1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// SPDX-License-Identifier: BSD-3-Clause
/* Copyright 2020, Intel Corporation */
/*
* concurrent_hash_map_defrag.cpp -- pmem::obj::concurrent_hash_map test
*
*/
#include "unittest.hpp"
#include <libpmemobj++/make_persistent.hpp>
#include <libpmemobj++/p.hpp>
#include <libpmemobj++/persistent_ptr.hpp>
#include <libpmemobj++/pool.hpp>
#include <iterator>
#include <vector>
#include <libpmemobj++/container/concurrent_hash_map.hpp>
#include <libpmemobj++/container/string.hpp>
#define LAYOUT "concurrent_hash_map"
namespace nvobj = pmem::obj;
namespace
{
class key_equal {
public:
template <typename M, typename U>
bool
operator()(const M &lhs, const U &rhs) const
{
return lhs == rhs;
}
};
class string_hasher {
/* hash multiplier used by fibonacci hashing */
static const size_t hash_multiplier = 11400714819323198485ULL;
public:
using transparent_key_equal = key_equal;
size_t
operator()(const pmem::obj::string &str) const
{
return hash(str.c_str(), str.size());
}
size_t
operator()(const std::string &str) const
{
return hash(str.c_str(), str.size());
}
private:
size_t
hash(const char *str, size_t size) const
{
size_t h = 0;
for (size_t i = 0; i < size; ++i) {
h = static_cast<size_t>(str[i]) ^ (h * hash_multiplier);
}
return h;
}
};
typedef nvobj::concurrent_hash_map<pmem::obj::string, pmem::obj::string,
string_hasher>
persistent_map_type;
struct root {
nvobj::persistent_ptr<persistent_map_type> cons;
};
/*
* insert_defrag_lookup -- test insert, erase and defrag operations
* pmem::obj::concurrent_hash_map<pmem::obj::string, pmem::obj::string>
*/
void
insert_defrag_lookup_test(nvobj::pool<root> &pop)
{
const size_t NUMBER_ITEMS_INSERT = 10000;
const size_t NUMBER_HOLES = NUMBER_ITEMS_INSERT / 10;
auto map = pop.root()->cons;
UT_ASSERT(map != nullptr);
map->runtime_initialize();
pmem::obj::persistent_ptr<char> holes[NUMBER_HOLES];
pmem::obj::persistent_ptr<persistent_map_type::value_type>
ptr[NUMBER_ITEMS_INSERT];
pmem::obj::transaction::run(pop, [&] {
std::string str = " ";
for (int i = 0; i < static_cast<int>(NUMBER_ITEMS_INSERT);
i++) {
ptr[i] = pmem::obj::make_persistent<
persistent_map_type::value_type>(str, str);
str.append(std::to_string(i));
}
});
for (int i = 0; i < static_cast<int>(NUMBER_ITEMS_INSERT); ++i) {
map->insert(*(ptr[i]));
if (i % 10 == 0) {
pmem::obj::transaction::run(pop, [&] {
holes[i / 10] =
pmem::obj::make_persistent<char>(4096);
});
}
}
for (int i = 0; i < static_cast<int>(NUMBER_ITEMS_INSERT); ++i) {
if (i % 10 == 0) {
map->erase(ptr[i]->first);
pmem::obj::transaction::run(pop, [&] {
pmem::obj::delete_persistent<char>(
holes[i / 10]);
});
}
}
size_t active = pop.ctl_get<size_t>("stats.heap.run_active");
size_t allocated = pop.ctl_get<size_t>("stats.heap.run_allocated");
float r1 = (float)active / (float)allocated;
struct pobj_defrag_result result = map->defragment();
/* this is to trigger global recycling */
pop.defrag(NULL, 0);
UT_ASSERT(result.total > 0);
UT_ASSERT(result.relocated > 0);
UT_ASSERT(result.total >= result.relocated);
active = pop.ctl_get<size_t>("stats.heap.run_active");
allocated = pop.ctl_get<size_t>("stats.heap.run_allocated");
float r2 = (float)active / (float)allocated;
