File: sha1.js

package info (click to toggle)
librdf-query-perl 2.919-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,580 kB
  • sloc: perl: 30,628; javascript: 131; sh: 13; makefile: 2
file content (128 lines) | stat: -rw-r--r-- 3,372 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
function META () {
	return {
		name: "sha1Hash",
		description: "SHA-1 Hash"
	};
}

function str (x) {
	warn(x);
	if (x instanceof Object) {
		warn('-> Node');
		if (x.is_literal()) {
			warn('-> literal');
			warn(x.literal_value);
			return x.literal_value;
		} else if (x.is_resource()) {
			warn('-> resource');
			return x.uri_value;
		} else {
			warn('-> blank');
			return x.blank_identifier;
		}
	} else {
		warn('-> Non-Node');
		return x;
	}
}

function sha1Hash(msg)
{
	msg	= str(msg);
	// constants [4.2.1]
	var K = [0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6];

	// PREPROCESSING 
 
	msg += String.fromCharCode(0x80); // add trailing '1' bit to string [5.1.1]

	// convert string msg into 512-bit/16-integer blocks arrays of ints [5.2.1]
	var l = Math.ceil(msg.length/4) + 2;  // long enough to contain msg plus 2-word length
	var N = Math.ceil(l/16);			  // in N 16-int blocks
	var M = new Array(N);
	for (var i=0; i<N; i++) {
		M[i] = new Array(16);
		for (var j=0; j<16; j++) {	// encode 4 chars per integer, big-endian encoding
			M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) | 
					  (msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3));
		}
	}
	// add length (in bits) into final pair of 32-bit integers (big-endian) [5.1.1]
	// note: most significant word would be ((len-1)*8 >>> 32, but since JS converts
	// bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
	M[N-1][14] = ((msg.length-1)*8) / Math.pow(2, 32); M[N-1][14] = Math.floor(M[N-1][14])
	M[N-1][15] = ((msg.length-1)*8) & 0xffffffff;

	// set initial hash value [5.3.1]
	var H0 = 0x67452301;
	var H1 = 0xefcdab89;
	var H2 = 0x98badcfe;
	var H3 = 0x10325476;
	var H4 = 0xc3d2e1f0;

	// HASH COMPUTATION [6.1.2]

	var W = new Array(80); var a, b, c, d, e;
	for (var i=0; i<N; i++) {

		// 1 - prepare message schedule 'W'
		for (var t=0;  t<16; t++) W[t] = M[i][t];
		for (var t=16; t<80; t++) W[t] = ROTL(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);

		// 2 - initialise five working variables a, b, c, d, e with previous hash value
		a = H0; b = H1; c = H2; d = H3; e = H4;

		// 3 - main loop
		for (var t=0; t<80; t++) {
			var s = Math.floor(t/20); // seq for blocks of 'f' functions and 'K' constants
			var T = (ROTL(a,5) + f(s,b,c,d) + e + K[s] + W[t]) & 0xffffffff;
			e = d;
			d = c;
			c = ROTL(b, 30);
			b = a;
			a = T;
		}

		// 4 - compute the new intermediate hash value
		H0 = (H0+a) & 0xffffffff;  // note 'addition modulo 2^32'
		H1 = (H1+b) & 0xffffffff; 
		H2 = (H2+c) & 0xffffffff; 
		H3 = (H3+d) & 0xffffffff; 
		H4 = (H4+e) & 0xffffffff;
	}

	return H0.toHexStr() + H1.toHexStr() + H2.toHexStr() + H3.toHexStr() + H4.toHexStr();
}

//
// function 'f' [4.1.1]
//
function f(s, x, y, z) 
{
	switch (s) {
	case 0: return (x & y) ^ (~x & z);
	case 1: return x ^ y ^ z;
	case 2: return (x & y) ^ (x & z) ^ (y & z);
	case 3: return x ^ y ^ z;
	}
}

//
// rotate left (circular left shift) value x by n positions [3.2.5]
//
function ROTL(x, n)
{
	return (x<<n) | (x>>>(32-n));
}

//
// extend Number class with a tailored hex-string method 
//	 (note toString(16) is implementation-dependant, and 
//	 in IE returns signed numbers when used on full words)
//
Number.prototype.toHexStr = function()
{
	var s="", v;
	for (var i=7; i>=0; i--) { v = (this>>>(i*4)) & 0xf; s += v.toString(16); }
	return s;
}