1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/*
Copyright (C) 2015 Tomas Flouri, Diego Darriba
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Contact: Tomas Flouri <Tomas.Flouri@h-its.org>,
Exelixis Lab, Heidelberg Instutute for Theoretical Studies
Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
*/
#include "pll.h"
#include <stdarg.h>
#include <search.h>
#include <time.h>
#define STATES 4
#define RATE_CATS 4
static void fatal(const char * format, ...) __attribute__ ((noreturn));
typedef struct
{
int clv_valid;
} node_info_t;
static void * xmalloc(size_t size)
{
void * t;
t = malloc(size);
if (!t)
fatal("Unable to allocate enough memory.");
return t;
}
static char * xstrdup(const char * s)
{
size_t len = strlen(s);
char * p = (char *)xmalloc(len+1);
return strcpy(p,s);
}
/* call-back function to destroy the data element of each node */
static void cb_data_destroy(void * data)
{
free(data);
}
/* a callback function for performing a partial traversal */
static int cb_partial_traversal(pll_unode_t * node)
{
node_info_t * node_info;
/* if we don't want tips in the traversal we must return 0 here. For now,
allow tips */
if (!node->next) return 1;
/* get the data element from the node and check if the CLV vector is
oriented in the direction that we want to traverse. If the data
element is not yet allocated then we allocate it, set the direction
and instruct the traversal routine to place the node in the traversal array
by returning 1 */
node_info = (node_info_t *)(node->data);
if (!node_info)
{
/* allocate data element */
node->data = (node_info_t *)calloc(1,sizeof(node_info_t));
node->next->data = (node_info_t *)calloc(1,sizeof(node_info_t));
node->next->next->data = (node_info_t *)calloc(1,sizeof(node_info_t));
/* set orientation on selected direction and traverse the subtree */
node_info = node->data;
node_info->clv_valid = 1;
return 1;
}
/* if the data element was already there and the CLV on this direction is
set, i.e. the CLV is valid, we instruct the traversal routine not to
traverse the subtree rooted in this node/direction by returning 0 */
if (node_info->clv_valid) return 0;
/* otherwise, set orientation on selected direction */
node_info->clv_valid = 1;
/* reset orientation on the other two directions and return 1 (i.e. traverse
the subtree */
node_info = node->next->data;
node_info->clv_valid = 0;
node_info = node->next->next->data;
node_info->clv_valid = 0;
return 1;
}
/* branch lengths not present in the newick file get a value of 0.000001 */
static void set_missing_branch_length(pll_utree_t * tree, double length)
{
unsigned int i;
for (i = 0; i < tree->tip_count; ++i)
if (!tree->nodes[i]->length)
tree->nodes[i]->length = length;
for (i = tree->tip_count; i < tree->tip_count + tree->inner_count; ++i)
{
if (!tree->nodes[i]->length)
tree->nodes[i]->length = length;
if (!tree->nodes[i]->next->length)
tree->nodes[i]->next->length = length;
if (!tree->nodes[i]->next->next->length)
tree->nodes[i]->next->next->length = length;
}
}
static void fatal(const char * format, ...)
{
va_list argptr;
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);
fprintf(stderr, "\n");
exit(EXIT_FAILURE);
}
int main(int argc, char * argv[])
{
unsigned int i,j,r;
unsigned int tip_nodes_count, inner_nodes_count, nodes_count, branch_count;
unsigned int matrix_count, ops_count;
unsigned int * matrix_indices;
double * branch_lengths;
pll_partition_t * partition;
pll_operation_t * operations;
pll_unode_t ** travbuffer;
pll_unode_t ** inner_nodes_list;
/* we accept only two arguments - the newick tree (unrooted binary) and the
alignment in the form of FASTA reads */
if (argc != 3)
fatal(" syntax: %s [newick] [fasta]", argv[0]);
/* parse the unrooted binary tree in newick format, and store the number
of tip nodes in tip_nodes_count */
pll_utree_t * tree = pll_utree_parse_newick(argv[1]);
if (!tree)
fatal("Tree must be an unrooted binary tree");
tip_nodes_count = tree->tip_count;
/* fix all missing branch lengths (i.e. those that did not appear in the
newick) to 0.000001 */
set_missing_branch_length(tree, 0.000001);
/* compute and show node count information */
inner_nodes_count = tip_nodes_count - 2;
nodes_count = inner_nodes_count + tip_nodes_count;
branch_count = nodes_count - 1;
printf("Number of tip/leaf nodes in tree: %d\n", tip_nodes_count);
printf("Number of inner nodes in tree: %d\n", inner_nodes_count);
printf("Total number of nodes in tree: %d\n", nodes_count);
printf("Number of branches in tree: %d\n", branch_count);
/* Uncomment to display the parsed tree ASCII tree together with information
as to which CLV index, branch length and label is associated with each
node. The code will also write (and print on screen) the newick format
of the tree.
