1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
|
/*
This file is provided under a dual BSD/GPLv2 license. When using or
redistributing this file, you may do so under either license.
GPL LICENSE SUMMARY
Copyright(c) 2015 Intel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Contact Information:
Intel Corporation, www.intel.com
BSD LICENSE
Copyright(c) 2015 Intel Corporation.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <netdb.h> /* gethostbyname */
#include <malloc.h> /* malloc_usable_size */
#include "psm_user.h"
#include "psm2_hal.h"
#include "psm_am_internal.h"
#include "psm_mq_internal.h"
int psmi_ep_device_is_enabled(const psm2_ep_t ep, int devid);
struct psmi_epid_table psmi_epid_table;
/* Iterator to access the epid table.
* 'ep' can be NULL if remote endpoints from all endpoint handles are requested
*/
void psmi_epid_itor_init(struct psmi_eptab_iterator *itor, psm2_ep_t ep)
{
itor->i = 0;
itor->ep = ep;
pthread_mutex_lock(&psmi_epid_table.tablock);
}
void *psmi_epid_itor_next(struct psmi_eptab_iterator *itor)
{
int i;
struct psmi_epid_tabentry *e;
if (itor->i >= psmi_epid_table.tabsize)
return NULL;
for (i = itor->i; i < psmi_epid_table.tabsize; i++) {
e = &psmi_epid_table.table[i];
if (!e->entry || e->entry == EPADDR_DELETED)
continue;
if (itor->ep && e->ep != itor->ep)
continue;
itor->i = i + 1;
return e->entry;
}
itor->i = psmi_epid_table.tabsize; /* put at end of table */
return NULL;
}
void psmi_epid_itor_fini(struct psmi_eptab_iterator *itor)
{
pthread_mutex_unlock(&psmi_epid_table.tablock);
itor->i = 0;
}
#define mix64(a, b, c) \
{ \
a -= b; a -= c; a ^= (c>>43); \
b -= c; b -= a; b ^= (a<<9); \
c -= a; c -= b; c ^= (b>>8); \
a -= b; a -= c; a ^= (c>>38); \
b -= c; b -= a; b ^= (a<<23); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>35); \
b -= c; b -= a; b ^= (a<<49); \
c -= a; c -= b; c ^= (b>>11); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<18); \
c -= a; c -= b; c ^= (b>>22); \
}
psm2_error_t psmi_epid_init()
{
pthread_mutexattr_t attr;
psmi_epid_table.table = NULL, psmi_epid_table.tabsize = 0;
psmi_epid_table.tabsize_used = 0;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&psmi_epid_table.tablock, &attr);
pthread_mutexattr_destroy(&attr);
return PSM2_OK;
};
psm2_error_t psmi_epid_fini()
{
if (psmi_epid_table.table != NULL) {
psmi_free(psmi_epid_table.table);
psmi_epid_table.table = NULL;
}
psmi_epid_table.tabsize = 0;
psmi_epid_table.tabsize_used = 0;
return PSM2_OK;
}
PSMI_ALWAYS_INLINE(
uint64_t
hash_this(const psm2_ep_t ep, const psm2_epid_t epid))
{
uint64_t ep_i = (uint64_t) (uintptr_t) ep;
uint64_t epid_i = (uint64_t) epid;
uint64_t hash = 0x9e3779b97f4a7c13LL;
mix64(ep_i, epid_i, hash);
return hash;
}
PSMI_ALWAYS_INLINE(
void *
psmi_epid_lookup_inner(psm2_ep_t ep, psm2_epid_t epid, int remove))
{
uint64_t key = hash_this(ep, epid);
struct psmi_epid_tabentry *e;
void *entry = NULL;
int idx;
pthread_mutex_lock(&psmi_epid_table.tablock);
if (!psmi_epid_table.table)
goto ret;
idx = (int)(key % psmi_epid_table.tabsize);
while (psmi_epid_table.table[idx].entry != NULL) {
/* An epid can be added twice if there's more than one opened endpoint,
* but really we match on epid *and* on endpoint */
e = &psmi_epid_table.table[idx];
if (e->entry != EPADDR_DELETED && e->key == key) {
entry = e->entry;
if (remove)
psmi_epid_table.table[idx].entry =
EPADDR_DELETED;
goto ret;
}
if (++idx == psmi_epid_table.tabsize)
idx = 0;
}
ret:
pthread_mutex_unlock(&psmi_epid_table.tablock);
return entry;
}
void *psmi_epid_lookup(psm2_ep_t ep, psm2_epid_t epid)
{
void *entry = psmi_epid_lookup_inner(ep, epid, 0);
if (PSMI_EP_HOSTNAME != ep)
_HFI_VDBG("lookup of (%p,%" PRIx64 ") returns %p\n", ep, epid,
entry);
return entry;
}
void *psmi_epid_remove(psm2_ep_t ep, psm2_epid_t epid)
{
if (PSMI_EP_HOSTNAME != ep)
_HFI_VDBG("remove of (%p,%" PRIx64 ")\n", ep, epid);
return psmi_epid_lookup_inner(ep, epid, 1);
}
void psmi_epid_remove_all(psm2_ep_t ep)
{
size_t i;
struct psmi_epid_tabentry *e;
pthread_mutex_lock(&psmi_epid_table.tablock);
for (i = 0; i < psmi_epid_table.tabsize; i++) {
e = &psmi_epid_table.table[i];
if (e->entry == NULL || e->entry == EPADDR_DELETED)
continue;
if (e->ep == ep) {
/* unspecified fields implicitly zeroed */
*e = (struct psmi_epid_tabentry) {
.entry = EPADDR_DELETED
};
}
}
pthread_mutex_unlock(&psmi_epid_table.tablock);
}
psm2_error_t psmi_epid_add(psm2_ep_t ep, psm2_epid_t epid, void *entry)
{
uint64_t key;
int idx, i, newsz;
struct psmi_epid_tabentry *e;
psm2_error_t err = PSM2_OK;
if (PSMI_EP_HOSTNAME != ep)
_HFI_VDBG("add of (%p,%" PRIx64 ") with entry %p\n", ep, epid,
entry);
pthread_mutex_lock(&psmi_epid_table.tablock);
/* Leave this here, mostly for sanity and for the fact that the epid
* table is currently not used in the critical path */
if (++psmi_epid_table.tabsize_used >
(int)(psmi_epid_table.tabsize * PSMI_EPID_TABLOAD_FACTOR)) {
struct psmi_epid_tabentry *newtab;
newsz = psmi_epid_table.tabsize + PSMI_EPID_TABSIZE_CHUNK;
newtab = (struct psmi_epid_tabentry *)
psmi_calloc(ep, PER_PEER_ENDPOINT,
newsz, sizeof(struct psmi_epid_tabentry));
if (newtab == NULL) {
err = PSM2_NO_MEMORY;
goto fail;
}
if (psmi_epid_table.table) { /* rehash the table */
for (i = 0; i < psmi_epid_table.tabsize; i++) {
e = &psmi_epid_table.table[i];
if (e->entry == NULL)
continue;
/* When rehashing, mark deleted as free again */
if (e->entry == EPADDR_DELETED) {
psmi_epid_table.tabsize_used--;
continue;
}
idx = (int)(e->key % newsz);
while (newtab[idx].entry != NULL)
if (++idx == newsz)
idx = 0;
newtab[idx].entry = e->entry;
newtab[idx].key = e->key;
newtab[idx].ep = e->ep;
newtab[idx].epid = e->epid;
}
psmi_free(psmi_epid_table.table);
}
psmi_epid_table.table = newtab;
psmi_epid_table.tabsize = newsz;
}
key = hash_this(ep, epid);
idx = (int)(key % psmi_epid_table.tabsize);
e = &psmi_epid_table.table[idx];
while (e->entry && e->entry != EPADDR_DELETED) {
if (++idx == psmi_epid_table.tabsize)
idx = 0;
e = &psmi_epid_table.table[idx];
}
e->entry = entry;
e->key = key;
e->epid = epid;
e->ep = ep;
fail:
pthread_mutex_unlock(&psmi_epid_table.tablock);
return err;
}
static psmi_lock_t psmi_gethostname_lock;
static void __attribute__ ((constructor)) __psmi_gethostname_lock_constructor(void)
{
psmi_init_lock(&psmi_gethostname_lock);
}
char *psmi_gethostname(void)
{
static char hostname[80] = { '\0' };
char *c;
if (hostname[0] == '\0') {
PSMI_LOCK(psmi_gethostname_lock);
/* CRITICAL SECTION START */
if (hostname[0] == '\0') {
gethostname(hostname, sizeof(hostname));
hostname[sizeof(hostname) - 1] = '\0'; /* no guarantee of nul termination */
if ((c = strchr(hostname, '.')))
*c = '\0';
}
PSMI_UNLOCK(psmi_gethostname_lock);
/* CRITICAL SECTION END */
}
return hostname;
}
/*
* Hostname stuff. We really only register the network portion of the epid
* since all epids from the same nid are assumed to have the same hostname.
