File: partial.c

package info (click to toggle)
libpll 0.3.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 31,300 kB
  • sloc: ansic: 25,968; yacc: 691; makefile: 393; python: 295; lex: 204; sh: 52
file content (478 lines) | stat: -rw-r--r-- 15,949 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
    Copyright (C) 2015 Tomas Flouri, Diego Darriba

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as
    published by the Free Software Foundation, either version 3 of the
    License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.

    Contact: Tomas Flouri <Tomas.Flouri@h-its.org>,
    Exelixis Lab, Heidelberg Instutute for Theoretical Studies
    Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
*/

#include "pll.h"
#include <stdarg.h>
#include <search.h>
#include <time.h>


#define STATES    4
#define RATE_CATS 4

static void fatal(const char * format, ...) __attribute__ ((noreturn));

typedef struct
{
  int clv_valid;
} node_info_t;

static void * xmalloc(size_t size)
{ 
  void * t;
  t = malloc(size);
  if (!t)
    fatal("Unable to allocate enough memory.");
  
  return t;
} 
  
static char * xstrdup(const char * s)
{ 
  size_t len = strlen(s);
  char * p = (char *)xmalloc(len+1);
  return strcpy(p,s);
} 
/* call-back function to destroy the data element of each node */
static void cb_data_destroy(void * data)
{
  free(data);
}

/* a callback function for performing a partial traversal */
static int cb_partial_traversal(pll_unode_t * node)
{
  node_info_t * node_info;

  /* if we don't want tips in the traversal we must return 0 here. For now,
     allow tips */
  if (!node->next) return 1;

  /* get the data element from the node and check if the CLV vector is
     oriented in the direction that we want to traverse. If the data
     element is not yet allocated then we allocate it, set the direction
     and instruct the traversal routine to place the node in the traversal array
     by returning 1 */
  node_info = (node_info_t *)(node->data);
  if (!node_info)
  {
    /* allocate data element */
    node->data             = (node_info_t *)calloc(1,sizeof(node_info_t));
    node->next->data       = (node_info_t *)calloc(1,sizeof(node_info_t));
    node->next->next->data = (node_info_t *)calloc(1,sizeof(node_info_t));

    /* set orientation on selected direction and traverse the subtree */
    node_info = node->data;
    node_info->clv_valid = 1;
    return 1;
  }

  /* if the data element was already there and the CLV on this direction is
     set, i.e. the CLV is valid, we instruct the traversal routine not to
     traverse the subtree rooted in this node/direction by returning 0 */
  if (node_info->clv_valid) return 0;

  /* otherwise, set orientation on selected direction */
  node_info->clv_valid = 1;

  /* reset orientation on the other two directions and return 1 (i.e. traverse
     the subtree */
  node_info = node->next->data;
  node_info->clv_valid = 0;
  node_info = node->next->next->data;
  node_info->clv_valid = 0;

  return 1;
}

/* branch lengths not present in the newick file get a value of 0.000001 */
static void set_missing_branch_length(pll_utree_t * tree, double length)
{
  unsigned int i;

  for (i = 0; i < tree->tip_count; ++i)
    if (!tree->nodes[i]->length)
      tree->nodes[i]->length = length;

  for (i = tree->tip_count; i < tree->tip_count + tree->inner_count; ++i)
  {
    if (!tree->nodes[i]->length)
      tree->nodes[i]->length = length;
    if (!tree->nodes[i]->next->length)
      tree->nodes[i]->next->length = length;
    if (!tree->nodes[i]->next->next->length)
      tree->nodes[i]->next->next->length = length;
  } 
}

static void fatal(const char * format, ...)
{
  va_list argptr;
  va_start(argptr, format);
  vfprintf(stderr, format, argptr);
  va_end(argptr);
  fprintf(stderr, "\n");
  exit(EXIT_FAILURE);
}

int main(int argc, char * argv[])
{
  unsigned int i,j,r;
  unsigned int tip_nodes_count, inner_nodes_count, nodes_count, branch_count;
  unsigned int matrix_count, ops_count;
  unsigned int * matrix_indices;
  double * branch_lengths;
  pll_partition_t * partition;
  pll_operation_t * operations;
  pll_unode_t ** travbuffer;
  pll_unode_t ** inner_nodes_list;