pll_utree_show_ascii(tree, PLL_UTREE_SHOW_LABEL |
PLL_UTREE_SHOW_BRANCH_LENGTH |
PLL_UTREE_SHOW_CLV_INDEX);
char * newick = pll_utree_export_newick(tree,NULL);
printf("%s\n", newick);
free(newick);
*/
/* create a libc hash table of size tip_nodes_count */
hcreate(tip_nodes_count);
/* populate a libc hash table with tree tip labels */
unsigned int * data = (unsigned int *)xmalloc(tip_nodes_count *
sizeof(unsigned int));
for (i = 0; i < tip_nodes_count; ++i)
{
data[i] = tree->nodes[i]->clv_index;
ENTRY entry;
#ifdef __APPLE__
entry.key = xstrdup(tree->nodes[i]->label);
#else
entry.key = tree->nodes[i]->label;
#endif
entry.data = (void *)(data+i);
hsearch(entry, ENTER);
}
/* open FASTA file */
pll_fasta_t * fp = pll_fasta_open(argv[2], pll_map_fasta);
if (!fp)
fatal("Error opening file %s", argv[2]);
char * seq = NULL;
char * hdr = NULL;
long seqlen;
long hdrlen;
long seqno;
/* allocate arrays to store FASTA headers and sequences */
char ** headers = (char **)calloc(tip_nodes_count, sizeof(char *));
char ** seqdata = (char **)calloc(tip_nodes_count, sizeof(char *));
/* read FASTA sequences and make sure they are all of the same length */
int sites = -1;
for (i = 0; pll_fasta_getnext(fp,&hdr,&hdrlen,&seq,&seqlen,&seqno); ++i)
{
if (i >= tip_nodes_count)
fatal("FASTA file contains more sequences than expected");
if (sites != -1 && sites != seqlen)
fatal("FASTA file does not contain equal size sequences\n");
if (sites == -1) sites = seqlen;
headers[i] = hdr;
seqdata[i] = seq;
}
/* did we stop reading the file because we reached EOF? */
if (pll_errno != PLL_ERROR_FILE_EOF)
fatal("Error while reading file %s", argv[2]);
/* close FASTA file */
pll_fasta_close(fp);
if (sites == -1)
fatal("Unable to read alignment");
if (i != tip_nodes_count)
fatal("Some taxa are missing from FASTA file");
/* create the PLL partition instance
tip_nodes_count : the number of tip sequences we want to have
inner_nodes_count : the number of CLV buffers to be allocated for inner nodes
STATES : the number of states that our data have
1 : number of different substitution models (or eigen decomposition)
to use concurrently (i.e. 4 for LG4)
branch_count: number of probability matrices to be allocated
RATE_CATS : number of rate categories we will use
inner_nodes_count : how many scale buffers to use
PLL_ATTRIB_ARCH_SSE : list of flags for hardware acceleration (not yet implemented)
*/
partition = pll_partition_create(tip_nodes_count,
inner_nodes_count,
STATES,
(unsigned int)sites,
1,
branch_count,
RATE_CATS,
inner_nodes_count,
PLL_ATTRIB_ARCH_CPU);
/* initialize the array of base frequencies */
double frequencies[4] = { 0.17, 0.19, 0.25, 0.39 };
/* substitution rates for the 4x4 GTR model. This means we need exactly
(4*4-4)/2 = 6 values, i.e. the number of elements above the diagonal */
double subst_params[6] = {1,1,1,1,1,1};
/* we'll use 4 rate categories, and currently initialize them to 0 */
double rate_cats[4] = {0};
/* compute the discretized category rates from a gamma distribution
with alpha shape 1 and store them in rate_cats */
pll_compute_gamma_cats(1, 4, rate_cats, PLL_GAMMA_RATES_MEAN);
/* set frequencies at model with index 0 (we currently have only one model) */
pll_set_frequencies(partition, 0, frequencies);
/* set 6 substitution parameters at model with index 0 */
pll_set_subst_params(partition, 0, subst_params);
/* set rate categories */
pll_set_category_rates(partition, rate_cats);
/* find sequences in hash table and link them with the corresponding taxa */
for (i = 0; i < tip_nodes_count; ++i)
{
ENTRY query;
query.key = headers[i];
ENTRY * found = NULL;
found = hsearch(query,FIND);
if (!found)
fatal("Sequence with header %s does not appear in the tree", headers[i]);
unsigned int tip_clv_index = *((unsigned int *)(found->data));
pll_set_tip_states(partition, tip_clv_index, pll_map_nt, seqdata[i]);
}
/* destroy hash table */
hdestroy();
/* we no longer need these two arrays (keys and values of hash table... */
free(data);
/* ...neither the sequences and the headers as they are already
present in the form of probabilities in the tip CLVs */
for(i = 0; i < tip_nodes_count; ++i)
{