*/
psm2_error_t
psmi_epid_set_hostname(uint64_t nid, const char *hostname, int overwrite)
{
size_t hlen;
char *h;
psm2_error_t err = PSM2_OK;
if (hostname == NULL)
return PSM2_OK;
/* First see if a hostname already exists */
if ((h = psmi_epid_lookup(PSMI_EP_HOSTNAME, nid)) != NULL) {
if (!overwrite)
return PSM2_OK;
h = psmi_epid_remove(PSMI_EP_HOSTNAME, nid);
if (h != NULL) /* free the previous hostname if so exists */
psmi_free(h);
}
hlen = min(PSMI_EP_HOSTNAME_LEN, strlen(hostname) + 1);
h = (char *)psmi_malloc(PSMI_EP_NONE, PER_PEER_ENDPOINT, hlen);
if (h == NULL)
return PSM2_NO_MEMORY;
snprintf(h, hlen, "%s", hostname);
h[hlen - 1] = '\0';
err = psmi_epid_add(PSMI_EP_HOSTNAME, nid, h);
return err;
}
/* XXX These two functions are not thread safe, we'll use a rotating buffer
* trick whenever we need to make them thread safe */
const char *psmi_epaddr_get_hostname(psm2_epid_t epid)
{
static char hostnamebufs[4][PSMI_EP_HOSTNAME_LEN];
static int bufno;
uint64_t nid = psm2_epid_nid(epid);
char *h, *hostname;
hostname = hostnamebufs[bufno];
bufno = (bufno + 1) % 4;
/* First, if we have registered a host for this epid, just return that, or
* else try to return something with lid and context */
h = psmi_epid_lookup(PSMI_EP_HOSTNAME, nid);
if (h != NULL)
return h;
else {
snprintf(hostname, PSMI_EP_HOSTNAME_LEN - 1, "LID=%d:%d.%d",
(int)PSMI_EPID_GET_LID(epid),
(int)PSMI_EPID_GET_CONTEXT(epid),
(int)PSMI_EPID_GET_SUBCONTEXT(epid));
hostname[PSMI_EP_HOSTNAME_LEN - 1] = '\0';
return hostname;
}
}
/* This one gives the hostname with a lid */
const char *psmi_epaddr_get_name(psm2_epid_t epid)
{
static char hostnamebufs[4][PSMI_EP_HOSTNAME_LEN];
static int bufno;
char *h, *hostname;
hostname = hostnamebufs[bufno];
bufno = (bufno + 1) % 4;
h = psmi_epid_lookup(PSMI_EP_HOSTNAME, psm2_epid_nid(epid));
if (h == NULL)
return psmi_epaddr_get_hostname(epid);
else {
snprintf(hostname, PSMI_EP_HOSTNAME_LEN - 1,
"%s (LID=%d:%d.%d)", h,
(int)PSMI_EPID_GET_LID(epid),
(int)PSMI_EPID_GET_CONTEXT(epid),
(int)PSMI_EPID_GET_SUBCONTEXT(epid));
hostname[PSMI_EP_HOSTNAME_LEN - 1] = '\0';
}
return hostname;
}
/* Wrapper, in case we port to OS xyz that doesn't have sysconf */
uintptr_t psmi_getpagesize(void)
{
static uintptr_t pagesz = (uintptr_t) -1;
long sz;
if (pagesz != (uintptr_t) -1)
return pagesz;
sz = sysconf(_SC_PAGESIZE);
if (sz == -1) {
psmi_handle_error(PSMI_EP_NORETURN, PSM2_INTERNAL_ERR,
"Can't query system page size");
}
pagesz = (uintptr_t) sz;
return pagesz;
}
/* If PSM2_VERBOSE_ENV is set in the environment, we determine
* what its verbose level is and print the environment at "INFO"
* level if the environment's level matches the desired printlevel.
*/
static int psmi_getenv_verblevel = -1;
static int psmi_getenv_is_verblevel(int printlevel)
{
if (psmi_getenv_verblevel == -1) {
char *env = getenv("PSM2_VERBOSE_ENV");
if (env && *env) {
char *ep;
int val = (int)strtol(env, &ep, 0);
if (ep == env)
psmi_getenv_verblevel = 0;
else if (val == 2)
psmi_getenv_verblevel = 2;
else
psmi_getenv_verblevel = 1;
} else
psmi_getenv_verblevel = 0;
}
return (printlevel <= psmi_getenv_verblevel);
}
#define GETENV_PRINTF(_level, _fmt, ...) \
do { \
if ((_level & PSMI_ENVVAR_LEVEL_NEVER_PRINT) == 0) \
{ \
int nlevel = _level; \
if (psmi_getenv_is_verblevel(nlevel)) \
nlevel = 0; \
_HFI_ENVDBG(nlevel, _fmt, ##__VA_ARGS__); \
} \
} while (0)
int
MOCKABLE(psmi_getenv)(const char *name, const char *descr, int level,
int type, union psmi_envvar_val defval,
union psmi_envvar_val *newval)
{
int used_default = 0;
union psmi_envvar_val tval;
char *env = getenv(name);
#if _HFI_DEBUGGING
int ishex = (type == PSMI_ENVVAR_TYPE_ULONG_FLAGS ||
type == PSMI_ENVVAR_TYPE_UINT_FLAGS);
#endif
/* If we're not using the default, always reset the print
* level to '1' so the changed value gets seen at low
* verbosity */
#define _GETENV_PRINT(used_default, fmt, val, defval) \
do { \
if (used_default) \
GETENV_PRINTF(level, "%s%-25s %-40s =>%s" fmt \
"\n", level > 1 ? "*" : " ", name, \
descr, ishex ? "0x" : " ", val); \
else \
GETENV_PRINTF(1, "%s%-25s %-40s =>%s" \
fmt " (default was%s" fmt ")\n", \
level > 1 ? "*" : " ", name, descr, \
ishex ? " 0x" : " ", val, \
ishex ? " 0x" : " ", defval); \
} while (0)
/* _CONSUMED_ALL() is a macro which indicates if strtol() consumed all
of the input passed to it. */
#define _CONSUMED_ALL(CHAR_PTR) (((CHAR_PTR) != NULL) && (*(CHAR_PTR) == 0))
#define _CONVERT_TO_NUM(DEST,TYPE,STRTOL) \
do { \
char *ep; \
/* Avoid base 8 (octal) on purpose, so don't pass in 0 for radix */ \
DEST = (TYPE)STRTOL(env, &ep, 10); \
if (! _CONSUMED_ALL(ep)) { \
DEST = (TYPE)STRTOL(env, &ep, 16); \
if (! _CONSUMED_ALL(ep)) { \
used_default = 1; \
tval = defval; \
} \
} \
} while (0)
switch (type) {
case PSMI_ENVVAR_TYPE_YESNO:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else if (env[0] == 'Y' || env[0] == 'y')
tval.e_int = 1;
else if (env[0] == 'N' || env[0] == 'n')
tval.e_int = 0;
else {
char *ep;
tval.e_ulong = strtoul(env, &ep, 0);
if (ep == env) {
used_default = 1;
tval = defval;
} else if (tval.e_ulong != 0)
tval.e_ulong = 1;
}
_GETENV_PRINT(used_default, "%s", tval.e_long ? "YES" : "NO",
defval.e_int ? "YES" : "NO");
break;
case PSMI_ENVVAR_TYPE_STR:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else
tval.e_str = env;
_GETENV_PRINT(used_default, "%s", tval.e_str, defval.e_str);
break;
case PSMI_ENVVAR_TYPE_INT:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else {
_CONVERT_TO_NUM(tval.e_int,int,strtol);
}
_GETENV_PRINT(used_default, "%d", tval.e_int, defval.e_int);
break;
case PSMI_ENVVAR_TYPE_UINT:
case PSMI_ENVVAR_TYPE_UINT_FLAGS:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else {
_CONVERT_TO_NUM(tval.e_int,unsigned int,strtoul);
}
if (type == PSMI_ENVVAR_TYPE_UINT_FLAGS)
_GETENV_PRINT(used_default, "%x", tval.e_uint,
defval.e_uint);
else
_GETENV_PRINT(used_default, "%u", tval.e_uint,
defval.e_uint);
break;
case PSMI_ENVVAR_TYPE_LONG:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else {
_CONVERT_TO_NUM(tval.e_long,long,strtol);
}
_GETENV_PRINT(used_default, "%ld", tval.e_long, defval.e_long);
break;
case PSMI_ENVVAR_TYPE_ULONG_ULONG:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else {
_CONVERT_TO_NUM(tval.e_ulonglong,unsigned long long,strtoull);
}
_GETENV_PRINT(used_default, "%llu",
tval.e_ulonglong, defval.e_ulonglong);
break;
case PSMI_ENVVAR_TYPE_ULONG:
case PSMI_ENVVAR_TYPE_ULONG_FLAGS:
default:
if (!env || *env == '\0') {
tval = defval;
used_default = 1;
} else {
_CONVERT_TO_NUM(tval.e_ulong,unsigned long,strtoul);
}
if (type == PSMI_ENVVAR_TYPE_ULONG_FLAGS)
_GETENV_PRINT(used_default, "%lx", tval.e_ulong,
defval.e_ulong);
else
_GETENV_PRINT(used_default, "%lu", tval.e_ulong,
defval.e_ulong);
break;
}
#undef _GETENV_PRINT
*newval = tval;
return used_default;
}
MOCK_DEF_EPILOGUE(psmi_getenv);
/*
* Parsing int parameters set in string tuples.
* Output array int *vals should be able to store 'ntup' elements.
* Values are only overwritten if they are parsed.
* Tuples are always separated by colons ':'
*/
int psmi_parse_str_tuples(const char *string, int ntup, int *vals)
{
char *b = (char *)string;
char *e = b;
int tup_i = 0;
int n_parsed = 0;
char *buf = psmi_strdup(NULL, string);
psmi_assert_always(buf != NULL);
while (*e && tup_i < ntup) {
b = e;
while (*e && *e != ':')
e++;
if (e > b) { /* something to parse */
char *ep;
int len = e - b;
long int l;
strncpy(buf, b, len);
buf[len] = '\0';
l = strtol(buf, &ep, 0);
if (ep != buf) { /* successful conversion */
vals[tup_i] = (int)l;
n_parsed++;
}
}
if (*e == ':')
e++; /* skip delimiter */
tup_i++;
}
psmi_free(buf);
return n_parsed;
}
/*
* Memory footprint/usage mode.
*
* This can be used for debug or for separating large installations from
* small/medium ones. The default is to assume a medium installation. Large
* is not that much larger in memory footprint, but we make a conscious effort
* an consuming only the amount of memory we need.
