1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/* $Id$
100% free public domain implementation of the SHA-1 algorithm
by Dominik Reichl <dominik.reichl@t-online.de>
Web: http://www.dominik-reichl.de/
See header file for version history.
*/
// added endianization check -- dk
#include "endian.hpp"
#ifdef PWIZ_BIG_ENDIAN
#define SHA1_BIG_ENDIAN // for SHA1.h
#endif // PWIZ_BIG_ENDIAN
#define _CRT_SECURE_NO_WARNINGS
#include "SHA1.h"
#include <boost/nowide/fstream.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/detail/utf8_codecvt_facet.hpp>
#include <boost/interprocess/file_mapping.hpp>
#include <boost/interprocess/mapped_region.hpp>
#ifdef SHA1_UTILITY_FUNCTIONS
#define SHA1_MAX_FILE_BUFFER 8000
#endif
// Rotate x bits to the left
#ifndef ROL32
#ifdef _MSC_VER
#define ROL32(_val32,_nBits) _rotl(_val32,_nBits)
#else
#define ROL32(_val32,_nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
#endif
#endif
#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = \
(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
#else
#define SHABLK0(i) (m_block->l[i])
#endif
#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
// SHA-1 rounds
#define _R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define _R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define _R2(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5);w=ROL32(w,30);}
#define _R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5);w=ROL32(w,30);}
#define _R4(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5);w=ROL32(w,30);}
CSHA1::CSHA1()
{
m_block = (SHA1_WORKSPACE_BLOCK*)m_workspace;
Reset();
}
CSHA1::~CSHA1()
{
Reset();
}
void CSHA1::Reset()
{
// SHA1 initialization constants
m_state[0] = 0x67452301;
m_state[1] = 0xEFCDAB89;
m_state[2] = 0x98BADCFE;
m_state[3] = 0x10325476;
m_state[4] = 0xC3D2E1F0;
m_count[0] = 0;
m_count[1] = 0;
}
void CSHA1::Transform(UINT_32* pState, const UINT_8* pBuffer)
{
UINT_32 a = pState[0], b = pState[1], c = pState[2], d = pState[3], e = pState[4];
memcpy(m_block, pBuffer, 64);
// 4 rounds of 20 operations each. Loop unrolled.
_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);
_R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);
_R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);
_R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);
_R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);
_R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);
_R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);
_R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);
_R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);
_R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);
_R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);
_R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);
_R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);
_R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);
_R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);
_R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);
_R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);
_R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);
_R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);
_R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
// Add the working vars back into state
pState[0] += a;
pState[1] += b;
pState[2] += c;
pState[3] += d;
pState[4] += e;
// Wipe variables
#ifdef SHA1_WIPE_VARIABLES
a = b = c = d = e = 0;
#endif
}
// Use this function to hash in binary data and strings
void CSHA1::Update(const UINT_8* pbData, UINT_32 uLen)
{
UINT_32 j = ((m_count[0] >> 3) & 0x3F);
if((m_count[0] += (uLen << 3)) < (uLen << 3))
++m_count[1]; // Overflow
m_count[1] += (uLen >> 29);
UINT_32 i;
if((j + uLen) > 63)
{
i = 64 - j;
memcpy(&m_buffer[j], pbData, i);
Transform(m_state, m_buffer);
for( ; (i + 63) < uLen; i += 64)
Transform(m_state, &pbData[i]);
j = 0;
}
else i = 0;
if((uLen - i) != 0)
memcpy(&m_buffer[j], &pbData[i], uLen - i);
}
#ifdef SHA1_UTILITY_FUNCTIONS