free(seqdata[i]);
free(headers[i]);
}
free(seqdata);
free(headers);
/* allocate a buffer for storing pointers to nodes of the tree in postorder
traversal */
travbuffer = (pll_unode_t **)xmalloc(nodes_count * sizeof(pll_unode_t *));
branch_lengths = (double *)xmalloc(branch_count * sizeof(double));
matrix_indices = (unsigned int *)xmalloc(branch_count * sizeof(unsigned int));
operations = (pll_operation_t *)xmalloc(inner_nodes_count *
sizeof(pll_operation_t));
/* get inner nodes */
inner_nodes_list = (pll_unode_t **)xmalloc(inner_nodes_count *
sizeof(pll_unode_t *));
memcpy(inner_nodes_list,
tree->nodes+tip_nodes_count,
inner_nodes_count*sizeof(pll_unode_t *));
/* get random directions for each inner node */
for (i = 0; i < inner_nodes_count; ++i)
{
r = (unsigned int)(rand() % 3);
for (j = 0; j < r; j++)
inner_nodes_list[i] = inner_nodes_list[i]->next;
}
/* initialize the random number generator for randomly
selecting inner nodes */
srand((unsigned int)time(NULL));
for (i = 0; i < 10; ++i)
{
/* randomly select an inner node */
r = (unsigned int)rand() % inner_nodes_count;
pll_unode_t * node = inner_nodes_list[r];
/* compute a partial traversal starting from the randomly selected
inner node */
unsigned int traversal_size;
if (!pll_utree_traverse(node,
PLL_TREE_TRAVERSE_POSTORDER,
cb_partial_traversal,
travbuffer,
&traversal_size))
fatal("Function pll_utree_traverse() requires inner nodes as parameters");
/* given the computed traversal descriptor, generate the operations
structure, and the corresponding probability matrix indices that
may need recomputing */
pll_utree_create_operations(travbuffer,
traversal_size,
branch_lengths,
matrix_indices,
operations,
&matrix_count,
&ops_count);
printf("\nComputing logL between CLV %d and %d - "
"(pmatrix %d with branch length %f)\n",
node->clv_index,
node->back->clv_index,
node->pmatrix_index,
node->length);
printf ("Traversal size: %d\n", traversal_size);
printf ("Operations: %d\n", ops_count);
printf ("Matrices: %d\n", matrix_count);
/* update matrix_count probability matrices using the rate matrix with
index 0. The i-th matrix (i ranges from 0 to matrix_count - 1) is
generated using branch length branch_lengths[i] and rate matrix
(substitution rates + frequencies) params_indices[i], and can be refered
to with index matrix_indices[i] */
unsigned int params_indices[4] = {0,0,0,0};
pll_update_prob_matrices(partition,
params_indices,
matrix_indices,
branch_lengths,
matrix_count);
/* Uncomment to output the probability matrices (for each branch and each rate
category) on screen
for (i = 0; i < branch_count; ++i)
{
printf ("P-matrix (%d) for branch length %f\n", i, branch_lengths[i]);
pll_show_pmatrix(partition, i,17);
printf ("\n");
}
*/
/* use the operations array to compute all ops_count inner CLVs. Operations
will be carried out sequentially starting from operation 0 towrds ops_count-1 */
pll_update_partials(partition, operations, ops_count);
/* Uncomment to print on screen the CLVs at tip and inner nodes. From 0 to
tip_nodes_count-1 are tip CLVs, the rest are inner node CLVs.
for (i = 0; i < nodes_count; ++i)
{
printf ("CLV %d: ", i);
pll_show_clv(partition,i,17);
}
*/
/* compute the likelihood on an edge of the unrooted tree by specifying
the CLV indices at the two end-point of the branch, the probability matrix
index for the concrete branch length, and the array of indices of rate matrix
whose frequency vector is to be used for each rate category */
double logl = pll_compute_edge_loglikelihood(partition,
node->clv_index,
node->scaler_index,
node->back->clv_index,
node->back->scaler_index,
node->pmatrix_index,
params_indices,
NULL);
printf("Log-L: %f\n", logl);
}
/* deallocate the inner nodes list */
free(inner_nodes_list);
/* destroy all structures allocated for the concrete PLL partition instance */
pll_partition_destroy(partition);
/* deallocate traversal buffer, branch lengths array, matrix indices
array and operations */
free(travbuffer);
free(branch_lengths);
free(matrix_indices);
free(operations);
/* we will no longer need the tree structure */
pll_utree_destroy(tree,cb_data_destroy);
return (EXIT_SUCCESS);
}
|