*/
int psmi_parse_memmode(void)
{
union psmi_envvar_val env_mmode;
int used_default =
psmi_getenv("PSM2_MEMORY", "Memory usage mode (normal or large)",
PSMI_ENVVAR_LEVEL_USER, PSMI_ENVVAR_TYPE_STR,
(union psmi_envvar_val)"normal", &env_mmode);
if (used_default || !strcasecmp(env_mmode.e_str, "normal"))
return PSMI_MEMMODE_NORMAL;
else if (!strcasecmp(env_mmode.e_str, "min"))
return PSMI_MEMMODE_MINIMAL;
else if (!strcasecmp(env_mmode.e_str, "large") ||
!strcasecmp(env_mmode.e_str, "big"))
return PSMI_MEMMODE_LARGE;
else {
_HFI_PRDBG("PSM2_MEMORY env value %s unrecognized, "
"using 'normal' memory mode instead\n",
env_mmode.e_str);
return PSMI_MEMMODE_NORMAL;
}
}
static
const char *psmi_memmode_string(int mode)
{
psmi_assert(mode >= PSMI_MEMMODE_NORMAL && mode < PSMI_MEMMODE_NUM);
switch (mode) {
case PSMI_MEMMODE_NORMAL:
return "normal";
case PSMI_MEMMODE_MINIMAL:
return "minimal";
case PSMI_MEMMODE_LARGE:
return "large";
default:
return "unknown";
}
}
psm2_error_t
psmi_parse_mpool_env(const psm2_mq_t mq, int level,
const struct psmi_rlimit_mpool *rlim,
uint32_t *valo, uint32_t *chunkszo)
{
uint32_t val;
const char *env = rlim->env;
int mode = mq->memmode;
psm2_error_t err = PSM2_OK;
union psmi_envvar_val env_val;
psmi_assert_always(mode >= PSMI_MEMMODE_NORMAL
&& mode < PSMI_MEMMODE_NUM);
psmi_getenv(rlim->env, rlim->descr, rlim->env_level,
PSMI_ENVVAR_TYPE_UINT,
(union psmi_envvar_val)rlim->mode[mode].obj_max, &env_val);
val = env_val.e_uint;
if (val < rlim->minval || val > rlim->maxval) {
err = psmi_handle_error(NULL, PSM2_PARAM_ERR,
"Env. var %s=%u is invalid (valid settings in mode PSM2_MEMORY=%s"
" are inclusively between %u and %u)",
env, val, psmi_memmode_string(mode),
rlim->minval, rlim->maxval);
goto fail;
}
_HFI_VDBG("%s max=%u,chunk=%u (mode=%s(%u),min=%u,max=%u)\n",
env, val, rlim->mode[mode].obj_chunk,
psmi_memmode_string(mode), mode, rlim->minval, rlim->maxval);
*valo = val;
*chunkszo = rlim->mode[mode].obj_chunk;
fail:
return err;
}
uint64_t psmi_cycles_left(uint64_t start_cycles, int64_t timeout_ns)
{
if (timeout_ns < 0)
return 0ULL;
else if (timeout_ns == 0ULL || timeout_ns == ~0ULL)
return ~0ULL;
else {
uint64_t t_end = nanosecs_to_cycles(timeout_ns);
uint64_t t_now = get_cycles() - start_cycles;
if (t_now >= t_end)
return 0ULL;
else
return (t_end - t_now);
}
}
uint32_t psmi_get_ipv4addr()
{
struct hostent *he;
uint32_t addr = 0;
he = gethostbyname(psmi_gethostname());
if (he != NULL && he->h_addrtype == AF_INET && he->h_addr != NULL) {
memcpy(&addr, he->h_addr, sizeof(uint32_t));
return addr;
} else
return 0;
}
#define PSMI_EP_IS_PTR(ptr) ((ptr) != NULL && (ptr) < PSMI_EP_LOGEVENT)
void
psmi_syslog(psm2_ep_t ep, int to_console, int level, const char *format, ...)
{
va_list ap;
/* If we've never syslogged anything from this ep at the PSM level, make
* sure we log context information */
if (PSMI_EP_IS_PTR(ep) && !ep->did_syslog) {
char uuid_str[64];
ep->did_syslog = 1;
memset(&uuid_str, 0, sizeof(uuid_str));
psmi_uuid_unparse(ep->uuid, uuid_str);
hfi_syslog("PSM", 0, LOG_WARNING,
"uuid_key=%s,unit=%d,context=%d,subcontext=%d",
uuid_str,
psmi_hal_get_unit_id(ep->context.psm_hw_ctxt),
psmi_hal_get_context(ep->context.psm_hw_ctxt),
psmi_hal_get_subctxt(ep->context.psm_hw_ctxt));
}
va_start(ap, format);
hfi_vsyslog("PSM", to_console, level, format, ap);
va_end(ap);
}
/* Table of CRCs of all 8-bit messages. */
static uint32_t crc_table[256];
/* Flag: has the table been computed? Initially false. */
static int crc_table_computed;
/* Make the table for a fast CRC. */
static void make_crc_table(void)
{
uint32_t c;
int n, k;
for (n = 0; n < 256; n++) {
c = (uint32_t) n;
for (k = 0; k < 8; k++) {
if (c & 1)
c = 0xedb88320 ^ (c >> 1);
else
c = c >> 1;
}
crc_table[n] = c;
}
crc_table_computed = 1;
}
/* Update a running CRC with the bytes buf[0..len-1]--the CRC
* should be initialized to all 1's, and the transmitted value
* is the 1's complement of the final running CRC (see the
* crc() routine below)).
*/
static uint32_t update_crc(uint32_t crc, unsigned char *buf, int len)
{
uint32_t c = crc;
int n;
if_pf(!crc_table_computed)
make_crc_table();
for (n = 0; n < len; n++) {
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
}
return c;
}
/* Return the CRC of the bytes buf[0..len-1]. */
uint32_t psmi_crc(unsigned char *buf, int len)
{
return update_crc(0xffffffff, buf, len) ^ 0xffffffff;
}
struct psmi_faultinj_spec {
STAILQ_ENTRY(psmi_faultinj_spec) next;
char spec_name[PSMI_FAULTINJ_SPEC_NAMELEN];
unsigned long long num_faults;
unsigned long long num_calls;
struct drand48_data drand48_data;
int num;
int denom;
};
int psmi_multi_ep_enabled = 0;
void psmi_multi_ep_init()
{
union psmi_envvar_val env_fi;
psmi_getenv("PSM2_MULTI_EP", "PSM2 Multiple Endpoints (yes/no)",
PSMI_ENVVAR_LEVEL_USER, PSMI_ENVVAR_TYPE_YESNO,
PSMI_ENVVAR_VAL_NO, &env_fi);
psmi_multi_ep_enabled = env_fi.e_uint;
}
#ifdef PSM_FI
int psmi_faultinj_enabled = 0;
int psmi_faultinj_verbose = 0;
char *psmi_faultinj_outfile = NULL;
static struct psmi_faultinj_spec psmi_faultinj_dummy;
static STAILQ_HEAD(, psmi_faultinj_spec) psmi_faultinj_head =
STAILQ_HEAD_INITIALIZER(psmi_faultinj_head);
void psmi_faultinj_init()
{
union psmi_envvar_val env_fi;
psmi_getenv("PSM2_FI", "PSM Fault Injection (yes/no)",
PSMI_ENVVAR_LEVEL_HIDDEN, PSMI_ENVVAR_TYPE_YESNO,
PSMI_ENVVAR_VAL_NO, &env_fi);
psmi_faultinj_enabled = !!env_fi.e_uint;
if (psmi_faultinj_enabled) {
char *def = NULL;
if (!psmi_getenv
("PSM2_FI_TRACEFILE", "PSM Fault Injection output file",
PSMI_ENVVAR_LEVEL_HIDDEN, PSMI_ENVVAR_TYPE_STR,
(union psmi_envvar_val)def, &env_fi)) {
psmi_faultinj_outfile = psmi_strdup(NULL, env_fi.e_str);
}
}
return;
}
void psmi_faultinj_fini()
{
struct psmi_faultinj_spec *fi;
FILE *fp;
int do_fclose = 0;
if (!psmi_faultinj_enabled || psmi_faultinj_outfile == NULL)
return;
if (strncmp(psmi_faultinj_outfile, "stdout", 7) == 0)
fp = stdout;
else if (strncmp(psmi_faultinj_outfile, "stderr", 7) == 0)
fp = stderr;
else {
char *c = psmi_faultinj_outfile;
char buf[192];
int append = 0;
if (*c == '+') {
append = 1;
++c;
}
do_fclose = 1;
snprintf(buf, sizeof(buf) - 1, "%s.%s", c, hfi_get_mylabel());
buf[sizeof(buf) - 1] = '\0';
fp = fopen(buf, append ? "a" : "w");
}
if (fp != NULL) {
STAILQ_FOREACH(fi, &psmi_faultinj_head, next) {
fprintf(fp, "%s:%s PSM2_FI_%-12s %2.3f%% => "
"%2.3f%% %10lld faults/%10lld events\n",
__progname, hfi_get_mylabel(), fi->spec_name,
(double)fi->num * 100.0 / fi->denom,
(double)fi->num_faults * 100.0 / fi->num_calls,
fi->num_faults, fi->num_calls);
}
fflush(fp);
if (do_fclose)
fclose(fp);
}
psmi_free(psmi_faultinj_outfile);
return;
}
/*
* Intended to be used only once, not in the critical path
*/
struct psmi_faultinj_spec *psmi_faultinj_getspec(char *spec_name, int num,
int denom)
{
struct psmi_faultinj_spec *fi;
if (!psmi_faultinj_enabled)
return &psmi_faultinj_dummy;
STAILQ_FOREACH(fi, &psmi_faultinj_head, next) {
if (strcmp(fi->spec_name, spec_name) == 0)
return fi;
}
/* We got here, so no spec -- allocate one */
fi = psmi_malloc(PSMI_EP_NONE, UNDEFINED,
sizeof(struct psmi_faultinj_spec));
psmi_assert_always(fi != NULL);
strncpy(fi->spec_name, spec_name, PSMI_FAULTINJ_SPEC_NAMELEN - 1);
fi->spec_name[PSMI_FAULTINJ_SPEC_NAMELEN - 1] = '\0';
fi->num = num;
fi->denom = denom;
fi->num_faults = 0;
fi->num_calls = 0;
/*
* See if we get a hint from the environment.
* Format is
* <num:denom:initial_seed>
*
* By default, we chose the initial seed to be the 'pid'. If users need
* repeatability, they should set initial_seed to be the 'pid' when the
* error was observed or force the initial_seed to be a constant number in
* each running process. Using 'pid' is useful because core dumps store
* pids and our backtrace format does as well so if a crash is observed for
* a specific seed, programs can reuse the 'pid' to regenerate the same
* error condition.
*/
{
int fvals[3] = { num, denom, (int)getpid() };
union psmi_envvar_val env_fi;
char fvals_str[128];
char fname[128];
char fdesc[300];
snprintf(fvals_str, sizeof(fvals_str) - 1, "%d:%d:1", num,
denom);
fvals_str[sizeof(fvals_str) - 1] = '\0';
snprintf(fname, sizeof(fname) - 1, "PSM2_FI_%s", spec_name);
fname[sizeof(fname) - 1] = '\0';
snprintf(fdesc, sizeof(fdesc) - 1, "Fault Injection %s <%s>",
fname, fvals_str);
if (!psmi_getenv(fname, fdesc, PSMI_ENVVAR_LEVEL_HIDDEN,
PSMI_ENVVAR_TYPE_STR,
(union psmi_envvar_val)fvals_str, &env_fi)) {
/* not using default values */
int n_parsed =
psmi_parse_str_tuples(env_fi.e_str, 3, fvals);
if (n_parsed >= 1)
fi->num = fvals[0];
if (n_parsed >= 2)
fi->denom = fvals[1];
if (n_parsed >= 3)
srand48_r((long int) fvals[2], &fi->drand48_data);
}
}
STAILQ_INSERT_TAIL(&psmi_faultinj_head, fi, next);
return fi;
}
int psmi_faultinj_is_fault(struct psmi_faultinj_spec *fi)
{
if (!psmi_faultinj_enabled) /* never fault if disabled */
return 0;
if (fi->num == 0)
return 0;
fi->num_calls++;
long int rnum;
lrand48_r(&fi->drand48_data, &rnum);
if (((int) (rnum % INT_MAX)) % fi->denom <= fi->num) {
fi->num_faults++;
return 1;
} else
return 0;
}
#endif /* #ifdef PSM_FI */
/* For memory allocation, we kind of break the PSM error handling rules.
