File: erf.cpp

package info (click to toggle)
libpwiz 3.0.18342-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 14,888 kB
  • sloc: cpp: 157,552; sh: 4,182; makefile: 317
file content (271 lines) | stat: -rw-r--r-- 7,887 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//
// $Id$
//
//
// Original author: Darren Kessner <darren@proteowizard.org>
//
// Copyright 2006 Louis Warschaw Prostate Cancer Center
//   Cedars Sinai Medical Center, Los Angeles, California  90048
//
// Licensed under the Apache License, Version 2.0 (the "License"); 
// you may not use this file except in compliance with the License. 
// You may obtain a copy of the License at 
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software 
// distributed under the License is distributed on an "AS IS" BASIS, 
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
// See the License for the specific language governing permissions and 
// limitations under the License.
//


#define PWIZ_SOURCE

#include "erf.hpp"
#include "pwiz/utility/misc/Std.hpp"
#include <cmath>


namespace pwiz {
namespace math {


// pulled from IT++ Library
/*!
   * \brief Error function for complex argument
	 * \ingroup errorfunc
	 * \author Adam Piatyszek
   *
   * This function calculates a well known error function \c erf(z)
   * for complex \c z. The implementation is based on unofficial
   * implementation for Octave. Here is a part of the author's note
   * from original sources:
	 *
	 * Put together by John Smith john at arrows dot demon dot co dot uk, 
	 * using ideas by others.
	 *
	 * Calculate \c erf(z) for complex \c z.
	 * Three methods are implemented; which one is used depends on z.
	 *
	 * The code includes some hard coded constants that are intended to
	 * give about 14 decimal places of accuracy. This is appropriate for
	 * 64-bit floating point numbers. 
	 */


PWIZ_API_DECL const double pi = 3.14159265358979323846;
PWIZ_API_DECL const double eps = std::numeric_limits<double>::epsilon();


  /*
   * Abramowitz and Stegun: Eq. (7.1.14) gives this continued fraction
   * for erfc(z)
   *
   * erfc(z) = sqrt(pi).exp(-z^2).  1   1/2   1   3/2   2   5/2  
   *                               ---  ---  ---  ---  ---  --- ...
   *                               z +  z +  z +  z +  z +  z +
   *
   * This is evaluated using Lentz's method, as described in the
   * narative of Numerical Recipes in C.
   *
   * The continued fraction is true providing real(z) > 0. In practice
   * we like real(z) to be significantly greater than 0, say greater
   * than 0.5.
   */
  std::complex<double> cerfc_continued_fraction(const std::complex<double>& z)
  {
    const double tiny = std::numeric_limits<double>::min();

    // first calculate z+ 1/2   1 
    //                    ---  --- ...
    //                    z +  z + 
    std::complex<double> f(z);
    std::complex<double> C(f);
    std::complex<double> D(0.0);
    std::complex<double> delta;
    double a;

    a = 0.0;
    do {
      a += 0.5;
      D = z + a * D;
      C = z + a / C;
      if ((D.real() == 0.0) && (D.imag() == 0.0))
        D = tiny;
      D = 1.0 / D;
      delta = C * D;
      f = f * delta;
    } while (abs(1.0 - delta) > eps);

    // Do the first term of the continued fraction
    f = 1.0 / f;

    // and do the final scaling
	f = f * exp(-z * z) / sqrt(pi);

    return f;
  }

  std::complex<double> cerf_continued_fraction(const std::complex<double>& z)
  {
    if (z.real() > 0)
      return 1.0 - cerfc_continued_fraction(z);
    else
      return -1.0 + cerfc_continued_fraction(-z);
  }

  /*
   * Abramawitz and Stegun: Eq. (7.1.5) gives a series for erf(z) good
   * for all z, but converges faster for smallish abs(z), say abs(z) < 2.
   */
  std::complex<double> cerf_series(const std::complex<double>& z)
  {
    const double tiny = std::numeric_limits<double>::min();
    std::complex<double> sum(0.0);
    std::complex<double> term(z);
    std::complex<double> z2(z*z);

    for (int n = 0; (n < 3) || (abs(term) > abs(sum) * tiny); n++) {
      sum += term / static_cast<double>(2 * n + 1);
      term *= -z2 / static_cast<double>(n + 1);
    }

    return sum * 2.0 / sqrt(pi);
  }

  /*
   * Numerical Recipes quotes a formula due to Rybicki for evaluating
   * Dawson's Integral:
   *
   * exp(-x^2) integral exp(t^2).dt = 1/sqrt(pi) lim  sum  exp(-(z-n.h)^2) / n
   *            0 to x                           h->0 n odd
   *
   * This can be adapted to erf(z).
   */
  std::complex<double> cerf_rybicki(const std::complex<double>& z)
  {
    double h = 0.2; // numerical experiment suggests this is small enough