// Hash in file contents
bool CSHA1::HashFile(const TCHAR* tszFileName)
{
if(tszFileName == NULL) return false;
// first try to use memory-mapped I/O to maximize speed; on 32-bit systems this may fail for large files
try
{
const INT_64 fileSize = (INT_64)boost::filesystem::file_size(tszFileName);
// don't use a 32-bit process's entire address space, but 64-bit processes can just use the file size
const INT_64 maxRegionSize = sizeof(void*) == 8 ? fileSize : (1 << 30);
const INT_64 lMaxBuf = SHA1_MAX_FILE_BUFFER;
using namespace boost::interprocess;
file_mapping mmFile(tszFileName, read_only);
INT_64 totalRemaining = fileSize;
for (INT_64 offset = 0; offset < fileSize; offset += maxRegionSize)
{
INT_64 currentRegionSize = std::min(maxRegionSize, totalRemaining);
mapped_region mmRegion(mmFile, read_only, offset, currentRegionSize);
void* addr = mmRegion.get_address();
unsigned char* currentOffset = reinterpret_cast<unsigned char*>(addr);
INT_64 regionRemaining = currentRegionSize;
while (regionRemaining > 0)
{
const size_t uMaxRead = static_cast<size_t>((regionRemaining > lMaxBuf) ? lMaxBuf : regionRemaining);
Update(currentOffset, static_cast<UINT_32>(uMaxRead));
currentOffset += uMaxRead;
regionRemaining -= static_cast<INT_64>(uMaxRead);
}
totalRemaining -= currentRegionSize;
}
return (totalRemaining == 0);
}
catch (std::exception&) // fall back to using boost::nowide::ifstream
{
using namespace boost::nowide;
ifstream fpIn(tszFileName, std::ios::binary);
if (!fpIn) return false;
const INT_64 lFileSize = boost::filesystem::file_size(boost::filesystem::path(tszFileName, boost::filesystem::detail::utf8_codecvt_facet()));
const INT_64 lMaxBuf = SHA1_MAX_FILE_BUFFER;
char vData[SHA1_MAX_FILE_BUFFER];
INT_64 lRemaining = lFileSize;
while(lRemaining > 0)
{
const size_t uMaxRead = static_cast<size_t>((lRemaining > lMaxBuf) ? lMaxBuf : lRemaining);
fpIn.read(vData, uMaxRead);
const size_t uRead = fpIn ? uMaxRead : fpIn.gcount();
if(uRead == 0)
return false;
Update(reinterpret_cast<unsigned char*>(vData), static_cast<UINT_32>(uRead));
lRemaining -= static_cast<INT_64>(uRead);
}
return (lRemaining == 0);
}
}
#endif
void CSHA1::Final()
{
UINT_32 i;
UINT_8 finalcount[8];
for(i = 0; i < 8; ++i)
finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)]
>> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
Update((UINT_8*)"\200", 1);
while ((m_count[0] & 504) != 448)
Update((UINT_8*)"\0", 1);
Update(finalcount, 8); // Cause a SHA1Transform()
for(i = 0; i < 20; ++i)
m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8)) & 0xFF);
// Wipe variables for security reasons
#ifdef SHA1_WIPE_VARIABLES
memset(m_buffer, 0, 64);
memset(m_state, 0, 20);
memset(m_count, 0, 8);
memset(finalcount, 0, 8);
Transform(m_state, m_buffer);
#endif
}
#ifdef SHA1_UTILITY_FUNCTIONS
// Get the final hash as a pre-formatted string
bool CSHA1::ReportHash(TCHAR* tszReport, REPORT_TYPE rtReportType) const
{
if(tszReport == NULL) return false;
TCHAR tszTemp[16];
if((rtReportType == REPORT_HEX) || (rtReportType == REPORT_HEX_SHORT))
{
_sntprintf(tszTemp, 15, _T("%02X"), m_digest[0]);
_tcscpy(tszReport, tszTemp);
const TCHAR* lpFmt = ((rtReportType == REPORT_HEX) ? _T(" %02X") : _T("%02X"));
for(size_t i = 1; i < 20; ++i)
{
_sntprintf(tszTemp, 15, lpFmt, m_digest[i]);
_tcscat(tszReport, tszTemp);
}
}
else if(rtReportType == REPORT_DIGIT)
{
_sntprintf(tszTemp, 15, _T("%u"), m_digest[0]);
_tcscpy(tszReport, tszTemp);
for(size_t i = 1; i < 20; ++i)
{
_sntprintf(tszTemp, 15, _T(" %u"), m_digest[i]);
_tcscat(tszReport, tszTemp);
}
}
else return false;
return true;
}
#endif
#ifdef SHA1_STL_FUNCTIONS
bool CSHA1::ReportHashStl(std::basic_string<TCHAR>& strOut, REPORT_TYPE rtReportType) const
{
TCHAR tszOut[84];
const bool bResult = ReportHash(tszOut, rtReportType);
if(bResult) strOut = tszOut;
return bResult;
}
#endif
// Get the raw message digest
bool CSHA1::GetHash(UINT_8* pbDest) const
{
if(pbDest == NULL) return false;
memcpy(pbDest, m_digest, 20);
return true;
}
|