* If the caller gets NULL, it has to assume that the error has been handled
* and should always return PSM2_NO_MEMORY */
/*
* Log memory increments or decrements of type memstats_t.
*/
struct psmi_memtype_hdr {
struct {
uint64_t size:48;
uint64_t magic:8;
uint64_t type:8;
};
void *original_allocation;
};
struct psmi_stats_malloc psmi_stats_memory;
void psmi_log_memstats(psmi_memtype_t type, int64_t nbytes)
{
#define _add_max_total(type, nbytes) \
psmi_stats_memory.m_ ## type ## _total += (nbytes); \
psmi_stats_memory.m_ ## type ## _max = max( \
psmi_stats_memory.m_ ## type ## _total, \
psmi_stats_memory.m_ ## type ## _max);
switch (type) {
case PER_PEER_ENDPOINT:
_add_max_total(perpeer, nbytes);
break;
case NETWORK_BUFFERS:
_add_max_total(netbufs, nbytes);
break;
case DESCRIPTORS:
_add_max_total(descriptors, nbytes);
break;
case UNEXPECTED_BUFFERS:
_add_max_total(unexpbufs, nbytes);
break;
case STATS:
_add_max_total(stats, nbytes);
break;
case UNDEFINED:
_add_max_total(undefined, nbytes);
break;
default:
psmi_assert_always(type == TOTAL);
break;
}
_add_max_total(all, nbytes);
psmi_stats_memory.m_all_max++;
#undef _add_max_total
return;
}
// Memory stats will only be collected under debug builds
#ifdef PSM_DEBUG
#define psmi_stats_mask PSMI_STATSTYPE_MEMORY
#else
#define psmi_stats_mask 0
#endif
#ifdef malloc
#undef malloc
#endif
#ifdef PSM_HEAP_DEBUG
/* PSM HEAP DEBUG documentation:
In the following code, the acronym: 'HD' is short for "Heap Debug".
Each actual heap allocation will have a header and a trailer surrounding it,
and the header itself may have some vacant space preceding it due to alignment
needs:
0. This area is the actual return value of posix_memalign and is due to
alignment requirements. (This area does not exist for heap allocations
from malloc()).
1. HD HEADER
2. Actual allocation
3. HD TRAILER
malloc() / posix_memalign returns area 0 through 3 to the Heap Debug (HD) code,
then the HD code writes areas 1 and 3, and then returns a pointer to area 2 to
the caller. Thereafter, the HD code will inspect areas 1 and 3 of all heap
allocations to make sure they have retained their integrity.
Surrounding the actual allocation like this enables:
1. Checking for heap overrun / underrun of all allocations.
2. Checking for double frees.
3. Use of an area that has been freed.
4. Identifying orphaned heap allocations.
Constant no-mans-land written to areas that no-one should be writing to:
*/
#define HD_NO_MANS_LAND -15
/* The following is the declaration of the HD header. */
/* Heap debug header magic number type: */
typedef char HD_Hdr_Magic_Type[8];
typedef struct HD_Header_Struct
{
HD_Hdr_Magic_Type magic1; /* Magic number to ensure this
allocation has integrity.
(guards against heap
overrun from above). */
const char *allocLoc; /* Source file name/line
number where this heap
allocation was made. */
const char *freeLoc; /* Source filename/line number
where this heap allocation
was freed. */
struct HD_Header_Struct *nextHD_header; /* Creates a singly-linked
list of all heap
allocations. */
uint64_t sizeOfAlloc; /* size of this heap
allocation. */
void *systemAlloc; /* The actual return value
from malloc()/posix_memaligh(). */
uint64_t systemAllocSize;/* The size that is actually allocated
by malloc()/posix_memalign(). */
HD_Hdr_Magic_Type magic2; /* Second magic number to
ensure this allocation
has integrity.
(guards against heap
underrun from the actual
allocation that follows). */
} __attribute__ ((packed)) HD_Header_Type;
typedef struct HD_free_list_struct
{
HD_Header_Type *freedStuct;
struct HD_free_list_struct *next_free_struct;
} HD_Free_Struct_Type;
static HD_Free_Struct_Type *HD_free_list_root = NULL;
static HD_Free_Struct_Type **HD_free_list_bottom = &HD_free_list_root;
typedef char HD_Trlr_Magic_Type[16];
static const HD_Hdr_Magic_Type HD_HDR_MGC_1 = "Eric";
static const HD_Hdr_Magic_Type HD_HDR_MGC_2 = "Emily";
static const HD_Trlr_Magic_Type HD_TRLR_MGC = "Erin&Elaine";
/* Convert a pointer of an actual allocation to a pointer to its HD header: */
static inline HD_Header_Type *HD_AA_TO_HD_HDR(void *aa)
{
char *p = (char*)aa;
return (HD_Header_Type*)(p - sizeof(HD_Header_Type));
}
/* Convert a pointer to an HD header to the actual allocation: */
static inline void *HD_HDR_TO_AA(HD_Header_Type *phdHdr)
{
char *p = (char*)phdHdr;
return p + sizeof(HD_Header_Type);
}
/* Get the address of the trailer that follows the actual allocation: */
static inline void *HD_GET_HD_TRLR(HD_Header_Type *phdr)
{
char *p = (char*)HD_HDR_TO_AA(phdr);
return p + phdr->sizeOfAlloc;
}
static HD_Header_Type * HD_root_of_list = NULL; /* Root of singly linked list
of all heap allocations */
static HD_Header_Type **HD_end_of_list = &HD_root_of_list; /* Pointer to the
last pointer of the singly linked list of all heap allocations. */
/* Number of allocations in the list. Maintained to assert the integrity
of the singly linked list of heap allocations. */
static int n_allocations = 0;
/* HD_check_one_struct() checks one heap allocation for integrity. */
static inline void HD_check_one_struct(HD_Header_Type *p, int checkAA,const char *curloc)
{
int s=0;
/* First check the magic values in the header and trailer: */
s |= memcmp(p->magic1,HD_HDR_MGC_1,sizeof(HD_HDR_MGC_1)) ? 1 : 0;
s |= memcmp(p->magic2,HD_HDR_MGC_2,sizeof(HD_HDR_MGC_2)) ? 2 : 0;
s |= memcmp(HD_GET_HD_TRLR(p),HD_TRLR_MGC,sizeof(HD_TRLR_MGC)) ? 4 : 0;
if (s != 0)
{
fprintf(stderr,"header/trailer error: checking location: %s, s: %d, p: %p, "
"p->allocLoc: %s\n",curloc,s,p,p->allocLoc);
fprintf(stderr,"actual allocation starts at: %p, length: %" PRIu64 "\n", (char*)HD_HDR_TO_AA(p),p->sizeOfAlloc);
fflush(0);
abort();
}
/* Next, check the area between systemAlloc and the start of the header */
signed char *pchr = (signed char *)p->systemAlloc;
while (pchr < (signed char*)p)
{
psmi_assert_always(*pchr == (signed char) HD_NO_MANS_LAND);
pchr++;
}
/* Lastly, check the actual allocation area if directed to do so: */
if (checkAA)
{
uint64_t i;
signed char *pchr = HD_HDR_TO_AA(p);
for (i=0;i < p->sizeOfAlloc;i++)
if (pchr[i] != (signed char) HD_NO_MANS_LAND)
{
fprintf(stderr,
"use after free; ptr: %p,\n"
" allocated from: %s,\n"
" validated from: %s\n"
" freed from: %s\n",
pchr+i,p->allocLoc,curloc,p->freeLoc);
fflush(0);
psmi_assert_always(0);
}
}
}
/* _psmi_heapdebug_val_heapallocs() walks the singly linked list and inspects all
* heap allocations to ensure all of them have integrity still. */
void _psmi_heapdebug_val_heapallocs(const char *curloc)
{
/* first check current allocation list: */
HD_Header_Type *p = HD_root_of_list;
int cnt = 0;
while (p)
{
HD_check_one_struct(p,0,curloc);
p = p->nextHD_header;
cnt++;
}
psmi_assert_always(cnt == n_allocations);
/* Next check free list */
HD_Free_Struct_Type *pfreestruct = HD_free_list_root;
while (pfreestruct)
{
HD_check_one_struct(pfreestruct->freedStuct,1,curloc);
pfreestruct = pfreestruct->next_free_struct;
}
}
/* psmi_heapdebug_finalize() validates the heap and then emits all of the allocations to stdout.
