
double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n),
* wa2(n)
c **********
c
c subroutine lmpar
c
c given an m by n matrix a, an n by n nonsingular diagonal
c matrix d, an m-vector b, and a positive number delta,
c the problem is to determine a value for the parameter
c par such that if x solves the system
c
c a*x = b , sqrt(par)*d*x = 0 ,
c
c in the least squares sense, and dxnorm is the euclidean
c norm of d*x, then either par is zero and
c
c (dxnorm-delta) .le. 0.1*delta ,
c
c or par is positive and
c
c abs(dxnorm-delta) .le. 0.1*delta .
c
c this subroutine completes the solution of the problem
c if it is provided with the necessary information from the
c qr factorization, with column pivoting, of a. that is, if
c a*p = q*r, where p is a permutation matrix, q has orthogonal
c columns, and r is an upper triangular matrix with diagonal
c elements of nonincreasing magnitude, then lmpar expects
c the full upper triangle of r, the permutation matrix p,
c and the first n components of (q transpose)*b. on output
c lmpar also provides an upper triangular matrix s such that
c
c t t t
c p *(a *a + par*d*d)*p = s *s .
c
c s is employed within lmpar and may be of separate interest.
c
c only a few iterations are generally needed for convergence
c of the algorithm. if, however, the limit of 10 iterations
c is reached, then the output par will contain the best
c value obtained so far.
c
c the subroutine statement is
c
c subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
c wa1,wa2)
c
c where
c
c n is a positive integer input variable set to the order of r.
c
c r is an n by n array. on input the full upper triangle
c must contain the full upper triangle of the matrix r.
c on output the full upper triangle is unaltered, and the
c strict lower triangle contains the strict upper triangle
c (transposed) of the upper triangular matrix s.
c
c ldr is a positive integer input variable not less than n
c which specifies the leading dimension of the array r.
c
c ipvt is an integer input array of length n which defines the
c permutation matrix p such that a*p = q*r. column j of p
c is column ipvt(j) of the identity matrix.
c
c diag is an input array of length n which must contain the
c diagonal elements of the matrix d.
c
c qtb is an input array of length n which must contain the first
c n elements of the vector (q transpose)*b.
c
c delta is a positive input variable which specifies an upper
c bound on the euclidean norm of d*x.
c
c par is a nonnegative variable. on input par contains an
c initial estimate of the levenberg-marquardt parameter.
c on output par contains the final estimate.
c
c x is an output array of length n which contains the least
c squares solution of the system a*x = b, sqrt(par)*d*x = 0,
c for the output par.
c
c sdiag is an output array of length n which contains the
c diagonal elements of the upper triangular matrix s.
c
c wa1 and wa2 are work arrays of length n.
c
c subprograms called
c
c minpack-supplied ... dpmpar,enorm,qrsolv
c
c fortran-supplied ... dabs,dmax1,dmin1,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,iter,j,jm1,jp1,k,l,nsing
double precision dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001,
* sum,temp,zero
double precision dpmpar,enorm
data p1,p001,zero /1.0d-1,1.0d-3,0.0d0/
c
c dwarf is the smallest positive magnitude.
c
dwarf = dpmpar(2)
c
c compute and store in x the gauss-newton direction. if the
c jacobian is rank-deficient, obtain a least squares solution.
c
nsing = n
do 10 j = 1, n
wa1(j) = qtb(j)
if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1
if (nsing .lt. n) wa1(j) = zero
10 continue
if (nsing .lt. 1) go to 50
do 40 k = 1, nsing
j = nsing - k + 1
wa1(j) = wa1(j)/r(j,j)
temp = wa1(j)
jm1 = j - 1
if (jm1 .lt. 1) go to 30
do 20 i = 1, jm1
wa1(i) = wa1(i) - r(i,j)*temp
20 continue
30 continue
40 continue
50 continue
do 60 j = 1, n
l = ipvt(j)
x(l) = wa1(j)
60 continue
c
c initialize the iteration counter.
c evaluate the function at the origin, and test
c for acceptance of the gauss-newton direction.
c
iter = 0
do 70 j = 1, n
wa2(j) = diag(j)*x(j)
70 continue
dxnorm = enorm(n,wa2)
fp = dxnorm - delta
if (fp .le. p1*delta) go to 220
c
c if the jacobian is not rank deficient, the newton
c step provides a lower bound, parl, for the zero of
c the function. otherwise set this bound to zero.