UT_ASSERT(r2 < r1);
for (int i = 0; i < static_cast<int>(NUMBER_ITEMS_INSERT); ++i) {
if (i % 10 == 0)
continue;
persistent_map_type::accessor acc;
bool res = map->find(acc, ptr[i]->first);
if (res) {
UT_ASSERT(acc->first == (ptr[i])->first);
UT_ASSERT(acc->second == (ptr[i])->second);
} else {
UT_ASSERT(false);
}
}
pmem::obj::transaction::run(pop, [&] {
for (int i = 0; i < static_cast<int>(NUMBER_ITEMS_INSERT);
i++) {
pmem::obj::delete_persistent<
persistent_map_type::value_type>(ptr[i]);
}
});
map->clear();
}
/*
* insert_defrag_concurrent -- test concurrently erase and defrag operations
* pmem::obj::concurrent_hash_map<pmem::obj::string, pmem::obj::string>
*/
void
erase_defrag_concurrent_test(nvobj::pool<root> &pop, bool reversed_order,
size_t erase_threads_n)
{
const ptrdiff_t BATCH_SIZE = 1000;
const size_t NUMBER_ITEMS_ERASE = BATCH_SIZE * erase_threads_n;
const size_t NUMBER_ITEMS_SAVE = 100;
auto map = pop.root()->cons;
UT_ASSERT(map != nullptr);
map->runtime_initialize();
std::string str = " ";
for (size_t i = 0; i < NUMBER_ITEMS_ERASE + NUMBER_ITEMS_SAVE; i++) {
map->insert_or_assign(str, str);
str.append(std::to_string(i));
}
std::vector<std::string> elements_to_erase;
std::vector<std::string> elements_to_save;
size_t cnt = 0;
for (auto &v : *map) {
/* first NUMBER_ITEMS_SAVE elements wont be erased */
if (cnt++ < NUMBER_ITEMS_SAVE)
elements_to_save.push_back(
std::string(v.first.c_str()));
else
elements_to_erase.push_back(
std::string(v.first.c_str()));
}
/* reverse order of elements_to_erase to test case when we are erasing
* in order from last element to first */
if (reversed_order)
std::reverse(elements_to_erase.begin(),
elements_to_erase.end());
std::vector<std::thread> threads;
for (ptrdiff_t i = 0; i < static_cast<ptrdiff_t>(erase_threads_n);
i++) {
threads.emplace_back([&, i]() {
auto start = std::next(elements_to_erase.begin(),
i * BATCH_SIZE);
auto end = std::next(elements_to_erase.begin(),
(i + 1) * BATCH_SIZE);
for (auto it = start; it != end; ++it) {
UT_ASSERT(map->erase(*it));
}
});
}
threads.emplace_back([&]() { map->defragment(); });
for (auto &thread : threads)
thread.join();
UT_ASSERT(map->size() == NUMBER_ITEMS_SAVE);
for (size_t i = 0; i < NUMBER_ITEMS_SAVE; ++i) {
persistent_map_type::accessor acc;
bool res = map->find(acc, elements_to_save[i]);
if (res) {
UT_ASSERT(acc->first == (elements_to_save[i]));
UT_ASSERT(acc->second == (elements_to_save[i]));
} else {
UT_ASSERT(false);
}
}
map->clear();
}
}
static void
test(int argc, char *argv[])
{
if (argc < 1) {
UT_FATAL("usage: %s file-name", argv[0]);
}
const char *path = argv[1];
nvobj::pool<root> pop;
try {
pop = nvobj::pool<root>::create(path, LAYOUT,
200 * PMEMOBJ_MIN_POOL,
S_IWUSR | S_IRUSR);
pmem::obj::transaction::run(pop, [&] {
pop.root()->cons =
nvobj::make_persistent<persistent_map_type>();
});
} catch (pmem::pool_error &pe) {
UT_FATAL("!pool::create: %s %s", pe.what(), path);
}
insert_defrag_lookup_test(pop);
erase_defrag_concurrent_test(pop, false, 1);
erase_defrag_concurrent_test(pop, true, 1);
erase_defrag_concurrent_test(pop, false, 10);
erase_defrag_concurrent_test(pop, true, 10);
pop.close();
}
int
main(int argc, char *argv[])
{
return run_test([&] { test(argc, argv); });
}
|