to help debug heap memory leaks. */
void psmi_heapdebug_finalize(void)
{
/* First validate the existing heap allocations: */
psmi_heapdebug_val_heapallocs();
printf("orphaned heap allocations: %d\n", n_allocations);
if (n_allocations > 0)
{
/* Now, emit all of the alloations to stdout. */
HD_Header_Type *p = HD_root_of_list;
while (p)
{
printf("orphaned heap allocation: %p allocated at: %s, size: %lu\n",
p, p->allocLoc, p->sizeOfAlloc);
p = p->nextHD_header;
}
fflush(0);
/* Abort if any allocations still exist: */
abort();
}
}
/* hd_est_hdr_trlr() establishes the new allocation to the singly linked list, and adds
* the header and trailer to the allocation. Lastly, it validates the existing singly-linked
* list for integrity. */
static void hd_est_hdr_trlr(HD_Header_Type *hd_alloc,
void *systemAlloc,
uint64_t systemSize,
uint64_t actualSize,
const char *curloc)
{
/* First, write HD_NO_MANS_LAND to the entire allocation: */
memset(systemAlloc,HD_NO_MANS_LAND,systemSize);
/* Write the HD header info: */
memcpy(hd_alloc->magic1,HD_HDR_MGC_1,sizeof(HD_HDR_MGC_1));
hd_alloc->allocLoc = curloc;
hd_alloc->freeLoc = NULL;
hd_alloc->nextHD_header = NULL;
hd_alloc->sizeOfAlloc = actualSize;
hd_alloc->systemAlloc = systemAlloc;
hd_alloc->systemAllocSize = systemSize;
memcpy(hd_alloc->magic2,HD_HDR_MGC_2,sizeof(HD_HDR_MGC_2));
memcpy(HD_GET_HD_TRLR(hd_alloc),HD_TRLR_MGC,sizeof(HD_TRLR_MGC));
*HD_end_of_list = hd_alloc;
HD_end_of_list = &hd_alloc->nextHD_header;
n_allocations++;
psmi_heapdebug_val_heapallocs();
}
/* hd_malloc() is the heap debug version of malloc that will create the header and trailer
* and link the allocation into the singly linked list. */
static inline void *hd_malloc(size_t sz, const char *curloc)
{
const uint64_t wholeSize = sizeof(HD_Header_Type) + sz + sizeof(HD_TRLR_MGC);
HD_Header_Type *hd_alloc = (HD_Header_Type*)malloc(wholeSize);
hd_est_hdr_trlr(hd_alloc,hd_alloc,wholeSize,sz,curloc);
return HD_HDR_TO_AA(hd_alloc);
}
/* hd_memalign() is the heap debug version of posix_memalign(). */
static inline int hd_memalign(void **ptr,uint64_t alignment, size_t sz, const char *curloc)
{
void *systemAlloc = NULL;
const uint64_t alignMask = alignment - 1;
uint64_t systemSize = sizeof(HD_Header_Type) + alignMask + sz + sizeof(HD_TRLR_MGC);
int rv = posix_memalign(&systemAlloc,alignment,systemSize);
char *actualAlloc = NULL;
const char *endOfSystemAlloc = ((char*)systemAlloc) + systemSize;
if (rv)
return rv;
uint64_t actualAllocu64 = (uint64_t) systemAlloc;
actualAllocu64 += sizeof(HD_Header_Type) + alignMask;
actualAllocu64 &= ~ alignMask;
actualAlloc = (char*)actualAllocu64;
psmi_assert_always((actualAllocu64 & alignMask) == 0);
psmi_assert_always((actualAlloc+sz+sizeof(HD_TRLR_MGC)) <= endOfSystemAlloc);
psmi_assert_always((actualAlloc - (char*)systemAlloc) >= sizeof(HD_Header_Type));
hd_est_hdr_trlr(HD_AA_TO_HD_HDR(actualAlloc),systemAlloc,systemSize,sz,curloc);
*ptr = actualAlloc;
return rv;
}
/* hd_free() is the heap debug version of free(). First, hd_free() ensures that the ptr to be
* freed in fact is known by the HD code. Next, hd_free() removes the ptr from the list. Then,
* hd_free scribbles to the ptr's area and actually frees the heap space. */
static inline void hd_free(void *ptr,const char *curloc)
{
HD_Header_Type *hd_alloc = HD_AA_TO_HD_HDR(ptr);
HD_Header_Type *p = HD_root_of_list, *q = NULL;
psmi_heapdebug_val_heapallocs();
while (p)
{
if (p == hd_alloc)
{
/* first, fix the next pointers: */
if (q)
{
q->nextHD_header = p->nextHD_header;
}
else
{
psmi_assert_always(p == HD_root_of_list);
HD_root_of_list = p->nextHD_header;
}
/* Now, handle the case of removing the last entry in the list. */
if (&p->nextHD_header == HD_end_of_list)
{
if (q)
{
q->nextHD_header = NULL;
HD_end_of_list = &q->nextHD_header;
}
else
{
HD_root_of_list = NULL;
HD_end_of_list = &HD_root_of_list;
}
}
/* Scribble to the actual allocation to make further access to the heap
area unusable. */
n_allocations--;
memset(HD_HDR_TO_AA(hd_alloc),HD_NO_MANS_LAND,hd_alloc->sizeOfAlloc);
hd_alloc->freeLoc = curloc;
/* Add this allocation to the free list. */
HD_Free_Struct_Type *pfreestruct = (HD_Free_Struct_Type*)malloc(sizeof(HD_Free_Struct_Type));
*HD_free_list_bottom = pfreestruct;
HD_free_list_bottom = &pfreestruct->next_free_struct;
pfreestruct->freedStuct = hd_alloc;
pfreestruct->next_free_struct = NULL;
psmi_heapdebug_val_heapallocs();
return;
}
q = p;
p = p->nextHD_header;
}
/* trying to free a heap allocation that we did not allocate. */
psmi_assert_always(0);
}
size_t hd_malloc_usable_size(void *ptr,const char *curloc)
{
HD_Header_Type *hd_alloc = HD_AA_TO_HD_HDR(ptr);
return hd_alloc->systemAllocSize;
}
#endif
#ifdef PSM_HEAP_DEBUG
/* For HD code, we retarget the malloc, memaligh and free calls to the hd versions
* of the code. */
#define my_malloc(SZ,CURLOC) hd_malloc(SZ,CURLOC)
#define my_memalign(PTR,ALIGN,SZ,CURLOC) hd_memalign(PTR,ALIGN,SZ,CURLOC)
#define my_free(PTR,CURLOC) hd_free(PTR,CURLOC)
#define my_malloc_usable_size(PTR,CURLOC) hd_malloc_usable_size(PTR,CURLOC)
#else
/* For non-HD code, we target the code to the usual functions: */
#define my_malloc(SZ,CURLOC) malloc(SZ)
#define my_memalign(PTR,ALIGN,SZ,CURLOC) posix_memalign(PTR,ALIGN,SZ)
#define my_free(PTR,CURLOC) free(PTR)
#define my_malloc_usable_size(PTR,CURLOC) malloc_usable_size(PTR)
#endif
void *psmi_malloc_internal(psm2_ep_t ep, psmi_memtype_t type,
size_t sz, const char *curloc)
{
size_t newsz = sz;
void *newa;
if_pf(psmi_stats_mask & PSMI_STATSTYPE_MEMORY)
newsz += sizeof(struct psmi_memtype_hdr);
newa = my_malloc(newsz,curloc);
if (newa == NULL) {
psmi_handle_error(PSMI_EP_NORETURN, PSM2_NO_MEMORY,
"Out of memory for malloc at %s", curloc);
return NULL;
}
if_pf(psmi_stats_mask & PSMI_STATSTYPE_MEMORY) {
struct psmi_memtype_hdr *hdr = (struct psmi_memtype_hdr *)newa;
hdr->size = newsz;
hdr->type = type;
hdr->magic = 0x8c;
hdr->original_allocation = newa;
psmi_log_memstats(type, newsz);
newa = (void *)(hdr + 1);
/* _HFI_INFO("alloc is %p\n", newa); */
}
return newa;
}
void *psmi_realloc_internal(psm2_ep_t ep, psmi_memtype_t type,
void *ptr, size_t nsz, const char *curloc)
{
if (ptr)
{
size_t existingSize = psmi_malloc_usable_size_internal(ptr,curloc);
if (nsz > existingSize)
{
void *newPtr = psmi_malloc_internal(ep,type,nsz,curloc);
memcpy(newPtr,ptr,existingSize);
psmi_free_internal(ptr,curloc);
return newPtr;
}
else
/* We will not support shrinking virtual space
for performance reasons. */
return ptr;
}
else
return psmi_malloc_internal(ep,type,nsz,curloc);
}
#ifdef memalign
#undef memalign
#endif
void *psmi_memalign_internal(psm2_ep_t ep, psmi_memtype_t type,
size_t alignment, size_t sz, const char *curloc)
{
size_t newsz = sz;
void *newa;
int ret, preambleSize = 0;
if_pf(psmi_stats_mask & PSMI_STATSTYPE_MEMORY)
{
if (sizeof(struct psmi_memtype_hdr) > alignment)
{
int n = sizeof(struct psmi_memtype_hdr) / alignment;
int r = sizeof(struct psmi_memtype_hdr) % alignment;
if (r)
n++;
preambleSize = n * alignment;
}
else
preambleSize = alignment;
newsz += preambleSize;
}
ret = my_memalign(&newa, alignment, newsz, curloc);
if (ret) {
psmi_handle_error(PSMI_EP_NORETURN, PSM2_NO_MEMORY,
"Out of memory for malloc at %s", curloc);
return NULL;
}
if_pf(psmi_stats_mask & PSMI_STATSTYPE_MEMORY) {
void *rv = newa + preambleSize;
struct psmi_memtype_hdr *hdr = (struct psmi_memtype_hdr *)(rv-sizeof(struct psmi_memtype_hdr));
hdr->size = newsz;
hdr->type = type;
hdr->magic = 0x8c;
hdr->original_allocation = newa;
psmi_log_memstats(type, newsz);
newa = rv;
/* _HFI_INFO("alloc is %p\n", newa); */
}
return newa;
}
#ifdef calloc
#undef calloc
#endif
void *psmi_calloc_internal(psm2_ep_t ep, psmi_memtype_t type, size_t nelem,
size_t elemsz, const char *curloc)
{
void *newa = psmi_malloc_internal(ep, type, nelem * elemsz, curloc);
if (newa == NULL) /* error handled above */
return NULL;
memset(newa, 0, nelem * elemsz);
return newa;
}
#ifdef strdup
#undef strdup
#endif
void *psmi_strdup_internal(psm2_ep_t ep, const char *string, const char *curloc)
{
size_t len = strlen(string) + 1;
void *newa = psmi_malloc_internal(ep, UNDEFINED, len, curloc);
if (newa == NULL)
return NULL;
memcpy(newa, string, len); /* copy with \0 */
return newa;
}
#ifdef free
#undef free
#endif
void MOCKABLE(psmi_free_internal)(void *ptr,const char *curloc)
{
if_pf(psmi_stats_mask & PSMI_STATSTYPE_MEMORY) {
struct psmi_memtype_hdr *hdr =
(struct psmi_memtype_hdr *)ptr - 1;
/* _HFI_INFO("hdr is %p, ptr is %p\n", hdr, ptr); */
psmi_memtype_t type = hdr->type;
int64_t size = hdr->size;
int magic = (int)hdr->magic;
psmi_log_memstats(type, -size);
psmi_assert_always(magic == 0x8c);
ptr = hdr->original_allocation;
}
my_free(ptr,curloc);
}
MOCK_DEF_EPILOGUE(psmi_free_internal);
#ifdef malloc_usable_size
#undef malloc_usable_size
#endif
size_t psmi_malloc_usable_size_internal(void *ptr, const char *curLoc)
{
return my_malloc_usable_size(ptr,curLoc);
}
PSMI_ALWAYS_INLINE(
psm2_error_t
psmi_coreopt_ctl(const void *core_obj, int optname,
void *optval, uint64_t *optlen, int get))
{
psm2_error_t err = PSM2_OK;
switch (optname) {
case PSM2_CORE_OPT_DEBUG:
/* Sanity check length */
if (*optlen < sizeof(unsigned)) {
