File: Simulation.java

package info (click to toggle)
libpj-java 0.0~20150107%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 13,396 kB
  • sloc: java: 99,543; ansic: 987; sh: 153; xml: 26; makefile: 10; sed: 4
file content (265 lines) | stat: -rw-r--r-- 7,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//******************************************************************************
//
// File:    Simulation.java
// Package: edu.rit.sim
// Unit:    Class edu.rit.sim.Simulation
//
// This Java source file is copyright (C) 2011 by Alan Kaminsky. All rights
// reserved. For further information, contact the author, Alan Kaminsky, at
// ark@cs.rit.edu.
//
// This Java source file is part of the Parallel Java Library ("PJ"). PJ is free
// software; you can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// PJ is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE. See the GNU General Public License for more details.
//
// Linking this library statically or dynamically with other modules is making a
// combined work based on this library. Thus, the terms and conditions of the
// GNU General Public License cover the whole combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent modules, and
// to copy and distribute the resulting executable under terms of your choice,
// provided that you also meet, for each linked independent module, the terms
// and conditions of the license of that module. An independent module is a
// module which is not derived from or based on this library. If you modify this
// library, you may extend this exception to your version of the library, but
// you are not obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
//
// A copy of the GNU General Public License is provided in the file gpl.txt. You
// may also obtain a copy of the GNU General Public License on the World Wide
// Web at http://www.gnu.org/licenses/gpl.html.
//
//******************************************************************************

package edu.rit.sim;

/**
 * Class Simulation provides a discrete event simulation. To write a discrete
 * event simulation program:
 * <OL TYPE=1>
 * <P><LI>
 * Create a Simulation object.
 * <P><LI>
 * Create one or more {@linkplain Event}s and add them to the simulation (by
 * calling the <TT>doAt()</TT> or <TT>doAfter()</TT> methods).
 * <P><LI>
 * Run the simulation (by calling the <TT>run()</TT> method). The simulation
 * performs events, by calling each event's <TT>perform()</TT> method, in order
 * according to the events' simulation times, as returned by each event's
 * <TT>time()</TT> method. Performing an event may cause further events to be
 * created and added to the simulation.
 * <P><LI>
 * When there are no more events, the simulation is finished. At this point the
 * simulation's <TT>run()</TT> method returns.
 * </OL>
 *
 * @author  Alan Kaminsky
 * @version 29-Jul-2011
 */
public class Simulation
	{

// Hidden data members.

	// Minimum-priority queue of events. Uses a heap data structure. The entry
	// at index 0 is a sentinel with time = 0.0.
	private Event[] heap = new Event [1024];

	// Number of entries in the heap (including the sentinel).
	private int N = 1;

	// Simulation time.
	private double T = 0.0;

// Exported constructors.

	/**
	 * Construct a new simulation.
	 */
	public Simulation()
		{
		heap[0] = new Event() { public void perform() { } };
		heap[0].sim = this;
		heap[0].time = 0.0;
		}

// Exported operations.

	/**
	 * Returns the current simulation time.
	 *
	 * @return  Simulation time.
	 */
	public double time()
		{
		return T;
		}

	/**
	 * Schedule the given event to be performed at the given time in this
	 * simulation.
	 *
	 * @param  t      Simulation time for <TT>event</TT>.
	 * @param  event  Event to be performed.
	 *
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>t</TT> is less than the current
	 *     simulation time.
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>event</TT> is null.
	 */
	public void doAt
		(double t,
		 Event event)
		{
		// Verify preconditions.
		if (t < T)
			{
			throw new IllegalArgumentException
				("Simulation.doAt(): t = "+t+" less than simulation time ="+T+
				 ", illegal");
			}
		if (event == null)
			{
			throw new NullPointerException
				("Simulation.doAt(): event = null");
			}

		// Set event fields.
		event.sim = this;
		event.time = t;

		// Grow heap if necessary.
		if (N == heap.length)
			{
			Event[] newheap = new Event [N + 1024];
			System.arraycopy (heap, 0, newheap, 0, N);
			heap = newheap;
			}

		// Insert event into heap in min-priority order.
		heap[N] = event;
		siftUp (N);
		++ N;
		}

	/**
	 * Schedule the given event to be performed at a time <TT>dt</TT> in the
	 * future (at current simulation time + <TT>dt</TT>) in this simulation.
	 *
	 * @param  dt     Simulation time delta for <TT>event</TT>.
	 * @param  event  Event to be performed.
	 *
	 * @exception  IllegalArgumentException
	 *     (unchecked exception) Thrown if <TT>dt</TT> is less than zero.
	 * @exception  NullPointerException
	 *     (unchecked exception) Thrown if <TT>event</TT> is null.
	 */
	public void doAfter
		(double dt,
		 Event event)
		{
		doAt (T + dt, event);
		}

	/**
	 * Run the simulation. At the start of the simulation, the simulation time
	 * is 0. The <TT>run()</TT> method returns when there are no more events.
	 */
	public void run()
		{
		while (N > 1)
			{
			// Extract minimum event from heap.
			Event event = heap[1];
			-- N;
			heap[1] = heap[N];
			heap[N] = null;
			if (N > 1) siftDown (1);

			// Advance simulation time and perform event.
			T = event.time;
			event.perform();
			}
		}

// Hidden operations.

	/**
	 * Sift up the heap entry at the given index.
	 *
	 * @param  c  Index.
	 */
	private void siftUp
		(int c)
		{
		double c_time = heap[c].time;
		int p = c >> 1;
		double p_time = heap[p].time;
		while (c_time < p_time)
			{
			Event temp = heap[c];
			heap[c] = heap[p];
			heap[p] = temp;
			c = p;
			p = c >> 1;
			p_time = heap[p].time;
			}
		}

	/**
	 * Sift down the heap entry at the given index.
	 *
	 * @param  p  Index.
	 */
	private void siftDown
		(int p)
		{
		double p_time = heap[p].time;
		int lc = (p << 1);
		double lc_time = lc < N ? heap[lc].time : Double.POSITIVE_INFINITY;
		int rc = (p << 1) + 1;
		double rc_time = rc < N ? heap[rc].time : Double.POSITIVE_INFINITY;
		int c;
		double c_time;
		if (lc_time < rc_time)
			{
			c = lc;
			c_time = lc_time;
			}
		else
			{
			c = rc;
			c_time = rc_time;
			}
		while (c_time < p_time)
			{
			Event temp = heap[c];
			heap[c] = heap[p];
			heap[p] = temp;
			p = c;
			lc = (p << 1);
			lc_time = lc < N ? heap[lc].time : Double.POSITIVE_INFINITY;
			rc = (p << 1) + 1;
			rc_time = rc < N ? heap[rc].time : Double.POSITIVE_INFINITY;
			if (lc_time < rc_time)
				{
				c = lc;
				c_time = lc_time;
				}
			else
				{
				c = rc;
				c_time = rc_time;
				}
			}
		}

	}