1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
//
// $Id$
//
//
// Original author: Darren Kessner <darren@proteowizard.org>
//
// Copyright 2006 Louis Warschaw Prostate Cancer Center
// Cedars Sinai Medical Center, Los Angeles, California 90048
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#define PWIZ_SOURCE
#include "erf.hpp"
#include "pwiz/utility/misc/Std.hpp"
#include <cmath>
namespace pwiz {
namespace math {
// pulled from IT++ Library
/*!
* \brief Error function for complex argument
* \ingroup errorfunc
* \author Adam Piatyszek
*
* This function calculates a well known error function \c erf(z)
* for complex \c z. The implementation is based on unofficial
* implementation for Octave. Here is a part of the author's note
* from original sources:
*
* Put together by John Smith john at arrows dot demon dot co dot uk,
* using ideas by others.
*
* Calculate \c erf(z) for complex \c z.
* Three methods are implemented; which one is used depends on z.
*
* The code includes some hard coded constants that are intended to
* give about 14 decimal places of accuracy. This is appropriate for
* 64-bit floating point numbers.
*/
PWIZ_API_DECL const double pi = 3.14159265358979323846;
PWIZ_API_DECL const double eps = std::numeric_limits<double>::epsilon();
/*
* Abramowitz and Stegun: Eq. (7.1.14) gives this continued fraction
* for erfc(z)
*
* erfc(z) = sqrt(pi).exp(-z^2). 1 1/2 1 3/2 2 5/2
* --- --- --- --- --- --- ...
* z + z + z + z + z + z +
*
* This is evaluated using Lentz's method, as described in the
* narative of Numerical Recipes in C.
*
* The continued fraction is true providing real(z) > 0. In practice
* we like real(z) to be significantly greater than 0, say greater
* than 0.5.
*/
std::complex<double> cerfc_continued_fraction(const std::complex<double>& z)
{
const double tiny = std::numeric_limits<double>::min();
// first calculate z+ 1/2 1
// --- --- ...
// z + z +
std::complex<double> f(z);
std::complex<double> C(f);
std::complex<double> D(0.0);
std::complex<double> delta;
double a;
a = 0.0;
do {
a += 0.5;
D = z + a * D;
C = z + a / C;
if ((D.real() == 0.0) && (D.imag() == 0.0))
D = tiny;
D = 1.0 / D;
delta = C * D;
f = f * delta;
} while (abs(1.0 - delta) > eps);
// Do the first term of the continued fraction
f = 1.0 / f;
// and do the final scaling
f = f * exp(-z * z) / sqrt(pi);
return f;
}
std::complex<double> cerf_continued_fraction(const std::complex<double>& z)
{
if (z.real() > 0)
return 1.0 - cerfc_continued_fraction(z);
else
return -1.0 + cerfc_continued_fraction(-z);
}
/*
* Abramawitz and Stegun: Eq. (7.1.5) gives a series for erf(z) good
* for all z, but converges faster for smallish abs(z), say abs(z) < 2.
*/
std::complex<double> cerf_series(const std::complex<double>& z)
{
const double tiny = std::numeric_limits<double>::min();
std::complex<double> sum(0.0);
std::complex<double> term(z);
std::complex<double> z2(z*z);
for (int n = 0; (n < 3) || (abs(term) > abs(sum) * tiny); n++) {
sum += term / static_cast<double>(2 * n + 1);
term *= -z2 / static_cast<double>(n + 1);
}
return sum * 2.0 / sqrt(pi);
}
/*
* Numerical Recipes quotes a formula due to Rybicki for evaluating
* Dawson's Integral:
*
* exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim sum exp(-(z-n.h)^2) / n
* 0 to x h->0 n odd
*
* This can be adapted to erf(z).
*/
std::complex<double> cerf_rybicki(const std::complex<double>& z)
{
double h = 0.2; // numerical experiment suggests this is small enough
// choose an even n0, and then shift z->z-n0.h and n->n-h.
// n0 is chosen so that real((z-n0.h)^2) is as small as possible.
int n0 = 2 * static_cast<int>(z.imag() / (2 * h) + 0.5);
std::complex<double> z0(0.0, n0 * h);
std::complex<double> zp(z - z0);
std::complex<double> sum(0.0, 0.0);
// limits of sum chosen so that the end sums of the sum are
// fairly small. In this case exp(-(35.h)^2)=5e-22
for (int np = -35; np <= 35; np += 2) {
std::complex<double> t(zp.real(), zp.imag() - np * h);
std::complex<double> b(exp(t * t) / static_cast<double>(np + n0));
sum += b;
}
sum *= 2.0 * exp(-z * z) / pi;
return std::complex<double>(-sum.imag(), sum.real());
}
/*
* This function calculates a well known error function erf(z) for
* complex z. Three methods are implemented. Which one is used
* depends on z.
*/
PWIZ_API_DECL std::complex<double> erf(const std::complex<double>& z)
{
// Use the method appropriate to size of z -
// there probably ought to be an extra option for NaN z, or infinite z
if (abs(z) < 2.0)
return cerf_series(z);
else {
if (std::abs(z.real()) < 0.5)
return cerf_rybicki(z);
else
return cerf_continued_fraction(z);
}
}
// end pulled from IT++ Library
#if defined(_MSC_VER)
PWIZ_API_DECL double erf(double x)
{
// call complex implementation
return erf(complex<double>(x)).real();
}
#else
PWIZ_API_DECL double erf(double x)
{
// call gcc-provided real implementation
return ::erf(x);
}
#endif // defined(_MSC_VER)
// Darren's series experimentation
/*
const double precision_ = numeric_limits<double>::epsilon();
complex<double> erf_series(complex<double> z)
{
// erf(z) = (2/sqrt(pi)) * sum[ (-1)^n * z^(2n+1) / n!(2n+1) ]
complex<double> sum = 0;
complex<double> term = z;
const int maxTermCount = 100;
for (int n=0; n<maxTermCount; n++)
{
sum += term/double(2*n+1);
term = -term * z*z/double(n+1);
if (abs(term)<precision_*(2*n+1))
{
//cout << "terms: " << n << endl;
break;
}
if (n+1 == maxTermCount)
cout << "[erf.cpp::erf_series()] Warning: Failed to converge at z=" << z << endl;
}
return sum * 2. / sqrt(M_PI);
}
*/
PWIZ_API_DECL complex<double> erf_series2(const complex<double>& z)
{
// From "Handbook of Mathematical Functions" p297, 7.1.6
// (seems to converge better than the first series)
// erf(z) = (2/sqrt(pi)) * exp(-z^2) * sum[2^n * z^(2n+1) / (1*3*5*...*(2n+1))]
complex<double> sum = 0;
complex<double> term = z;
const int maxTermCount = 10000;
for (int n=0; n<maxTermCount; n++)
{
sum += term;
term = term*2.*z*z/double(2*n+3);
if (abs(term)<1e-12)
{
//cout << "terms: " << n << endl;
break;
}
if (n+1 == maxTermCount)
cout << "[erf.cpp::erf_series2()] Warning: Failed to converge at z=" << z << endl;
}
return sum * exp(-z*z) * 2. / sqrt(pi);
}
} // namespace math
} // namespace pwiz
|