err = psmi_handle_error(NULL,
PSM2_PARAM_ERR,
"Option value length error");
*optlen = sizeof(unsigned);
return err;
}
if (get) {
*((unsigned *)optval) = hfi_debug;
} else
hfi_debug = *(unsigned *)optval;
break;
case PSM2_CORE_OPT_EP_CTXT:
{
/* core object is epaddr */
psm2_epaddr_t epaddr = (psm2_epaddr_t) core_obj;
/* Sanity check epaddr */
if (!epaddr) {
return psmi_handle_error(NULL,
PSM2_PARAM_ERR,
"Invalid endpoint address");
}
/* Sanity check length */
if (*optlen < sizeof(unsigned long)) {
err = psmi_handle_error(NULL,
PSM2_PARAM_ERR,
"Option value length error");
*optlen = sizeof(void *);
return err;
}
if (get) {
*((unsigned long *)optval) =
(unsigned long)epaddr->usr_ep_ctxt;
} else
epaddr->usr_ep_ctxt = optval;
}
break;
default:
/* Unknown/unrecognized option */
err = psmi_handle_error(NULL,
PSM2_PARAM_ERR,
"Unknown PSM2_CORE option %u.",
optname);
break;
}
return err;
}
psm2_error_t psmi_core_setopt(const void *core_obj, int optname,
const void *optval, uint64_t optlen)
{
return psmi_coreopt_ctl(core_obj, optname, (void *)optval, &optlen, 0);
}
psm2_error_t psmi_core_getopt(const void *core_obj, int optname,
void *optval, uint64_t *optlen)
{
return psmi_coreopt_ctl(core_obj, optname, optval, optlen, 1);
}
/* PSM AM component option handling */
PSMI_ALWAYS_INLINE(
psm2_error_t
psmi_amopt_ctl(const void *am_obj, int optname,
void *optval, uint64_t *optlen, int get))
{
psm2_error_t err = PSM2_OK;
/* AM object is a psm2_epaddr (or NULL for global minimum sz) */
/* psm2_epaddr_t epaddr = (psm2_epaddr_t) am_obj; */
/* All AM options are read-only. */
if (!get) {
return err =
psmi_handle_error(PSMI_EP_LOGEVENT, PSM2_OPT_READONLY,
"Attempted to set read-only option value");
}
/* Sanity check length -- all AM options are uint32_t. */
if (*optlen < sizeof(uint32_t)) {
*optlen = sizeof(uint32_t);
return err = psmi_handle_error(PSMI_EP_LOGEVENT, PSM2_PARAM_ERR,
"Option value length error");
}
switch (optname) {
case PSM2_AM_OPT_FRAG_SZ:
*((uint32_t *) optval) = psmi_am_parameters.max_request_short;
break;
case PSM2_AM_OPT_NARGS:
*((uint32_t *) optval) = psmi_am_parameters.max_nargs;
break;
case PSM2_AM_OPT_HANDLERS:
*((uint32_t *) optval) = psmi_am_parameters.max_handlers;
break;
default:
err =
psmi_handle_error(NULL, PSM2_PARAM_ERR,
"Unknown PSM2_AM option %u.", optname);
}
return err;
}
psm2_error_t psmi_am_setopt(const void *am_obj, int optname,
const void *optval, uint64_t optlen)
{
return psmi_amopt_ctl(am_obj, optname, (void *)optval, &optlen, 0);
}
psm2_error_t psmi_am_getopt(const void *am_obj, int optname,
void *optval, uint64_t *optlen)
{
return psmi_amopt_ctl(am_obj, optname, optval, optlen, 1);
}
#ifdef PSM_LOG
#include <execinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fnmatch.h>
#include "ptl_ips/ips_proto_header.h"
/* A treeNode is used to store the list of Function Name Lists that
are passed to the PSM_LOG facility via environment variables.
See psm_log.h for more information.
Note that treeNode is a node in a binary tree data structure. */
typedef struct _treeNode
{
const char *name;
int line1,line2;
struct _treeNode *left,*right;
} treeNode;
/* An epmTreeNode is used to track the number of protocol packets
that are send/recevied, for a given opcode, and source epid
to another epid. */
typedef struct _epmTreeNode
{
int opcode,count,txrx;
uint64_t fromepid,toepid;
struct _epmTreeNode *left,*right;
} epmTreeNode;
/* given a line range: [*line1 .. *line2], and another line, line
'join' the line range to the new line if the line immediately abuts
the line range. The new line does not abut the existing range,
return 0. Else, return 1.
For example, take the line range [ 20 .. 30 ] and the line: 19.
Since 19 comes immediately before 20, the line range can be joined
resulting in the line rage: [ 19 .. 30 ]. The function returns 1 for this
case.
The following other examples gives the new line range given the new line and
range [ 20 .. 30 ], and gives the return value:
31 [ 20 .. 31 ] 1
18 [ 20 .. 30 ] 0
32 [ 20 .. 30 ] 0
25 [ 20 .. 30 ] 1 */
static int joinOverlap(int *line1,int *line2,int line)
{
long long ll_line = line;
if (ll_line+1 >= *line1 && ll_line-1 <= *line2)
{
*line1 = min(*line1,line);
*line2 = max(*line2,line);
return 1;
}
return 0;
}
/* given two line ranges, determine the range that encompasses both line ranges
if an overlap has occurred. Returns 0 if the two ranges do not overlap and
do not abutt.
Some examples, if line1=20 and line2=30
[20 30] [20 30] 2
[19 30] [19 30] 2
[19 20] [19 30] 2
[10 15] [20 30] 0
[40 50] [20 30] 0 */
static int joinOverlapRange(int *line1,int *line2,int l1,int l2)
{
return joinOverlap(line1,line2,l1) + joinOverlap(line1,line2,l2);
}
/* inserts a new treeNode into the FNL tree, or, merges the lines that are already
present in the tree. */
static void insertNodeInTree(treeNode **root,const char *name,int line1,int line2)
{
if (*root)
{
int c = strcmp(name,(*root)->name);
if (c < 0)
insertNodeInTree(&((*root)->left),name,line1,line2);
else if (c > 0)
insertNodeInTree(&((*root)->right),name,line1,line2);
else
{
if (joinOverlapRange(&(*root)->line1,&(*root)->line2,line1,line2))
return;
else if (line1 < (*root)->line1)
insertNodeInTree(&((*root)->left),name,line1,line2);
else if (line2 > (*root)->line2)
insertNodeInTree(&((*root)->right),name,line1,line2);
else psmi_assert_always(0); /* should never happen. */
}
}
else
{
*root = malloc(sizeof(treeNode));
(*root)->name = strdup(name);
(*root)->line1 = line1;
(*root)->line2 = line2;
(*root)->left = (*root)->right = NULL;
}
}
/* Returns -1 if the data in the node is less than the data supplied as parameter, else
Returns 1 if the data in the node is greater than the data supplied as parameter, else
Returns 0.
*/
static int compareEpmNode(epmTreeNode *node,int opcode,int txrx,uint64_t fromepid,uint64_t toepid)
{
#define COMPARE_ONE(X) if (node->X != X) return node->X < X ? -1 : 1
COMPARE_ONE(opcode);
COMPARE_ONE(txrx);
COMPARE_ONE(fromepid);
COMPARE_ONE(toepid);
return 0;
}
/* Inserts a new node in the tree corresponding to the parameters, or, retrieves the node in the tree.
In either case, this code returns a pointer to the count in the node. */
static int *insertNodeInEpmTree(epmTreeNode **root,int opcode,int txrx,uint64_t fromepid,uint64_t toepid)
{
if (*root)
{
int a = compareEpmNode((*root),opcode,txrx,fromepid,toepid);
if (a < 0)
return insertNodeInEpmTree(&((*root)->left),opcode,txrx,fromepid,toepid);
else if (a > 0)
return insertNodeInEpmTree(&((*root)->right),opcode,txrx,fromepid,toepid);
else
return &((*root)->count);
}
else
{
*root = malloc(sizeof(epmTreeNode));
(*root)->opcode = opcode;
(*root)->txrx = txrx;
(*root)->count = 0;
(*root)->fromepid = fromepid;
(*root)->toepid = toepid;
(*root)->left = (*root)->right = NULL;
return &((*root)->count);
}
}
/* returns 0, if the node is present, non-zero if it is absent. */
static int lookupNodeInTree(const treeNode *root,const char *name,int line)
{
if (root)
{
int c = strcmp(name,root->name);
if (c < 0)
return lookupNodeInTree(root->left,name,line);
else if (c > 0)
return lookupNodeInTree(root->right,name,line);
else
{
if (line < root->line1)
return lookupNodeInTree(root->left,name,line);
else if (line > root->line2)
return lookupNodeInTree(root->right,name,line);
else /* line must be >= root->line1 and line must be <= root->line2. */
return 0;
}
}
else
{
return 1;
}
}
/* Declare a prototype for a parserFunc - referenced in the following code: */
typedef void parserFunc(char *,int,int,void *);
/* breaks down a string into 'c'-delimited substrings, and calls the parser func for each substring. */
static void parseString(char *ps,char c,parserFunc pf,void *ctx)
{
int idx,n=0;
char *p;
/* first, count the number of instances of c in ps, for use by the parser function: */
for (idx=0;ps[idx];idx++)
if (ps[idx] == c)
n++;
/* next, break down ps into 'c'-delimited substrings, and call parser function, pf for each substring: */
for (idx=0,p=ps;p && *p;idx++)
{
char *t = strchr(p,c);
if (!t)
{
break;
}
else
{
*t = 0;
pf(p,idx,n,ctx);
p = t+1;
}
}
/* finally, call pf on the final substring. */
pf(p,idx,n,ctx);
}
/* fncNameCtx is the context used while parsing FNL's (see psm_log.h for more info) from the environment: */
typedef struct
{
const char *currentFuncName;
int firstLineNumber;
treeNode **root;
} funcNameCtx;
/* This is the start of the parser code for parsing FNL's. Here is the grammar:
An FNL is a 'Function Name List' that is defined by the following grammar:
# A LINE1 is either a single line number of a range of line numbers:
(1) LINE1 :: lineNumber |
(2) lineNumber1 '-' lineNumber2
# LINES is a list of LINE1's separated by commas:
(3) LINES :: LINE1 |
(4) LINE1 ',' LINES
# An FN is either a function name, or a function name with a list of lines:
(5) FN :: functionName |
(6) functionName ';' LINES
# A FNL is a list of FN's separated by colons:
(7) FNL :: FN |
(8) FN ':' FNL
# Examples:
foo:bar the two functions foo and bar
foo;1-10 lines 1 to 10 of function foo.
bar;1,3,5 lines 1, 3 and 5 of function bar
*/
/* p4() inserts a (function name and line number) pair into the FNL tree or a (function name and line number range) in the FNL tree.