  /* we accept only two arguments - the newick tree (unrooted binary) and the
     alignment in the form of FASTA reads */
  if (argc != 3)
    fatal(" syntax: %s [newick] [fasta]", argv[0]);

  /* parse the unrooted binary tree in newick format, and store the number
     of tip nodes in tip_nodes_count */
  pll_utree_t * tree = pll_utree_parse_newick(argv[1]);
  if (!tree)
    fatal("Tree must be an unrooted binary tree");

  tip_nodes_count = tree->tip_count;

  /* fix all missing branch lengths (i.e. those that did not appear in the
     newick) to 0.000001 */
  set_missing_branch_length(tree, 0.000001);


  /* compute and show node count information */
  inner_nodes_count = tip_nodes_count - 2;
  nodes_count = inner_nodes_count + tip_nodes_count;
  branch_count = nodes_count - 1;

  printf("Number of tip/leaf nodes in tree: %d\n", tip_nodes_count);
  printf("Number of inner nodes in tree: %d\n", inner_nodes_count);
  printf("Total number of nodes in tree: %d\n", nodes_count);
  printf("Number of branches in tree: %d\n", branch_count);

  /* Uncomment to display the parsed tree ASCII tree together with information
     as to which CLV index, branch length and label is associated with each
     node. The code will also write (and print on screen) the newick format
     of the tree.

  pll_utree_show_ascii(tree, PLL_UTREE_SHOW_LABEL |
                             PLL_UTREE_SHOW_BRANCH_LENGTH |
                             PLL_UTREE_SHOW_CLV_INDEX);
  char * newick = pll_utree_export_newick(tree,NULL);
  printf("%s\n", newick);
  free(newick);

  */

  /* create a libc hash table of size tip_nodes_count */
  hcreate(tip_nodes_count);

  /* populate a libc hash table with tree tip labels */
  unsigned int * data = (unsigned int *)xmalloc(tip_nodes_count *
                                                sizeof(unsigned int));
  for (i = 0; i < tip_nodes_count; ++i)
  {
    data[i] = tree->nodes[i]->clv_index;
    ENTRY entry;
#ifdef __APPLE__
    entry.key = xstrdup(tree->nodes[i]->label);
#else
    entry.key = tree->nodes[i]->label;
#endif
    entry.data = (void *)(data+i);
    hsearch(entry, ENTER);
  }

  /* open FASTA file */
  pll_fasta_t * fp = pll_fasta_open(argv[2], pll_map_fasta);
  if (!fp)
    fatal("Error opening file %s", argv[2]);

  char * seq = NULL;
  char * hdr = NULL;
  long seqlen;
  long hdrlen;
  long seqno;

  /* allocate arrays to store FASTA headers and sequences */
  char ** headers = (char **)calloc(tip_nodes_count, sizeof(char *));
  char ** seqdata = (char **)calloc(tip_nodes_count, sizeof(char *));

  /* read FASTA sequences and make sure they are all of the same length */
  int sites = -1;
  for (i = 0; pll_fasta_getnext(fp,&hdr,&hdrlen,&seq,&seqlen,&seqno); ++i)
  {
    if (i >= tip_nodes_count)
      fatal("FASTA file contains more sequences than expected");

    if (sites != -1 && sites != seqlen)
      fatal("FASTA file does not contain equal size sequences\n");

    if (sites == -1) sites = seqlen;

    headers[i] = hdr;
    seqdata[i] = seq;
  }

  /* did we stop reading the file because we reached EOF? */
  if (pll_errno != PLL_ERROR_FILE_EOF)
    fatal("Error while reading file %s", argv[2]);