c
parl = zero
if (nsing .lt. n) go to 120
do 80 j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
80 continue
do 110 j = 1, n
sum = zero
jm1 = j - 1
if (jm1 .lt. 1) go to 100
do 90 i = 1, jm1
sum = sum + r(i,j)*wa1(i)
90 continue
100 continue
wa1(j) = (wa1(j) - sum)/r(j,j)
110 continue
temp = enorm(n,wa1)
parl = ((fp/delta)/temp)/temp
120 continue
c
c calculate an upper bound, paru, for the zero of the function.
c
do 140 j = 1, n
sum = zero
do 130 i = 1, j
sum = sum + r(i,j)*qtb(i)
130 continue
l = ipvt(j)
wa1(j) = sum/diag(l)
140 continue
gnorm = enorm(n,wa1)
paru = gnorm/delta
if (paru .eq. zero) paru = dwarf/dmin1(delta,p1)
c
c if the input par lies outside of the interval (parl,paru),
c set par to the closer endpoint.
c
par = dmax1(par,parl)
par = dmin1(par,paru)
if (par .eq. zero) par = gnorm/dxnorm
c
c beginning of an iteration.
c
150 continue
iter = iter + 1
c
c evaluate the function at the current value of par.
c
if (par .eq. zero) par = dmax1(dwarf,p001*paru)
temp = dsqrt(par)
do 160 j = 1, n
wa1(j) = temp*diag(j)
160 continue
call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2)
do 170 j = 1, n
wa2(j) = diag(j)*x(j)
170 continue
dxnorm = enorm(n,wa2)
temp = fp
fp = dxnorm - delta
c
c if the function is small enough, accept the current value
c of par. also test for the exceptional cases where parl
c is zero or the number of iterations has reached 10.
c
if (dabs(fp) .le. p1*delta
* .or. parl .eq. zero .and. fp .le. temp
* .and. temp .lt. zero .or. iter .eq. 10) go to 220
c
c compute the newton correction.
c
do 180 j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
180 continue
do 210 j = 1, n
wa1(j) = wa1(j)/sdiag(j)
temp = wa1(j)
jp1 = j + 1
if (n .lt. jp1) go to 200
do 190 i = jp1, n
wa1(i) = wa1(i) - r(i,j)*temp
190 continue
200 continue
210 continue
temp = enorm(n,wa1)
parc = ((fp/delta)/temp)/temp
c
c depending on the sign of the function, update parl or paru.
c
if (fp .gt. zero) parl = dmax1(parl,par)
if (fp .lt. zero) paru = dmin1(paru,par)
c
c compute an improved estimate for par.
c
par = dmax1(parl,par+parc)
c
c end of an iteration.
c
go to 150
220 continue
c
c termination.
c
if (iter .eq. 0) par = zero
return
c
c last card of subroutine lmpar.
c
end
subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
integer m,n,lda,lipvt
integer ipvt(lipvt)
logical pivot
double precision a(lda,n),rdiag(n),acnorm(n),wa(n)
c **********
c
c subroutine qrfac
c
c this subroutine uses householder transformations with column
c pivoting (optional) to compute a qr factorization of the
c m by n matrix a. that is, qrfac determines an orthogonal
c matrix q, a permutation matrix p, and an upper trapezoidal
c matrix r with diagonal elements of nonincreasing magnitude,
c such that a*p = q*r. the householder transformation for
c column k, k = 1,2,...,min(m,n), is of the form
c
c t
c i - (1/u(k))*u*u
c
c where u has zeros in the first k-1 positions. the form of
c this transformation and the method of pivoting first
c appeared in the corresponding linpack subroutine.
c
c the subroutine statement is
c
c subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
c
c where
c
c m is a positive integer input variable set to the number
c of rows of a.
c
c n is a positive integer input variable set to the number
c of columns of a.
c
c a is an m by n array. on input a contains the matrix for
c which the qr factorization is to be computed. on output
c the strict upper trapezoidal part of a contains the strict
c upper trapezoidal part of r, and the lower trapezoidal
c part of a contains a factored form of q (the non-trivial
c elements of the u vectors described above).
c
c lda is a positive integer input variable not less than m
c which specifies the leading dimension of the array a.
c
c pivot is a logical input variable. if pivot is set true,
c then column pivoting is enforced. if pivot is set false,
c then no column pivoting is done.
c
c ipvt is an integer output array of length lipvt. ipvt
c defines the permutation matrix p such that a*p = q*r.