*/
static void p4(char *s,int idx,int n,void *ctx)
{
funcNameCtx *pfnc = (funcNameCtx *)ctx;
if (n == 0) /* production (1) */
{
pfnc->firstLineNumber = atoi(s);
insertNodeInTree(pfnc->root,pfnc->currentFuncName,pfnc->firstLineNumber,pfnc->firstLineNumber);
}
else if (n == 1) /* production (2) */
{
if (idx == 0) /* lhs of production (2) */
pfnc->firstLineNumber = atoi(s);
else /* rhs of production (2). */
insertNodeInTree(pfnc->root,pfnc->currentFuncName,pfnc->firstLineNumber,atoi(s));
}
}
/* p3 puts an entry into the FNL tree for all of the lines of a given functionname, or, it parses the list of line number ranges and
uses p4 to spill each individual range (or just one line number) into the tree */
static void p3(char *s,int idx,int n,void *ctx)
{
funcNameCtx *pfnc = (funcNameCtx *)ctx;
if (n == 0 && *s == 0) /* production (5)/(7) */
{
insertNodeInTree(pfnc->root,pfnc->currentFuncName,0,INT_MAX);
}
else if (*s) /* production (2) */
{
/* breakdown the string into hyphen-delimited substrings, and further parses each substring with p4: */
parseString(s,'-',p4,ctx);
}
}
/* p2 parses the function name, and caches it into the context, and thereafter uses p3 to parse the line number range list. */
static void p2(char *s,int idx,int n,void *ctx)
{
funcNameCtx *pfnc = (funcNameCtx *)ctx;
if (n)
{
if (idx == 0)
pfnc->currentFuncName = s;
else
{
/* production (4) */
/* breakdown the string into comma-delimited substrings, and further parses each substring with p3: */
parseString(s,',',p3,ctx);
}
}
else
{
/* production (7)/(5). */
insertNodeInTree(pfnc->root,pfnc->currentFuncName=s,0,INT_MAX);
}
}
/* p1 parses each function name and line range list. */
static void p1(char *s,int idx,int n,void *ctx)
{
/* production (5)/(6)) */
/* breakdown the string into semi-colon-delimited substrings, and further parses each substring with p2: */
parseString(s,';',p2,ctx);
}
static void parseAndInsertInTree(const char *buf,treeNode **root)
{
funcNameCtx t;
t.root = root;
char *p = alloca(strlen(buf)+1);
strcpy(p,buf);
/* productions (7)/(8) */
/* separates string into colon-separated strings, and then parses each substring in p1: */
parseString(p,':',p1,(void*)&t);
}
/* initialization code for the psmi log mechanism. */
static inline void psmi_initialize(const char **plmf_fileName_kernel,
const char **plmf_search_format_string,
treeNode **includeFunctionNamesTreeRoot,
treeNode **excludeFunctionNamesTreeRoot)
{
static volatile int plmf_initialized = 0;
if (!plmf_initialized)
{
static pthread_mutex_t plmf_init_mutex = PTHREAD_MUTEX_INITIALIZER;
if (pthread_mutex_lock(&plmf_init_mutex))
{
perror("cannot lock mutex for psmi_log_message facility");
return;
}
/* CRITICAL SECTION BEGIN */
if (!plmf_initialized)
{
/* initializing psmi log message facility here. */
const char *env = getenv("PSM2_LOG_FILENAME");
if (env)
*plmf_fileName_kernel = env;
env = getenv("PSM2_LOG_SRCH_FORMAT_STRING");
if (env)
{
*plmf_search_format_string = env;
}
else
{
env = getenv("PSM2_LOG_INC_FUNCTION_NAMES");
if (env)
{
parseAndInsertInTree(env,includeFunctionNamesTreeRoot);
}
env = getenv("PSM2_LOG_EXC_FUNCTION_NAMES");
if (env)
{
parseAndInsertInTree(env,excludeFunctionNamesTreeRoot);
}
}
/* initialization of psmi log message facility is completed. */
plmf_initialized = 1;
}
/* CRITICAL SECTION END */
if (pthread_mutex_unlock(&plmf_init_mutex))
{
perror("cannot unlock mutex for psmi_log_message facility");
return;
}
}
}
/* Utility function to map the integer txrx value to the given strings for emitting to the log file. */
static const char * const TxRxString(int txrx)
{
switch(txrx)
{
case PSM2_LOG_TX: return "Sent";
case PSM2_LOG_RX: return "Received";
case PSM2_LOG_PEND: return "Pending";
default: return "Unknown";
}
}
/* Utility function to map an integer opcode value to the given strings for emitting to the log file. */
static const char * const OpcodeString(int opcode)
{
switch(opcode)
{
case OPCODE_LONG_RTS: return "RTS";
case OPCODE_LONG_CTS: return "CTS";
case OPCODE_LONG_DATA: return "DATA";
case OPCODE_EXPTID: return "EXPTID";
case OPCODE_EXPTID_COMPLETION: return "EXPTID_COMPLETION";
default: return "UNKNOWN";
}
}
static const char *plmf_fileName_kernel = "/tmp/psm2_log";
static const char *plmf_search_format_string = NULL;
static treeNode *includeFunctionNamesTreeRoot = NULL;
static treeNode *excludeFunctionNamesTreeRoot = NULL;
void psmi_log_initialize(void)
{
/* If not initialized, then, initialize in a single thread of execution. */
psmi_initialize(&plmf_fileName_kernel,
&plmf_search_format_string,
&includeFunctionNamesTreeRoot,
&excludeFunctionNamesTreeRoot);
}
#ifdef PSM_LOG_FAST_IO
struct psmi_log_io_thread_info
{
pthread_t thread_id;
char *buff;
unsigned long max_buff_length, curr_buff_length;
pthread_mutex_t flags_mutex;
volatile int flags;
#define PSMI_LOG_IO_FLAG_IO_IN_PROGRESS 1 /* io is currently in progress */
#define PSMI_LOG_IO_FLAG_IO_SHUTDOWN 2 /* we are shutting down logging. */
};
/* Please note that psmi_log_io_info is in thread local storage. */
static __thread struct psmi_log_io_thread_info psmi_log_io_info =
{
.thread_id = 0,
.buff = NULL,
.max_buff_length = 0,
.curr_buff_length = 0,
.flags_mutex = PTHREAD_MUTEX_INITIALIZER,
.flags = 0
};
static struct
{
unsigned int nTableEntries,maxTableEntries;
pthread_mutex_t table_mutex;
struct psmi_log_io_thread_info **table;
} psmi_log_io_table =
{
.nTableEntries = 0,
.maxTableEntries = 0,
.table_mutex = PTHREAD_MUTEX_INITIALIZER,
.table = NULL
};
void psmi_log_fini()
{
if (pthread_mutex_lock(&psmi_log_io_table.table_mutex))
{
perror("Cannot lock mutex for psmi_log_io_table");
return;
}
/* Start critical section. */
unsigned int i;
for (i=0;i < psmi_log_io_table.nTableEntries;i++)
{
if (psmi_log_io_table.table[i])
{
struct psmi_log_io_thread_info *pti = psmi_log_io_table.table[i];
int flags;
if (pthread_mutex_lock(&pti->flags_mutex))
{
perror("can't lock the flags mutex.");
continue;
}
/* critical section */
flags = (pti->flags |= PSMI_LOG_IO_FLAG_IO_SHUTDOWN);
/* end critical section */
pthread_mutex_unlock(&pti->flags_mutex);
/* if io is currenctly in progress, allow it to complete. */
while (flags & PSMI_LOG_IO_FLAG_IO_IN_PROGRESS)
{
sleep(1);
if (pthread_mutex_lock(&pti->flags_mutex))
{
perror("can't lock the flags mutex.");
continue;
}
flags = pti->flags;
pthread_mutex_unlock(&pti->flags_mutex);
}
if (pti->buff)
{
char logFileName[256];
FILE *fout;
snprintf(logFileName,sizeof(logFileName),"%s.%d.%ld",
plmf_fileName_kernel,getpid(),pti->thread_id);
fout = fopen(logFileName,"w");
if (!fout)
{
perror(logFileName);
continue;
}
fwrite(pti->buff,pti->curr_buff_length,1,fout);
fclose(fout);
}
}
psmi_log_io_table.table[i] = NULL;
}
psmi_log_io_table.nTableEntries = 0;
psmi_free(psmi_log_io_table.table);
psmi_log_io_table.table = NULL;
psmi_log_io_table.maxTableEntries = 0;
/* End critical section. */
pthread_mutex_unlock(&psmi_log_io_table.table_mutex);
}
static int psmi_log_register_tls(void)
{
if (psmi_log_io_info.thread_id != pthread_self())
{
psmi_log_io_info.thread_id = pthread_self();
if (pthread_mutex_lock(&psmi_log_io_table.table_mutex))
{
perror("cannot lock table mutex");
return -1;
}
/* critical section start. */
if (psmi_log_io_table.maxTableEntries < psmi_log_io_table.nTableEntries+1)
{
if (psmi_log_io_table.maxTableEntries == 0)
{
psmi_log_io_table.maxTableEntries = 2;
psmi_log_io_table.table = psmi_malloc(PSMI_EP_NONE,
PER_PEER_ENDPOINT,
psmi_log_io_table.maxTableEntries *
sizeof(struct psmi_log_io_thread_info *));
}
else
{
psmi_log_io_table.maxTableEntries *= 2;
psmi_log_io_table.table = psmi_realloc(PSMI_EP_NONE,
PER_PEER_ENDPOINT,
psmi_log_io_table.table,
psmi_log_io_table.maxTableEntries *
sizeof(struct psmi_log_io_thread_info *));
}
}
psmi_log_io_table.table[psmi_log_io_table.nTableEntries] = &psmi_log_io_info;
psmi_log_io_table.nTableEntries++;
/* critical section end. */
pthread_mutex_unlock(&psmi_log_io_table.table_mutex);
}
if (pthread_mutex_lock(&psmi_log_io_info.flags_mutex))
{
perror("cannot lock table mutex");
return -1;
}
/* critical section start. */
int old_flags = psmi_log_io_info.flags;
int new_flags = old_flags;
if (0 == (old_flags & PSMI_LOG_IO_FLAG_IO_SHUTDOWN))
new_flags |= PSMI_LOG_IO_FLAG_IO_IN_PROGRESS;
psmi_log_io_info.flags = new_flags;
/* critical section end. */
pthread_mutex_unlock(&psmi_log_io_info.flags_mutex);
if (new_flags & PSMI_LOG_IO_FLAG_IO_IN_PROGRESS)
return 0;
return -1;
}
static void psmi_buff_fclose(int port)
{
if (pthread_mutex_lock(&psmi_log_io_info.flags_mutex))
{
perror("cannot lock table mutex");
return;
}
/* critical section start. */
psmi_log_io_info.flags &= ~PSMI_LOG_IO_FLAG_IO_IN_PROGRESS;
/* critical section end. */
pthread_mutex_unlock(&psmi_log_io_info.flags_mutex);
}
static void growBuff(size_t minExcess)
{
while (psmi_log_io_info.curr_buff_length+minExcess > psmi_log_io_info.max_buff_length)
{
if (!psmi_log_io_info.buff)
psmi_log_io_info.buff = (char *)psmi_malloc(PSMI_EP_NONE, PER_PEER_ENDPOINT,
psmi_log_io_info.max_buff_length = 1 << 20);
else
{
psmi_log_io_info.max_buff_length *= 2;
psmi_log_io_info.buff = (char *)psmi_realloc(PSMI_EP_NONE, PER_PEER_ENDPOINT,
psmi_log_io_info.buff,
psmi_log_io_info.max_buff_length);
}
}
}
static int psmi_buff_vfprintf(int port, const char *format, va_list ap)
{
int done = 0;
size_t excess = 1024;
int length;
while (!done)
{
growBuff(excess);
length = vsnprintf(psmi_log_io_info.buff + psmi_log_io_info.curr_buff_length,
excess, format, ap);
if (length >= excess)
excess *= 2;
else
done = 1;
}
psmi_log_io_info.curr_buff_length += length;
return length;
}
static int psmi_buff_fprintf(int port,const char *format, ...)
