File: solver.batch

package info (click to toggle)
libqalculate 5.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,996 kB
  • sloc: cpp: 126,833; sh: 694; makefile: 145; xml: 40; sed: 16
file content (118 lines) | stat: -rw-r--r-- 2,457 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/set approximation exact
/set fr 2

5^x = 3
	x = ln(3) / ln(5)

x^3 + x^2 + x = 5
	x = 2 / (3 * cbrt(3 * sqrt(561) - 71)) - 1/3 - cbrt(3 * sqrt(561) - 71) / 3

x^4 + 20x^3 + 150x^2 + 500x + 625 = 0
	x = -5

x^(1/3) + x^(2/3) = 3
	x = 2 * sqrt(13) - 5

ln(x) + x = 3
	x = lambertw(e^3)

2^(3x) + 4x = 5
	x = 5/4 - lambertw(6 * 8^(1/4) * ln(2)) / (3 * ln(2))

x^(-3x) = 2
	x = e^lambertw(-ln(2) / 3) or x = e^lambertw(-ln(2) / 3, -1)

1/3 * sin(3x) - 1/3 = 0
	x = (2/3) * pi * n + pi / 6

2/3 * sin(3x) - 1/3 = 0
	x = (2/3) * pi * n + (5/18) * pi or x = (2/3) * pi * n + pi / 18

sin(x) + cos(x) = 1
	x = 2 pi * n or x = 2 pi * n + pi / 2

sin(x) = 1 + cos(x)
	x = 2 pi * n + pi or x = 2 pi * n + pi / 2

sqrt(2) * cos(3x + pi/6) = 1
	x = (2/3) * pi * n + pi / 36 or x = (2/3) * pi * n - (5/36) * pi

2 * sin(3x/4) = 1
	x = (8/3) * pi * n + (10/9) * pi or x = (8/3) * pi * n + (2/9) * pi

tan(x/4 + pi/3) = sqrt(3)
	x = 4 pi * n

sqrt(3) * sin(x) + cos(x) = sqrt(3)
	x = 2 pi * n + pi / 2 or x = 2 pi * n + pi / 6

sin(x)^2 = sin(x)^3
	x = pi * n or x = 2 pi * n + pi / 2

sin(x) = sin(x/2)
	x = 2 pi * n or x = 4 pi * n + (2/3) * pi or x = 4 pi * n - (2/3) * pi

sin(4x) + cos(2x) = 0
	x = pi * n + (7/12) * pi or x = pi * n - pi / 12 or x = (pi * n) / 2 - pi / 4

/set approximation try exact

newtonsolve(Ei(x) = 3, 1)
	1.397510842

secantsolve(Ei(x) = 3, 1, 4)
	1.397510842

newtonsolve(Ei(x) = 3i, 1)
	-1.160849461 + 1.034283360i

/set unicode 1

x^7 - x^5 + 3x^2 + 5x = 3
	x ≈ 0.4706753153

x^(5x) = 5
	x ≈ 1.284730245

1 * 2^(3x) + 4x = 5
	x ≈ 0.5171781450

x^(-3x) = 2
	x ≈ 0.7280844118 or x ≈ 0.1006083268





#(sqrt(3) + 1) * cos(x) - (sqrt(3) - 1) * sin(x) = 2
#	x = 2 pi * n - pi/3 or x = 2 pi * n + pi/6

#3*sin(7x) - 2*sin(4x) + 3*sin(x) = 0
#	x = 2 pi * n or ...

#tan(x + pi/4) - tan(x - pi/4) = 4
#	x = pi * n - pi/6 or x = pi * n + pi/6

#solve(cos(3x) = sin(x))
#	x = pi * n - 7 pi/8 or x = pi * n - 3 pi/8 or x = pi * n - pi/4

#sin(7x) + sin(3x) = 0
#	x = 2 pi * n or ...

#sin(x) + sin(2x) = sin(3x)
#	x = pi * n or x = 2 pi * n - 2 pi/3 or x = 2 pi * n + 2 pi/3

#sin(2x + pi/4) = cos(pi/6 - x)
#	x = 2 pi * n - 19 pi/36 or ...

#sin(5x) + sin(3x) = sin(8x)
#	x = 2 pi * n or ...

#2(cos(x)^2) + sqrt(3) * sin(x) = 1
#	x = pi * n - pi/3 or ...

#cos(2x) + 4*(sin(x)^2) - cos(x) = 2
#	x = pi * n - pi / 2

#sin(x)^2 + sin(2x)^2 = sin(3x)^2
#	x = pi * n or x = pi * n - x = pi / 2 or x = pi * n - 5 pi/6 or x = pi * n - pi / 6