c column j of p is column ipvt(j) of the identity matrix.
c if pivot is false, ipvt is not referenced.
c
c lipvt is a positive integer input variable. if pivot is false,
c then lipvt may be as small as 1. if pivot is true, then
c lipvt must be at least n.
c
c rdiag is an output array of length n which contains the
c diagonal elements of r.
c
c acnorm is an output array of length n which contains the
c norms of the corresponding columns of the input matrix a.
c if this information is not needed, then acnorm can coincide
c with rdiag.
c
c wa is a work array of length n. if pivot is false, then wa
c can coincide with rdiag.
c
c subprograms called
c
c minpack-supplied ... dpmpar,enorm
c
c fortran-supplied ... dmax1,dsqrt,min0
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j,jp1,k,kmax,minmn
double precision ajnorm,epsmch,one,p05,sum,temp,zero
double precision dpmpar,enorm
data one,p05,zero /1.0d0,5.0d-2,0.0d0/
c
c epsmch is the machine precision.
c
epsmch = dpmpar(1)
c
c compute the initial column norms and initialize several arrays.
c
do 10 j = 1, n
acnorm(j) = enorm(m,a(1,j))
rdiag(j) = acnorm(j)
wa(j) = rdiag(j)
if (pivot) ipvt(j) = j
10 continue
c
c reduce a to r with householder transformations.
c
minmn = min0(m,n)
do 110 j = 1, minmn
if (.not.pivot) go to 40
c
c bring the column of largest norm into the pivot position.
c
kmax = j
do 20 k = j, n
if (rdiag(k) .gt. rdiag(kmax)) kmax = k
20 continue
if (kmax .eq. j) go to 40
do 30 i = 1, m
temp = a(i,j)
a(i,j) = a(i,kmax)
a(i,kmax) = temp
30 continue
rdiag(kmax) = rdiag(j)
wa(kmax) = wa(j)
k = ipvt(j)
ipvt(j) = ipvt(kmax)
ipvt(kmax) = k
40 continue
c
c compute the householder transformation to reduce the
c j-th column of a to a multiple of the j-th unit vector.
c
ajnorm = enorm(m-j+1,a(j,j))
if (ajnorm .eq. zero) go to 100
if (a(j,j) .lt. zero) ajnorm = -ajnorm
do 50 i = j, m
a(i,j) = a(i,j)/ajnorm
50 continue
a(j,j) = a(j,j) + one
c
c apply the transformation to the remaining columns
c and update the norms.
c
jp1 = j + 1
if (n .lt. jp1) go to 100
do 90 k = jp1, n
sum = zero
do 60 i = j, m
sum = sum + a(i,j)*a(i,k)
60 continue
temp = sum/a(j,j)
do 70 i = j, m
a(i,k) = a(i,k) - temp*a(i,j)
70 continue
if (.not.pivot .or. rdiag(k) .eq. zero) go to 80
temp = a(j,k)/rdiag(k)
rdiag(k) = rdiag(k)*dsqrt(dmax1(zero,one-temp**2))
if (p05*(rdiag(k)/wa(k))**2 .gt. epsmch) go to 80
rdiag(k) = enorm(m-j,a(jp1,k))
wa(k) = rdiag(k)
80 continue
90 continue
100 continue
rdiag(j) = -ajnorm
110 continue
return
c
c last card of subroutine qrfac.
c
end
subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
integer n,ldr
integer ipvt(n)
double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa(n)
c **********
c
c subroutine qrsolv
c
c given an m by n matrix a, an n by n diagonal matrix d,
c and an m-vector b, the problem is to determine an x which
c solves the system
c
c a*x = b , d*x = 0 ,
c
c in the least squares sense.
c
c this subroutine completes the solution of the problem
c if it is provided with the necessary information from the
c qr factorization, with column pivoting, of a. that is, if
c a*p = q*r, where p is a permutation matrix, q has orthogonal
c columns, and r is an upper triangular matrix with diagonal
c elements of nonincreasing magnitude, then qrsolv expects
c the full upper triangle of r, the permutation matrix p,
c and the first n components of (q transpose)*b. the system
c a*x = b, d*x = 0, is then equivalent to
c
c t t
c r*z = q *b , p *d*p*z = 0 ,
c
c where x = p*z. if this system does not have full rank,
c then a least squares solution is obtained. on output qrsolv
c also provides an upper triangular matrix s such that
c
c t t t
c p *(a *a + d*d)*p = s *s .