{
int length;
va_list ap;
va_start(ap, format);
length = psmi_buff_vfprintf(port,format,ap);
va_end(ap);
return length;
}
static int psmi_buff_fputc(int c, int port)
{
growBuff(1024);
psmi_log_io_info.buff[psmi_log_io_info.curr_buff_length] = c;
psmi_log_io_info.curr_buff_length++;
return 1;
}
#endif
#define IS_PSMI_LOG_MAGIC(S) ((((uint64_t)(S)) <= ((uint64_t)PSM2_LOG_MIN_MAGIC)) && \
(((uint64_t)(S)) >= ((uint64_t)PSM2_LOG_MAX_MAGIC)))
/* plmf is short for 'psm log message facility. All of the PSM_LOG macros defined in psm_log.h
are serviced from this back end. */
void psmi_log_message(const char *fileName,
const char *functionName,
int lineNumber,
const char *format, ...)
{
va_list ap;
va_start(ap, format);
/* Next, determine if this log message is signal or noise. */
if (plmf_search_format_string)
{
if (!IS_PSMI_LOG_MAGIC(format))
{
if (fnmatch(plmf_search_format_string, format, 0))
{
va_end(ap);
/* tis noise, return. */
return;
}
}
}
else
{
if (includeFunctionNamesTreeRoot)
{
if (lookupNodeInTree(includeFunctionNamesTreeRoot,functionName,lineNumber))
{
va_end(ap);
/* tis noise, return. */
return;
}
}
if (excludeFunctionNamesTreeRoot)
{
if (!lookupNodeInTree(excludeFunctionNamesTreeRoot,functionName,lineNumber))
{
va_end(ap);
/* tis noise, return. */
return;
}
}
}
/* At this point, we think that this may be a message that we want to emit to the log.
But, there is one more test, to apply to the cases where the format is one of the
special formats for backtrack, and packet stream for example. */
{
void **voidarray = NULL;
int nframes = 0;
const char *newFormat = format;
int opcode = 0;
psmi_log_tx_rx_t txrx = 0;
uint64_t fromepid = 0;
uint64_t toepid = 0;
void *dumpAddr[2] = {0};
size_t dumpSize[2] = {0};
#ifdef PSM_LOG_FAST_IO
#define IO_PORT 0
#define MY_FPRINTF psmi_buff_fprintf
#define MY_VFPRINTF psmi_buff_vfprintf
#define MY_FPUTC psmi_buff_fputc
#define MY_FCLOSE psmi_buff_fclose
#else
char logFileName[256];
FILE *fout;
#define IO_PORT fout
#define MY_FPRINTF fprintf
#define MY_VFPRINTF vfprintf
#define MY_FPUTC fputc
#define MY_FCLOSE fclose
#endif
struct timespec tp;
/* Pop arguments for the alternative forms of PSM_LOG functionality: */
if (format == PSM2_LOG_BT_MAGIC)
{
voidarray = va_arg(ap,void **);
nframes = va_arg(ap,int);
newFormat = va_arg(ap,const char *);
}
else if (format == PSM2_LOG_EPM_MAGIC)
{
opcode = va_arg(ap,int);
txrx = va_arg(ap,psmi_log_tx_rx_t);
fromepid = va_arg(ap,uint64_t);
toepid = va_arg(ap,uint64_t);
newFormat = va_arg(ap,const char *);
}
else if (format == PSM2_LOG_DUMP_MAGIC)
{
dumpAddr[0] = va_arg(ap,void*);
dumpSize[0] = va_arg(ap,size_t);
newFormat = va_arg(ap,const char *);
}
else if (format == PSM2_LOG_PKT_STRM_MAGIC)
{
txrx = va_arg(ap,psmi_log_tx_rx_t);
dumpAddr[0] = va_arg(ap,struct ips_message_header *);
if (txrx == PSM2_LOG_RX)
{
dumpAddr[1] = va_arg(ap,uint32_t *);
dumpSize[1] = sizeof(uint64_t);
}
newFormat = va_arg(ap,const char *);
dumpSize[0] = sizeof(struct ips_message_header);
}
/* One last test to make sure that this message is signal: */
if (plmf_search_format_string && newFormat)
{
if (fnmatch(plmf_search_format_string, newFormat, 0))
{
va_end(ap);
/* tis noise, return. */
return;
}
}
#ifdef PSM_LOG_FAST_IO
if (psmi_log_register_tls() != 0)
{
va_end(ap);
return;
}
#else
/* At this point we know that the message is not noise, and it is going to be emitted to the log. */
snprintf(logFileName,sizeof(logFileName),"%s.%d.%ld",
plmf_fileName_kernel,getpid(),
pthread_self());
fout = fopen(logFileName,"a");
if (!fout)
{
va_end(ap);
return;
}
#endif
#define M1() clock_gettime(CLOCK_REALTIME, &tp); \
MY_FPRINTF(IO_PORT,"%f %s %s:%d: ", \
(double)tp.tv_sec + ((double)tp.tv_nsec/1000000000.0), \
functionName,fileName,lineNumber)
M1();
if (!IS_PSMI_LOG_MAGIC(format))
{
MY_VFPRINTF(IO_PORT,format,ap);
MY_FPUTC('\n',IO_PORT);
}
else if (format == PSM2_LOG_BT_MAGIC)
{
void *newframes[nframes];
int newframecnt = backtrace(newframes,nframes);
int pframes = min(newframecnt,nframes);
MY_VFPRINTF(IO_PORT,newFormat,ap);
MY_FPUTC('\n',IO_PORT);
if (memcmp(voidarray,newframes,pframes * sizeof(void*)))
{
int i;
char **strings;
memcpy(voidarray,newframes,sizeof(newframes));
M1();
MY_FPRINTF(IO_PORT,
"backtrace() returned %d addresses\n",
newframecnt);
strings = backtrace_symbols(voidarray, pframes);
if (strings == NULL)
{
perror("backtrace_symbols");
exit(EXIT_FAILURE);
}
for (i = 0; i < pframes; i++)
{
M1();
MY_FPRINTF(IO_PORT,"%s\n", strings[i]);
}
#undef free
free(strings);
}
}
else if (format == PSM2_LOG_EPM_MAGIC)
{
static epmTreeNode *root = 0;
static pthread_mutex_t plmf_epm_mutex =
PTHREAD_MUTEX_INITIALIZER;
int *pcount = 0;
if (pthread_mutex_lock(&plmf_epm_mutex))
{
perror("cannot lock mutex for "
"psmi_log_message facility");
va_end(ap);
return;
}
/* START OF CRITICAL SECTION */
pcount = insertNodeInEpmTree(&root,opcode,txrx,
fromepid,toepid);
/* END OF CRITICAL SECTION */
if (pthread_mutex_unlock(&plmf_epm_mutex))
{
perror("cannot unlock mutex for "
"psmi_log_message facility");
va_end(ap);
return;
}
(*pcount)++;
MY_FPRINTF(IO_PORT,"%s %s from: %" PRIx64
", to: %" PRIx64 ", count: %d, ",
TxRxString(txrx),OpcodeString(opcode),
fromepid,toepid,*pcount);
MY_VFPRINTF(IO_PORT,newFormat,ap);
MY_FPUTC('\n',IO_PORT);
}
else if (format == PSM2_LOG_PKT_STRM_MAGIC)
{
MY_FPRINTF(IO_PORT,"PKT_STRM: %s: imh: %p%s ", TxRxString(txrx),
dumpAddr[0], (txrx == PSM2_LOG_RX) ? "," : "");
if (txrx == PSM2_LOG_RX)
MY_FPRINTF(IO_PORT,"rhf: %p ", dumpAddr[1]);
goto dumpit;
}
else if (format == PSM2_LOG_DUMP_MAGIC)
{
MY_VFPRINTF(IO_PORT,newFormat,ap);
MY_FPUTC('\n',IO_PORT);
dumpit:
M1();
uint8_t *pu8 = (uint8_t *)dumpAddr[0];
size_t i,cnt=0;
for (i=0;i < dumpSize[0];i++)
{
if ((i != 0) && ((i % 8) == 0))
{
MY_FPRINTF(IO_PORT," (%d)\n",(int)(i-8));
M1();
cnt = 0;
}
else if (cnt)
MY_FPUTC(',',IO_PORT);
MY_FPRINTF(IO_PORT,"0x%02x", pu8[i]);
cnt++;
}
if (cnt)
MY_FPRINTF(IO_PORT," (%d)\n",(int)(i-8));
if (dumpSize[1])
{
dumpSize[0] = dumpSize[1];
dumpAddr[0] = dumpAddr[1];
dumpSize[1] = 0;
goto dumpit;
}
}
MY_FCLOSE(IO_PORT);
}
va_end(ap);
}
#endif /* #ifdef PSM_LOG */
|