File: gear.cpp

package info (click to toggle)
librecad 2.2.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 105,584 kB
  • sloc: cpp: 187,958; sh: 336; xml: 47; makefile: 21
file content (602 lines) | stat: -rw-r--r-- 21,421 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*****************************************************************************/
/*  gear.cpp - plugin gear for LibreCAD                                      */
/*                                                                           */
/*  Copyright (C) 2016 Cédric Bosdonnat cedric@bosdonnat.fr                  */
/*  Edited 2017 Luis Colorado <luiscoloradourcola@gmail.com>                 */
/*                                                                           */
/*  This library is free software, licensed under the terms of the GNU       */
/*  General Public License as published by the Free Software Foundation,     */
/*  either version 2 of the License, or (at your option) any later version.  */
/*  You should have received a copy of the GNU General Public License        */
/*  along with this program.  If not, see <http://www.gnu.org/licenses/>.    */
/*****************************************************************************/

#include <QGridLayout>
#include <QPushButton>
#include <QSettings>
#include <QMessageBox>
#include <QTransform>
#include <QDoubleSpinBox>
#include <QSpinBox>
#include <QCheckBox>
#include <QComboBox>
#include <QLabel>
#include <vector>
#include <cmath>
#include <cfloat>

#include "document_interface.h"
#include "gear.h"

QString LC_Gear::name() const
{
    return (tr("Gear creation plugin"));
}

PluginCapabilities LC_Gear::getCapabilities() const
{
    PluginCapabilities pluginCapabilities;
    pluginCapabilities.menuEntryPoints
            << PluginMenuLocation("plugins_menu", tr("Gear plugin"));
    return pluginCapabilities;
}

LC_Gear::LC_Gear()
{
}

LC_Gear::~LC_Gear()
{
}

void LC_Gear::execComm(Document_Interface *doc,
                        QWidget *parent, QString cmd)
{
    Q_UNUSED(doc);
    Q_UNUSED(cmd);

    QPointF center;
    if (!doc->getPoint(&center, QString("select center"))) {
        return;
    }

    if (!parameters_dialog) {
        parameters_dialog = new lc_Geardlg(parent);
        if (!parameters_dialog) {
            return;
        }
    }

    int result =  parameters_dialog->exec();
    if (result == QDialog::Accepted)
        parameters_dialog->processAction(doc, cmd, center);
}

/*****************************/

lc_Geardlg::lc_Geardlg(QWidget *parent) :
    QDialog(parent),
    settings(QSettings::IniFormat, QSettings::UserScope, "LibreCAD", "gear_plugin")
{
    const char *windowTitle = "Draw a gear";

    setWindowTitle(tr(windowTitle));

    QLabel *label;
    QGridLayout *mainLayout = new QGridLayout(this);

    int i = 0, j = 0;

#define RST() do{ if(j) { ++i; j = 0; } } while(0)

#define Q(name, type, text, min, max, stp) do {                  \
            label = new QLabel((text), this);                    \
            name = new type(this);                               \
            name->setMinimum(min);                               \
            name->setMaximum(max);                               \
            name->setSingleStep(stp);                            \
            mainLayout->addWidget(label,  i, 0);                 \
            mainLayout->addWidget((name), i, 1);                 \
        } while(0)

#define QDSB(name, text, min, max, stp, dec) do {                \
            RST();                                               \
            Q(name, QDoubleSpinBox, (text),(min),(max),(stp));   \
            name->setDecimals(dec);                              \
            ++i; j = 0;                                          \
        } while(0)

#define QSB(name, text, min, max, stp) do {                      \
            RST();                                               \
            Q(name, QSpinBox, (text),(min),(max), (stp));        \
            ++i; j = 0;                                          \
        } while(0)

#define QCB(name, text) do {                                     \
            name = new QCheckBox((text), this);                  \
            mainLayout->addWidget(name, i, j);                   \
            j++; if (j >= 2) { j = 0; i++; }                     \
        } while(0)