    // choose an even n0, and then shift z->z-n0.h and n->n-h. 
    // n0 is chosen so that real((z-n0.h)^2) is as small as possible. 
    int n0 = 2 * static_cast<int>(z.imag() / (2 * h) + 0.5);

    std::complex<double> z0(0.0, n0 * h);
    std::complex<double> zp(z - z0);
    std::complex<double> sum(0.0, 0.0);

    // limits of sum chosen so that the end sums of the sum are
    // fairly small. In this case exp(-(35.h)^2)=5e-22 
    for (int np = -35; np <= 35; np += 2) {
      std::complex<double> t(zp.real(), zp.imag() - np * h);
      std::complex<double> b(exp(t * t) / static_cast<double>(np + n0));
      sum += b; 
    }

    sum *= 2.0 * exp(-z * z) / pi;

    return std::complex<double>(-sum.imag(), sum.real());
  }

  /*
   * This function calculates a well known error function erf(z) for
   * complex z. Three methods are implemented. Which one is used
   * depends on z. 
	 */
  PWIZ_API_DECL std::complex<double> erf(const std::complex<double>& z)
  {
    // Use the method appropriate to size of z - 
    // there probably ought to be an extra option for NaN z, or infinite z
    if (abs(z) < 2.0)
      return cerf_series(z);
    else {
      if (std::abs(z.real()) < 0.5)
        return cerf_rybicki(z);
      else
        return cerf_continued_fraction(z);
    }
  }

// end pulled from IT++ Library


#if defined(_MSC_VER)
PWIZ_API_DECL double erf(double x)
{
    // call complex implementation
    return erf(complex<double>(x)).real();
}
#else
PWIZ_API_DECL double erf(double x)
{
    // call gcc-provided real implementation
    return ::erf(x);
}
#endif // defined(_MSC_VER)


// Darren's series experimentation

/*
const double precision_ = numeric_limits<double>::epsilon(); 

complex<double> erf_series(complex<double> z)
{
    // erf(z) = (2/sqrt(pi)) * sum[ (-1)^n * z^(2n+1) / n!(2n+1) ]

    complex<double> sum = 0;
    complex<double> term = z;

    const int maxTermCount = 100;  
    for (int n=0; n<maxTermCount; n++)
    {
        sum += term/double(2*n+1);
        term = -term * z*z/double(n+1);
        
        if (abs(term)<precision_*(2*n+1))
        {
            //cout << "terms: " << n << endl;
            break;
        }    

        if (n+1 == maxTermCount)
            cout << "[erf.cpp::erf_series()]  Warning: Failed to converge at z=" << z << endl;
    }

    return sum * 2. / sqrt(M_PI);
}
*/

PWIZ_API_DECL complex<double> erf_series2(const complex<double>& z)
{
    // From "Handbook of Mathematical Functions" p297, 7.1.6
    // (seems to converge better than the first series)
    // erf(z) = (2/sqrt(pi)) * exp(-z^2) * sum[2^n * z^(2n+1) / (1*3*5*...*(2n+1))]

    complex<double> sum = 0;
    complex<double> term = z;

    const int maxTermCount = 10000; 
    for (int n=0; n<maxTermCount; n++)
    {
        sum += term;
        term = term*2.*z*z/double(2*n+3); 
        if (abs(term)<1e-12)
        {
            //cout << "terms: " << n << endl;
            break;
        }    
        
        if (n+1 == maxTermCount)
            cout << "[erf.cpp::erf_series2()]  Warning: Failed to converge at z=" << z << endl;
    }

    return sum * exp(-z*z) * 2. / sqrt(pi);
}


} // namespace math
} // namespace pwiz