  /* close FASTA file */
  pll_fasta_close(fp);

  if (sites == -1)
    fatal("Unable to read alignment");

  if (i != tip_nodes_count)
    fatal("Some taxa are missing from FASTA file");

  /* create the PLL partition instance

  tip_nodes_count : the number of tip sequences we want to have
  inner_nodes_count : the number of CLV buffers to be allocated for inner nodes
  STATES : the number of states that our data have
  1 : number of different substitution models (or eigen decomposition)
      to use concurrently (i.e. 4 for LG4)
  branch_count: number of probability matrices to be allocated
  RATE_CATS : number of rate categories we will use
  inner_nodes_count : how many scale buffers to use
  PLL_ATTRIB_ARCH_SSE : list of flags for hardware acceleration (not yet implemented)

  */

  partition = pll_partition_create(tip_nodes_count,
                                   inner_nodes_count,
                                   STATES,
                                   (unsigned int)sites,
                                   1,
                                   branch_count,
                                   RATE_CATS,
                                   inner_nodes_count,
                                   PLL_ATTRIB_ARCH_CPU);

  /* initialize the array of base frequencies */
  double frequencies[4] = { 0.17, 0.19, 0.25, 0.39 };

  /* substitution rates for the 4x4 GTR model. This means we need exactly
     (4*4-4)/2 = 6 values, i.e. the number of elements above the diagonal */
  double subst_params[6] = {1,1,1,1,1,1};

  /* we'll use 4 rate categories, and currently initialize them to 0 */
  double rate_cats[4] = {0};

  /* compute the discretized category rates from a gamma distribution
     with alpha shape 1 and store them in rate_cats  */
  pll_compute_gamma_cats(1, 4, rate_cats, PLL_GAMMA_RATES_MEAN);

  /* set frequencies at model with index 0 (we currently have only one model) */
  pll_set_frequencies(partition, 0, frequencies);

  /* set 6 substitution parameters at model with index 0 */
  pll_set_subst_params(partition, 0, subst_params);

  /* set rate categories */
  pll_set_category_rates(partition, rate_cats);

  /* find sequences in hash table and link them with the corresponding taxa */
  for (i = 0; i < tip_nodes_count; ++i)
  {
    ENTRY query;
    query.key = headers[i];
    ENTRY * found = NULL;

    found = hsearch(query,FIND);

    if (!found)
      fatal("Sequence with header %s does not appear in the tree", headers[i]);

    unsigned int tip_clv_index = *((unsigned int *)(found->data));

    pll_set_tip_states(partition, tip_clv_index, pll_map_nt, seqdata[i]);
  }

  /* destroy hash table */
  hdestroy();

  /* we no longer need these two arrays (keys and values of hash table... */
  free(data);

  /* ...neither the sequences and the headers as they are already
     present in the form of probabilities in the tip CLVs */
  for(i = 0; i < tip_nodes_count; ++i)
  {
    free(seqdata[i]);
    free(headers[i]);
  }
  free(seqdata);
  free(headers);


  /* allocate a buffer for storing pointers to nodes of the tree in postorder
     traversal */
  travbuffer = (pll_unode_t **)xmalloc(nodes_count * sizeof(pll_unode_t *));


  branch_lengths = (double *)xmalloc(branch_count * sizeof(double));
  matrix_indices = (unsigned int *)xmalloc(branch_count * sizeof(unsigned int));
  operations = (pll_operation_t *)xmalloc(inner_nodes_count *
                                          sizeof(pll_operation_t));

  /* get inner nodes */
  inner_nodes_list = (pll_unode_t **)xmalloc(inner_nodes_count *
                                             sizeof(pll_unode_t *));
  memcpy(inner_nodes_list,
         tree->nodes+tip_nodes_count,
         inner_nodes_count*sizeof(pll_unode_t *));