    QDSB(rotateBox,               tr("Rotation angle"), -360.0, 360.0, 1.0, 6);
    QSB (nteethBox,               tr("Number of teeth"), 1, 2000, 1);
    QDSB(modulusBox,              tr("Modulus"), 1.0E-10, 1.0E+10, 0.1, 6); 
    QDSB(pressureBox,             tr("Pressure angle (deg)"), 0.1, 89.9, 1.0, 5);
    QDSB(addendumBox,             tr("Addendum (rel. to modulus)"), 0.0, 5.0, 0.1, 5);
    QDSB(dedendumBox,             tr("Dedendum (rel. to modulus)"), 0.0, 5.0, 0.1, 5);
    QSB (n1Box,                   tr("Number of segments to draw (dedendum)"), 1, 1024, 8);
    QSB (n2Box,                   tr("Number of segments to draw (addendum)"), 1, 1024, 8);
    QCB (drawAllTeethBox,         tr("Draw all teeth?"));
    QCB (drawBothSidesOfToothBox, tr("Draw symmetric face?"));

    QCB (useLayersBox,            tr("Use layers?")); RST();
    QCB (drawAddendumCircleBox,   tr("Draw addendum circle?"));
    QCB (drawPitchCircleBox,      tr("Draw pitch circle?"));
    QCB (drawBaseCircleBox,       tr("Draw base circle?"));
    QCB (drawRootCircleBox,       tr("Draw root circle?"));
    QCB (drawPressureLineBox,     tr("Draw pressure line?"));
    QCB (drawPressureLimitBox,    tr("Draw pressure limits?"));

    QCB (calcInterferenceBox,     tr("Calculate interference?"));
    QSB (n3Box,                   tr("Number of segments to draw (interference)"), 1, 1024,     8);

    QPushButton *acceptbut = new QPushButton(tr("Accept"), this);
    QPushButton *cancelbut = new QPushButton(tr("Cancel"), this);
    QHBoxLayout *acceptLayout = new QHBoxLayout();

    acceptLayout->addStretch();
    acceptLayout->addWidget(acceptbut);
    acceptLayout->addStretch();
    acceptLayout->addWidget(cancelbut);
    acceptLayout->addStretch();

    mainLayout->addLayout(acceptLayout, i, 0, 1, 2);
    setLayout(mainLayout);

    readSettings();

    connect(cancelbut, SIGNAL(clicked()), this, SLOT(reject()));
    connect(acceptbut, SIGNAL(clicked()), this, SLOT(checkAccept()));
}

/* calculate the radius of a point in canonical evoluta
 * whose radius is given. */
static double radius2arg(const double radius, const double alpha = 0.0)
{
    const double aux = 1.0 - alpha;
    return sqrt(radius * radius - aux*aux);
}

/* canonical evolute is generated by a 1.0 radius circle.
 * We consider it the next complex function:
 * (1.0 - alpha - i*phi) * exp(i*phi) 
 */
static double re_evolute(const double phi, const double alpha = 0.0)
{
    return (1.0 - alpha) * cos(phi) + phi * sin(phi);
}

static double im_evolute(const double phi, const double alpha = 0.0)
{
    return (1.0 - alpha) * sin(phi) - phi * cos(phi);
}

static double mod_evolute(const double phi, const double alpha = 0.0)
{
    double aux = (1.0 - alpha);
    return sqrt(aux*aux + phi*phi);
}

static double arg_evolute(const double phi, const double alpha = 0.0)
{
    double aux = (1.0 - alpha);
    return phi - atan2(phi, aux);
}

struct evolute {

    static const double default_eps;

    evolute(int n_t, double add, double ded, double p_ang);

    QPointF evo0(const double phi); /* evolute for tooth face */
    QPointF evo1(const double phi); /* evolute for tooth carving (interference) */
    double aux(const double phi); /* auxiliary function */
    double find_common_phi_evo1(const double eps = default_eps); 

    const int n_teeth;
    const double
        addendum, dedendum,
        c_modulus,
        p_angle, cos_p_angle, cos2_p_angle,
        angle_0, cos_angle_0, sin_angle_0,
        dedendum_radius, addendum_radius,
        phi_at_dedendum, phi_at_addendum,
        alpha, angle_1,
        cos_angle_1, sin_angle_1;
};

