1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/* measure.c: Quantum register measurement
Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer
This file is part of libquantum
libquantum is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version.
libquantum is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with libquantum; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA
*/
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <stdio.h>
#include "qureg.h"
#include "complex.h"
#include "config.h"
#include "objcode.h"
#include "error.h"
/* Generate a uniformly distributed random number between 0 and 1 */
double
quantum_frand()
{
return (double) rand() / RAND_MAX;
}
/* Measure the contents of a quantum register */
MAX_UNSIGNED
quantum_measure(quantum_reg reg)
{
double r;
int i;
if(quantum_objcode_put(MEASURE))
return 0;
/* Get a random number between 0 and 1 */
r = quantum_frand();
for (i=0; i<reg.size; i++)
{
/* If the random number is less than the probability of the
given base state - r, return the base state as the
result. Otherwise, continue with the next base state. */
r -= quantum_prob_inline(reg.node[i].amplitude);
if(0 >= r)
return reg.node[i].state;
}
/* The sum of all probabilities is less than 1. Usually, the cause
for this is the application of a non-normalized matrix, but there
is a slim chance that rounding errors may lead to this as
well. */
return -1;
}
/* Measure a single bit of a quantum register. The bit measured is
indicated by its position POS, starting with 0 as the least
significant bit. The new state of the quantum register depends on
the result of the measurement. */
int
quantum_bmeasure(int pos, quantum_reg *reg)
{
int i;
int result=0;
double pa=0, r;
MAX_UNSIGNED pos2;
quantum_reg out;
if(quantum_objcode_put(BMEASURE, pos))
return 0;
pos2 = (MAX_UNSIGNED) 1 << pos;
/* Sum up the probability for 0 being the result */
for(i=0; i<reg->size; i++)
{
if(!(reg->node[i].state & pos2))
pa += quantum_prob_inline(reg->node[i].amplitude);
}
/* Compare the probability for 0 with a random number and determine
the result of the measurement */
r = quantum_frand();
if (r > pa)
result = 1;
out = quantum_state_collapse(pos, result, *reg);
quantum_delete_qureg_hashpreserve(reg);
*reg = out;
return result;
}
/* Measure a single bit, but do not remove it from the quantum
register */
int
quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
{
int i, j;
int size=0, result=0;
double d=0, pa=0, r;
MAX_UNSIGNED pos2;
quantum_reg out;
if(quantum_objcode_put(BMEASURE_P, pos))
return 0;
pos2 = (MAX_UNSIGNED) 1 << pos;
/* Sum up the probability for 0 being the result */
for(i=0; i<reg->size; i++)
{
if(!(reg->node[i].state & pos2))
pa += quantum_prob_inline(reg->node[i].amplitude);
}
/* Compare the probability for 0 with a random number and determine
the result of the measurement */
r = quantum_frand();
if (r > pa)
result = 1;
/* Eradicate all amplitudes of base states which have been ruled out
by the measurement and get the absolute of the new register */
for(i=0;i<reg->size;i++)
{
if(reg->node[i].state & pos2)
{
if(!result)
reg->node[i].amplitude = 0;
else
{
d += quantum_prob_inline(reg->node[i].amplitude);
size++;
}
}
else
{
if(result)
reg->node[i].amplitude = 0;
else
{
d += quantum_prob_inline(reg->node[i].amplitude);
size++;
}
}
}
/* Build the new quantum register */
out.size = size;
out.node = calloc(size, sizeof(quantum_reg_node));
if(!out.node)
quantum_error(QUANTUM_ENOMEM);
quantum_memman(size * sizeof(quantum_reg_node));
out.hashw = reg->hashw;
out.hash = reg->hash;
out.width = reg->width;
/* Determine the numbers of the new base states and norm the quantum
register */
for(i=0, j=0; i<reg->size; i++)
{
if(reg->node[i].amplitude)
{
out.node[j].state = reg->node[i].state;
out.node[j].amplitude = reg->node[i].amplitude * 1 / (float) sqrt(d);
j++;
}
}
quantum_delete_qureg_hashpreserve(reg);
*reg = out;
return result;
}
|