  /* get random directions for each inner node */
  for (i = 0; i < inner_nodes_count; ++i)
  {
    r = (unsigned int)(rand() % 3);
    for (j = 0; j < r; j++)
      inner_nodes_list[i] = inner_nodes_list[i]->next;
  }

  /* initialize the random number generator for randomly
     selecting inner nodes */
  srand((unsigned int)time(NULL));

  for (i = 0; i < 10; ++i)
  {
    /* randomly select an inner node */
    r = (unsigned int)rand() % inner_nodes_count;
    pll_unode_t * node = inner_nodes_list[r];

    /* compute a partial traversal starting from the randomly selected
       inner node */
    unsigned int traversal_size;
    if (!pll_utree_traverse(node,
                            PLL_TREE_TRAVERSE_POSTORDER,
                            cb_partial_traversal,
                            travbuffer,
                            &traversal_size))
      fatal("Function pll_utree_traverse() requires inner nodes as parameters");

    /* given the computed traversal descriptor, generate the operations
       structure, and the corresponding probability matrix indices that
       may need recomputing */
    pll_utree_create_operations(travbuffer,
                                traversal_size,
                                branch_lengths,
                                matrix_indices,
                                operations,
                                &matrix_count,
                                &ops_count);




    printf("\nComputing logL between CLV %d and %d - "
           "(pmatrix %d with branch length %f)\n",
            node->clv_index,
            node->back->clv_index,
            node->pmatrix_index,
            node->length);

    printf ("Traversal size: %d\n", traversal_size);
    printf ("Operations: %d\n", ops_count);
    printf ("Matrices: %d\n", matrix_count);

    /* update matrix_count probability matrices using the rate matrix with
       index 0. The i-th matrix (i ranges from 0 to matrix_count - 1) is
       generated using branch length branch_lengths[i] and rate matrix
       (substitution rates + frequencies) params_indices[i], and can be refered
       to with index matrix_indices[i] */
    unsigned int params_indices[4] = {0,0,0,0};

    pll_update_prob_matrices(partition,
                             params_indices,
                             matrix_indices,
                             branch_lengths,
                             matrix_count);

    /* Uncomment to output the probability matrices (for each branch and each rate
       category) on screen
    for (i = 0; i < branch_count; ++i)
    {
      printf ("P-matrix (%d) for branch length %f\n", i, branch_lengths[i]);
      pll_show_pmatrix(partition, i,17);
      printf ("\n");
    }

    */

    /* use the operations array to compute all ops_count inner CLVs. Operations
       will be carried out sequentially starting from operation 0 towrds ops_count-1 */
    pll_update_partials(partition, operations, ops_count);

    /* Uncomment to print on screen the CLVs at tip and inner nodes. From 0 to
       tip_nodes_count-1 are tip CLVs, the rest are inner node CLVs.

    for (i = 0; i < nodes_count; ++i)
    {
      printf ("CLV %d: ", i);
      pll_show_clv(partition,i,17);
    }

    */

    /* compute the likelihood on an edge of the unrooted tree by specifying
       the CLV indices at the two end-point of the branch, the probability matrix
       index for the concrete branch length, and the array of indices of rate matrix
       whose frequency vector is to be used for each rate category */

    double logl = pll_compute_edge_loglikelihood(partition,
                                                 node->clv_index,
                                                 node->scaler_index,
                                                 node->back->clv_index,
                                                 node->back->scaler_index,
                                                 node->pmatrix_index,
                                                 params_indices,
                                                 NULL);

    printf("Log-L: %f\n", logl);
  }

  /* deallocate the inner nodes list */
  free(inner_nodes_list);

  /* destroy all structures allocated for the concrete PLL partition instance */
  pll_partition_destroy(partition);

  /* deallocate traversal buffer, branch lengths array, matrix indices
     array and operations */
  free(travbuffer);
  free(branch_lengths);
  free(matrix_indices);
  free(operations);

  /* we will no longer need the tree structure */
  pll_utree_destroy(tree,cb_data_destroy);

  return (EXIT_SUCCESS);
}