1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
* libpulp - User-space Livepatching Library
*
* Copyright (C) 2021 SUSE Software Solutions GmbH
*
* This file is part of libpulp.
*
* libpulp is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libpulp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libpulp. If not, see <http://www.gnu.org/licenses/>.
*/
#include <err.h>
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "md4.h"
#define BYTE_LENGTH 8
#define BLOCK_LENGTH (512 / BYTE_LENGTH)
#define BLOCK_PADDING (448 / BYTE_LENGTH)
#define SIZE_FIELD (BLOCK_LENGTH - BLOCK_PADDING)
/*
* Calculates the MD4 of INPUT, which is LENGTH bytes long. Allocates memory
* for the result and returns a pointer to it, or NULL on error.
*
* The implementation is based on the English description of the algorithm
* provided by IETF RFC 1320 (https://tools.ietf.org/html/rfc1320).
*/
uint8_t *
MD4(char *input, uint64_t length)
{
char *buffer;
char *bufptr;
uint64_t total;
uint64_t zeros;
uint32_t AA;
uint32_t BB;
uint32_t CC;
uint32_t DD;
/* Words for input parsing. */
uint32_t X[16];
/*
* Digest state variables.
*
* MD4 specifies these variables as 32-bits words. However, the reference
* implementation uses the unsigned long int type, which translates to
* 64-bits on some architectures. This function sticks with 32-bits words,
* even though it yields different results (when compared to the reference
* implementation).
*/
uint32_t A;
uint32_t B;
uint32_t C;
uint32_t D;
/* The output is the full set of state variables, expressed in bytes. */
uint8_t *result;
uint8_t *resptr;
/*
* Tie the width of the length parameter to the width of the size field
* as specified in the RFC.
*/
_Static_assert(sizeof(length) == SIZE_FIELD,
"The length of a block does not match the RFC");
/*
* Calculate the total number of bytes in the message after padding, starting
* with the size of the input, which is already expressed in bytes.
*/
total = length;
/*
* Even though MD4 expresses lengths in bits, this function operates on full
* bytes, thus the mandatory padding of one bit becomes a mandatory padding
* of one byte (b'1 becomes 0x80).
*/
total = total + 1;
/*
* Likewise, since the granularity of the data is one byte, this function
* also performs zero padding in byte-sized chunks, so count the number of
* required zeroed bytes, then add it to the total data size.
*/
zeros = total % BLOCK_LENGTH;
if (zeros <= BLOCK_PADDING)
zeros = BLOCK_PADDING - zeros;
else
zeros = BLOCK_LENGTH - (zeros - BLOCK_PADDING);
total = total + zeros;
/*
* Finally, the last block gets padded with the message size. The message
* size field has fixed length, so simply add it (in bytes, as usual).
*/
total = total + SIZE_FIELD;
/* Copy input into new buffer. */
buffer = malloc(total);
if (buffer == NULL) {
warn("unable to allocate memory: %s", strerror(errno));
return NULL;
}
memset(buffer, 0, total);
memcpy(buffer, input, length);
/*
* Add padding (zero padding is skipped, because the buffer has already been
* fully initialized to zero, with memset, above).
*/
*(buffer + length) = 0x80;
/*
* Fill in the message size field in little-endian order. Length is first
* multiplied by BYTE_LENGTH, because length is expressed in bytes, but the
* message size field is expressed in bits.
*/
for (int i = 0; i < SIZE_FIELD; i++) {
*(buffer + length + 1 + zeros + i) =
((length * BYTE_LENGTH) >> (BYTE_LENGTH * i));
}
/*
* Initial state of the 4-word buffer. It is unfortunate that the MD4
* specification displays these sequences as if the contents of the variable
* had been saved to memory in little-endian order.
