File: measure.c

package info (click to toggle)
libquantum 1.1.1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,136 kB
  • ctags: 279
  • sloc: sh: 7,711; ansic: 3,849; makefile: 243
file content (215 lines) | stat: -rw-r--r-- 4,871 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/* measure.c: Quantum register measurement

   Copyright 2003, 2004 Bjoern Butscher, Hendrik Weimer

   This file is part of libquantum

   libquantum is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3 of the License,
   or (at your option) any later version.

   libquantum is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with libquantum; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
   MA 02110-1301, USA

*/

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <stdio.h>

#include "qureg.h"
#include "complex.h"
#include "config.h"
#include "objcode.h"
#include "error.h"

/* Generate a uniformly distributed random number between 0 and 1 */

double 
quantum_frand()
{
  return (double) rand() / RAND_MAX;
}

/* Measure the contents of a quantum register */

MAX_UNSIGNED
quantum_measure(quantum_reg reg)
{
  double r;
  int i;

  if(quantum_objcode_put(MEASURE))
    return 0;

  /* Get a random number between 0 and 1 */
  
  r = quantum_frand();

  for (i=0; i<reg.size; i++)
    {
      /* If the random number is less than the probability of the
	 given base state - r, return the base state as the
	 result. Otherwise, continue with the next base state. */

      r -= quantum_prob_inline(reg.amplitude[i]);
      if(0 >= r)
	return reg.state[i];
    }

  /* The sum of all probabilities is less than 1. Usually, the cause
     for this is the application of a non-normalized matrix, but there
     is a slim chance that rounding errors may lead to this as
     well. */

  return -1;
}

/* Measure a single bit of a quantum register. The bit measured is
   indicated by its position POS, starting with 0 as the least
   significant bit. The new state of the quantum register depends on
   the result of the measurement. */

int
quantum_bmeasure(int pos, quantum_reg *reg)
{
  int i;
  int result=0;
  double pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;
  
  if(quantum_objcode_put(BMEASURE, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->state[i] & pos2))
	pa += quantum_prob_inline(reg->amplitude[i]);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  out = quantum_state_collapse(pos, result, *reg);

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;

  return result;
}

/* Measure a single bit, but do not remove it from the quantum
   register */

int
quantum_bmeasure_bitpreserve(int pos, quantum_reg *reg)
{
  int i, j;
  int size=0, result=0;
  double d=0, pa=0, r;
  MAX_UNSIGNED pos2;
  quantum_reg out;

  if(quantum_objcode_put(BMEASURE_P, pos))
     return 0;

  pos2 = (MAX_UNSIGNED) 1 << pos;

  /* Sum up the probability for 0 being the result */

  for(i=0; i<reg->size; i++)
    {
      if(!(reg->state[i] & pos2))
	pa += quantum_prob_inline(reg->amplitude[i]);
    }

  /* Compare the probability for 0 with a random number and determine
     the result of the measurement */

  r = quantum_frand();
  
  if (r > pa)
    result = 1;

  /* Eradicate all amplitudes of base states which have been ruled out
     by the measurement and get the absolute of the new register */

  for(i=0;i<reg->size;i++)
    {
      if(reg->state[i] & pos2)
	{
	  if(!result)
	    reg->amplitude[i] = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->amplitude[i]);
	      size++;
	    }
	}
      else
	{
	  if(result)
	    reg->amplitude[i] = 0;
	  else
	    {
	      d += quantum_prob_inline(reg->amplitude[i]);
	      size++;
	    }
	}
    }

  /* Build the new quantum register */

  out.size = size;
  out.state = calloc(size, sizeof(MAX_UNSIGNED));
  out.amplitude = calloc(size, sizeof(COMPLEX_FLOAT));

  if(!(out.state && out.amplitude))
    quantum_error(QUANTUM_ENOMEM);

  quantum_memman(size * (sizeof(MAX_UNSIGNED) + sizeof(COMPLEX_FLOAT)));

  out.hashw = reg->hashw;
  out.hash = reg->hash;
  out.width = reg->width;

  /* Determine the numbers of the new base states and norm the quantum
     register */
  
  for(i=0, j=0; i<reg->size; i++)
    {
      if(reg->amplitude[i])
	{
	  out.state[j] = reg->state[i];
	  out.amplitude[j] = reg->amplitude[i] * 1 / (float) sqrt(d);
	
	  j++;
	}
    }

  quantum_delete_qureg_hashpreserve(reg);
  *reg = out;
  return result;
}