c
c s is computed within qrsolv and may be of separate interest.
c
c the subroutine statement is
c
c subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
c
c where
c
c n is a positive integer input variable set to the order of r.
c
c r is an n by n array. on input the full upper triangle
c must contain the full upper triangle of the matrix r.
c on output the full upper triangle is unaltered, and the
c strict lower triangle contains the strict upper triangle
c (transposed) of the upper triangular matrix s.
c
c ldr is a positive integer input variable not less than n
c which specifies the leading dimension of the array r.
c
c ipvt is an integer input array of length n which defines the
c permutation matrix p such that a*p = q*r. column j of p
c is column ipvt(j) of the identity matrix.
c
c diag is an input array of length n which must contain the
c diagonal elements of the matrix d.
c
c qtb is an input array of length n which must contain the first
c n elements of the vector (q transpose)*b.
c
c x is an output array of length n which contains the least
c squares solution of the system a*x = b, d*x = 0.
c
c sdiag is an output array of length n which contains the
c diagonal elements of the upper triangular matrix s.
c
c wa is a work array of length n.
c
c subprograms called
c
c fortran-supplied ... dabs,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j,jp1,k,kp1,l,nsing
double precision cos,cotan,p5,p25,qtbpj,sin,sum,tan,temp,zero
data p5,p25,zero /5.0d-1,2.5d-1,0.0d0/
c
c copy r and (q transpose)*b to preserve input and initialize s.
c in particular, save the diagonal elements of r in x.
c
do 20 j = 1, n
do 10 i = j, n
r(i,j) = r(j,i)
10 continue
x(j) = r(j,j)
wa(j) = qtb(j)
20 continue
c
c eliminate the diagonal matrix d using a givens rotation.
c
do 100 j = 1, n
c
c prepare the row of d to be eliminated, locating the
c diagonal element using p from the qr factorization.
c
l = ipvt(j)
if (diag(l) .eq. zero) go to 90
do 30 k = j, n
sdiag(k) = zero
30 continue
sdiag(j) = diag(l)
c
c the transformations to eliminate the row of d
c modify only a single element of (q transpose)*b
c beyond the first n, which is initially zero.
c
qtbpj = zero
do 80 k = j, n
c
c determine a givens rotation which eliminates the
c appropriate element in the current row of d.
c
if (sdiag(k) .eq. zero) go to 70
if (dabs(r(k,k)) .ge. dabs(sdiag(k))) go to 40
cotan = r(k,k)/sdiag(k)
sin = p5/dsqrt(p25+p25*cotan**2)
cos = sin*cotan
go to 50
40 continue
tan = sdiag(k)/r(k,k)
cos = p5/dsqrt(p25+p25*tan**2)
sin = cos*tan
50 continue
c
c compute the modified diagonal element of r and
c the modified element of ((q transpose)*b,0).
c
r(k,k) = cos*r(k,k) + sin*sdiag(k)
temp = cos*wa(k) + sin*qtbpj
qtbpj = -sin*wa(k) + cos*qtbpj
wa(k) = temp
c
c accumulate the tranformation in the row of s.
c
kp1 = k + 1
if (n .lt. kp1) go to 70
do 60 i = kp1, n
temp = cos*r(i,k) + sin*sdiag(i)
sdiag(i) = -sin*r(i,k) + cos*sdiag(i)
r(i,k) = temp
60 continue
70 continue
80 continue
90 continue
c
c store the diagonal element of s and restore
c the corresponding diagonal element of r.
c
sdiag(j) = r(j,j)
r(j,j) = x(j)
100 continue
c
c solve the triangular system for z. if the system is
c singular, then obtain a least squares solution.
c
nsing = n
do 110 j = 1, n
if (sdiag(j) .eq. zero .and. nsing .eq. n) nsing = j - 1
if (nsing .lt. n) wa(j) = zero
110 continue
if (nsing .lt. 1) go to 150
do 140 k = 1, nsing
j = nsing - k + 1
sum = zero
jp1 = j + 1
if (nsing .lt. jp1) go to 130
do 120 i = jp1, nsing
sum = sum + r(i,j)*wa(i)
120 continue
130 continue
wa(j) = (wa(j) - sum)/sdiag(j)
140 continue
150 continue
c
c permute the components of z back to components of x.
c
do 160 j = 1, n
l = ipvt(j)
x(l) = wa(j)
160 continue
return
c
c last card of subroutine qrsolv.
c
end
|