*/
A = 0x67452301;
B = 0xefcdab89;
C = 0x98badcfe;
D = 0x10325476;
/* Process the whole message, one block at a time. */
bufptr = buffer;
for (uint64_t i = 0; i < (total / BLOCK_LENGTH); i++) {
/* Read 16 words (4-bytes each) from the padded message. */
for (int j = 0; j < 16; j++) {
X[j] = 0;
/* Read 4 bytes in little-endian order to make up a work. */
for (int k = 0; k < 4; k++) {
X[j] = X[j] << BYTE_LENGTH;
X[j] = X[j] | (0x00ff & *(bufptr + (3 - k)));
}
bufptr += 4;
}
/* Save previous state */
AA = A;
BB = B;
CC = C;
DD = D;
/* Round 1. */
#define F(x, y, z) ((x & y) | ((~x) & z))
#define R1(A, B, C, D, i, s) \
{ \
A = (A + F(B, C, D) + X[i]); \
A = (A << s) | (A >> (32 - s)); \
}
/* clang-format off */
R1(A, B, C, D, 0, 3);
R1(D, A, B, C, 1, 7);
R1(C, D, A, B, 2, 11);
R1(B, C, D, A, 3, 19);
R1(A, B, C, D, 4, 3);
R1(D, A, B, C, 5, 7);
R1(C, D, A, B, 6, 11);
R1(B, C, D, A, 7, 19);
R1(A, B, C, D, 8, 3);
R1(D, A, B, C, 9, 7);
R1(C, D, A, B, 10, 11);
R1(B, C, D, A, 11, 19);
R1(A, B, C, D, 12, 3);
R1(D, A, B, C, 13, 7);
R1(C, D, A, B, 14, 11);
R1(B, C, D, A, 15, 19);
/* clang-format on */
#undef R1
#undef F
/* Round 2. */
#define G(x, y, z) ((x & y) | (x & z) | (y & z))
#define R2(A, B, C, D, i, s) \
{ \
A = (A + G(B, C, D) + X[i] + 0x5A827999); \
A = (A << s) | (A >> (32 - s)); \
}
/* clang-format off */
R2(A, B, C, D, 0, 3);
R2(D, A, B, C, 4, 5);
R2(C, D, A, B, 8, 9);
R2(B, C, D, A, 12, 13);
R2(A, B, C, D, 1, 3);
R2(D, A, B, C, 5, 5);
R2(C, D, A, B, 9, 9);
R2(B, C, D, A, 13, 13);
R2(A, B, C, D, 2, 3);
R2(D, A, B, C, 6, 5);
R2(C, D, A, B, 10, 9);
R2(B, C, D, A, 14, 13);
R2(A, B, C, D, 3, 3);
R2(D, A, B, C, 7, 5);
R2(C, D, A, B, 11, 9);
R2(B, C, D, A, 15, 13);
/* clang-format on */
#undef R2
#undef G
/* Round 3 */
#define H(x, y, z) (x ^ y ^ z)
#define R3(A, B, C, D, i, s) \
{ \
A = (A + H(B, C, D) + X[i] + 0x6ED9EBA1); \
A = (A << s) | (A >> (32 - s)); \
}
/* clang-format off */
R3(A, B, C, D, 0, 3);
R3(D, A, B, C, 8, 9);
R3(C, D, A, B, 4, 11);
R3(B, C, D, A, 12, 15);
R3(A, B, C, D, 2, 3);
R3(D, A, B, C, 10, 9);
R3(C, D, A, B, 6, 11);
R3(B, C, D, A, 14, 15);
R3(A, B, C, D, 1, 3);
R3(D, A, B, C, 9, 9);
R3(C, D, A, B, 5, 11);
R3(B, C, D, A, 13, 15);
R3(A, B, C, D, 3, 3);
R3(D, A, B, C, 11, 9);
R3(C, D, A, B, 7, 11);
R3(B, C, D, A, 15, 15);
/* clang-format on */
#undef R3
#undef H
/* Final additions. */
A = A + AA;
B = B + BB;
C = C + CC;
D = D + DD;
}
free(buffer);
/* Allocate space for the whole digest, i.e. 4 32-bits words. */
_Static_assert(MD4_LENGTH == 16,
"The length of the digest does not match the RFC");
result = malloc(MD4_LENGTH);
if (result == NULL) {
warn("unable to allocate memory: %s", strerror(errno));
return NULL;
}
resptr = result;
#define APPEND(item, buffer) \
{ \
for (int i = 0; i < 4; i++) { \
*(resptr) = (uint8_t)((item >> (BYTE_LENGTH * i)) & 0x0ff); \
resptr++; \
} \
}
APPEND(A, resptr);
APPEND(B, resptr);
APPEND(C, resptr);
APPEND(D, resptr);
#undef APPEND
return result;
}
|