1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// SPDX-License-Identifier: BSD-3-Clause
/* Copyright 2016-2020, Intel Corporation */
/*
* obj_cpp_mutex_posix.cpp -- cpp mutex test
*/
#include "pthread_common.hpp"
#include "unittest.hpp"
#include <libpmemobj++/persistent_ptr.hpp>
#include <libpmemobj++/pool.hpp>
#include <libpmemobj++/timed_mutex.hpp>
#include <libpmemobj/atomic_base.h>
#include <mutex>
#define LAYOUT "cpp"
namespace nvobj = pmem::obj;
namespace
{
/* pool root structure */
struct root {
nvobj::timed_mutex pmutex;
unsigned counter;
};
/* number of ops per thread */
const unsigned num_ops = 200;
/* the number of threads */
const unsigned num_threads = 30;
/* timeout for try_lock_for and try_lock_until methods */
const auto timeout = std::chrono::milliseconds(100);
/* loop trylock_for|until tests */
bool loop = false;
/*
* increment_pint -- (internal) test the mutex with an std::lock_guard
*/
static void *
increment_pint(void *arg)
{
auto proot = static_cast<nvobj::persistent_ptr<struct root> *>(arg);
for (unsigned i = 0; i < num_ops; ++i) {
std::lock_guard<nvobj::timed_mutex> lock((*proot)->pmutex);
((*proot)->counter)++;
}
return nullptr;
}
/*
* decrement_pint -- (internal) test the mutex with an std::unique_lock
*/
static void *
decrement_pint(void *arg)
{
auto proot = static_cast<nvobj::persistent_ptr<struct root> *>(arg);
std::unique_lock<nvobj::timed_mutex> lock((*proot)->pmutex);
for (unsigned i = 0; i < num_ops; ++i)
--((*proot)->counter);
lock.unlock();
return nullptr;
}
/*
* trylock_test -- (internal) test the trylock implementation
*/
static void *
trylock_test(void *arg)
{
auto proot = static_cast<nvobj::persistent_ptr<struct root> *>(arg);
for (;;) {
if ((*proot)->pmutex.try_lock()) {
((*proot)->counter)++;
(*proot)->pmutex.unlock();
break;
}
}
return nullptr;
}
/*
* trylock_for_test -- (internal) test the try_lock_for implementation
*/
static void *
trylock_for_test(void *arg)
{
using clk = std::chrono::steady_clock;
auto proot = static_cast<nvobj::persistent_ptr<struct root> *>(arg);
do {
auto t1 = clk::now();
if ((*proot)->pmutex.try_lock_for(timeout)) {
((*proot)->counter)++;
(*proot)->pmutex.unlock();
break;
} else {
auto t2 = clk::now();
auto t_diff = t2 - t1;
UT_ASSERT(t_diff >= timeout);
}
} while (loop);
return nullptr;
}
/*
* trylock_until_test -- (internal) test the try_lock_until implementation
*/
static void *
trylock_until_test(void *arg)
{
using clk = std::chrono::steady_clock;
auto proot = static_cast<nvobj::persistent_ptr<struct root> *>(arg);
do {
auto t1 = clk::now();
if ((*proot)->pmutex.try_lock_until(t1 + timeout)) {
--((*proot)->counter);
(*proot)->pmutex.unlock();
break;
} else {
auto t2 = clk::now();
auto t_diff = t2 - t1;
UT_ASSERT(t_diff >= timeout);
}
} while (loop);
return nullptr;
}
/*
* mutex_zero_test -- (internal) test the zeroing constructor
*/
void
mutex_zero_test(nvobj::pool<struct root> &pop)
{
PMEMoid raw_mutex;
pmemobj_alloc(
pop.handle(), &raw_mutex, sizeof(PMEMmutex), 1,
[](PMEMobjpool *pop, void *ptr, void *arg) -> int {
PMEMmutex *mtx = static_cast<PMEMmutex *>(ptr);
pmemobj_memset_persist(pop, mtx, 1, sizeof(*mtx));
return 0;
},
nullptr);
nvobj::timed_mutex *placed_mtx =
new (pmemobj_direct(raw_mutex)) nvobj::timed_mutex;
std::unique_lock<nvobj::timed_mutex> lck(*placed_mtx);
}
/*
* mutex_test -- (internal) launch worker threads to test the pmutex
*/
template <typename Worker>
void
timed_mtx_test(nvobj::pool<struct root> &pop, Worker function)
{
pthread_t threads[num_threads];
auto proot = pop.root();
for (unsigned i = 0; i < num_threads; ++i)
ut_pthread_create(&threads[i], nullptr, function, &proot);
for (unsigned i = 0; i < num_threads; ++i)
ut_pthread_join(&threads[i], nullptr);
}
}
static void
test(int argc, char *argv[])
{
if (argc != 2)
UT_FATAL("usage: %s file-name", argv[0]);
const char *path = argv[1];
nvobj::pool<struct root> pop;
try {
pop = nvobj::pool<struct root>::create(
path, LAYOUT, PMEMOBJ_MIN_POOL, S_IWUSR | S_IRUSR);
} catch (pmem::pool_error &pe) {
UT_FATAL("!pool::create: %s %s", pe.what(), path);
}
mutex_zero_test(pop);
timed_mtx_test(pop, increment_pint);
UT_ASSERTeq(pop.root()->counter, num_threads * num_ops);
timed_mtx_test(pop, decrement_pint);
UT_ASSERTeq(pop.root()->counter, 0);
timed_mtx_test(pop, trylock_test);
UT_ASSERTeq(pop.root()->counter, num_threads);
/* loop the next two tests */
loop = true;
timed_mtx_test(pop, trylock_until_test);
UT_ASSERTeq(pop.root()->counter, 0);
timed_mtx_test(pop, trylock_for_test);
UT_ASSERTeq(pop.root()->counter, num_threads);
loop = false;
pop.root()->pmutex.lock();
timed_mtx_test(pop, trylock_until_test);
UT_ASSERTeq(pop.root()->counter, num_threads);
timed_mtx_test(pop, trylock_for_test);
UT_ASSERTeq(pop.root()->counter, num_threads);
pop.root()->pmutex.unlock();
/* pmemcheck related persist */
pmemobj_persist(pop.handle(), &(pop.root()->counter),
sizeof(pop.root()->counter));
pop.close();
}
int
main(int argc, char *argv[])
{
return run_test([&] { test(argc, argv); });
}
|