File: test-isnanl.h

package info (click to toggle)
libprelude 1.0.0-11.4
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 24,188 kB
  • ctags: 17,614
  • sloc: ansic: 190,807; cpp: 38,769; xml: 30,141; sh: 11,668; makefile: 692; python: 481; awk: 341; yacc: 238; lex: 186; perl: 5
file content (150 lines) | stat: -rw-r--r-- 5,242 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* Test of isnanl() substitute.
   Copyright (C) 2007-2010 Free Software Foundation, Inc.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Written by Bruno Haible <bruno@clisp.org>, 2007.  */

#include <float.h>
#include <limits.h>

#include "nan.h"
#include "macros.h"

/* On HP-UX 10.20, negating 0.0L does not yield -0.0L.
   So we use minus_zero instead.
   IRIX cc can't put -0.0L into .data, but can compute at runtime.
   Note that the expression -LDBL_MIN * LDBL_MIN does not work on other
   platforms, such as when cross-compiling to PowerPC on MacOS X 10.5.  */
#if defined __hpux || defined __sgi
static long double
compute_minus_zero (void)
{
  return -LDBL_MIN * LDBL_MIN;
}
# define minus_zero compute_minus_zero ()
#else
long double minus_zero = -0.0L;
#endif

int
main ()
{
  #define NWORDS \
    ((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
  typedef union { unsigned int word[NWORDS]; long double value; }
          memory_long_double;

  /* Finite values.  */
  ASSERT (!isnanl (3.141L));
  ASSERT (!isnanl (3.141e30L));
  ASSERT (!isnanl (3.141e-30L));
  ASSERT (!isnanl (-2.718L));
  ASSERT (!isnanl (-2.718e30L));
  ASSERT (!isnanl (-2.718e-30L));
  ASSERT (!isnanl (0.0L));
  ASSERT (!isnanl (minus_zero));
  /* Infinite values.  */
  ASSERT (!isnanl (1.0L / 0.0L));
  ASSERT (!isnanl (-1.0L / 0.0L));
  /* Quiet NaN.  */
  ASSERT (isnanl (NaNl ()));

#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
  /* A bit pattern that is different from a Quiet NaN.  With a bit of luck,
     it's a Signalling NaN.  */
  {
#if defined __powerpc__ && LDBL_MANT_DIG == 106
    /* This is PowerPC "double double", a pair of two doubles.  Inf and Nan are
       represented as the corresponding 64-bit IEEE values in the first double;
       the second is ignored.  Manipulate only the first double.  */
    #undef NWORDS
    #define NWORDS \
      ((sizeof (double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
#endif

    memory_long_double m;
    m.value = NaNl ();
# if LDBL_EXPBIT0_BIT > 0
    m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1);
# else
    m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
      ^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
    m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
      |= (unsigned int) 1 << LDBL_EXPBIT0_BIT;
    ASSERT (isnanl (m.value));
  }
#endif

#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_))
/* Representation of an 80-bit 'long double' as an initializer for a sequence
   of 'unsigned int' words.  */
# ifdef WORDS_BIGENDIAN
#  define LDBL80_WORDS(exponent,manthi,mantlo) \
     { ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \
       ((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16),    \
       (unsigned int) (mantlo) << 16                                        \
     }
# else
#  define LDBL80_WORDS(exponent,manthi,mantlo) \
     { mantlo, manthi, exponent }
# endif
  { /* Quiet NaN.  */
    static memory_long_double x =
      { LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  {
    /* Signalling NaN.  */
    static memory_long_double x =
      { LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  /* The isnanl function should recognize Pseudo-NaNs, Pseudo-Infinities,
     Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in
       Intel IA-64 Architecture Software Developer's Manual, Volume 1:
       Application Architecture.
       Table 5-2 "Floating-Point Register Encodings"
       Figure 5-6 "Memory to Floating-Point Register Data Translation"
   */
  { /* Pseudo-NaN.  */
    static memory_long_double x =
      { LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  { /* Pseudo-Infinity.  */
    static memory_long_double x =
      { LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  { /* Pseudo-Zero.  */
    static memory_long_double x =
      { LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  { /* Unnormalized number.  */
    static memory_long_double x =
      { LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
  { /* Pseudo-Denormal.  */
    static memory_long_double x =
      { LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) };
    ASSERT (isnanl (x.value));
  }
#endif

  return 0;
}