const double evolute::default_eps = 8 * DBL_EPSILON;

evolute::evolute(int n_t, double add, double ded, double p_ang):
    n_teeth(n_t),
    addendum(add),
    dedendum(ded),
    c_modulus(2.0/n_teeth), 
    p_angle(p_ang),
    cos_p_angle(cos(p_ang)),
    cos2_p_angle(cos_p_angle * cos_p_angle),
    angle_0(p_angle - tan(p_angle)),
    cos_angle_0(cos(angle_0)),
    sin_angle_0(sin(angle_0)),
    dedendum_radius(1.0 - c_modulus * dedendum),
    addendum_radius(1.0 + c_modulus * addendum),
    phi_at_dedendum(dedendum_radius > cos_p_angle
            ? radius2arg(dedendum_radius / cos_p_angle)
            : 0.0),
    phi_at_addendum(radius2arg(addendum_radius / cos_p_angle)),
    alpha(1.0 - dedendum_radius),
    angle_1(-alpha * tan(p_angle)),
    cos_angle_1(cos(angle_1)),
    sin_angle_1(sin(angle_1))
{
}

/* this evolute calculates points for an argument phi for the
 * curve that defines de active face of the tooth.  */
QPointF evolute::evo0(const double phi)
{
    double x = cos_p_angle * re_evolute(phi),
           y = cos_p_angle * im_evolute(phi);
    return QPointF(cos_angle_0 * x - sin_angle_0 * y,
                   sin_angle_0 * x + cos_angle_0 * y);
}

/* this evolute calculates points for an argument phi for the
 * curve that defines the carved neck of the tooth in case of
 * interference. */
QPointF evolute::evo1(const double phi)
{
    double x = re_evolute(phi, alpha);
    double y = im_evolute(phi, alpha);
    return QPointF(cos_angle_1 * x - sin_angle_1 * y,
                   sin_angle_1 * x + cos_angle_1 * y);
}

/* Auxiliary function to determine if we are in one side of the
 * primary evolute or in the other side.  We look for a zero in this
 * function to derive the phi angle of the secondary evolute at which
 * it crosses the primary.   This is the common point for both evolutes
 */
double evolute::aux(const double phi)
{
    const double mod = mod_evolute(phi, alpha);
    const double arg = arg_evolute(phi, alpha);

    if (mod <= cos_p_angle) {
        return arg + angle_1 - angle_0;
    }
    const double phi0 = radius2arg(mod / cos_p_angle);
    return arg + angle_1 + atan(phi0) - phi0 - angle_0;
}

/* find the common point of both evolutes.  this function uses two
 * values a and b of phi in the evolute::evo1 curve to find a root of
 * the function evolute::aux that gives the difference between the argument
 * at which the evolute of the primary curve touches the base circle minus
 * the argument at which an evolute that pases for the point calculated in
 * the second curve hits the base circle.  This being positive means the
 * second evolute has already crossed the first.  Being negative means it
 * has not yet crossed the primary evolute. */
double evolute::find_common_phi_evo1(const double eps)
{
    double a = -radius2arg(cos_p_angle, alpha);
    double b = -radius2arg(1.0, alpha);
    double f_a = aux(a), f_b = aux(b);
    double x = a;

    if (f_a > 0) do {

        x = (a*f_b - b*f_a) / (f_b - f_a);
        double f_x = aux(x);

        if (fabs(x - a) < fabs(x - b)) {
            b = x; f_b = f_x;
        } else {
            a = x; f_a = f_x;
        }
    } while (fabs(a-b) >= eps);

    return x;
} /* find_common_phi_evo1 */

void lc_Geardlg::processAction(Document_Interface *doc, const QString& cmd, QPointF& center)
{
    Q_UNUSED(doc);
    Q_UNUSED(cmd);
    Q_UNUSED(center);

    std::vector<Plug_VertexData> polyline;
    std::vector<QPointF> first_tooth;
    QTransform rotate_and_disp;

    /* we shall proceed by calculating the points for root radius,
     * base of tooth, n1 line segments to the pitch circle (this makes
     * possible to have a reference point on the pitch circle)
     * n2 line segments to the addendum circle.
     * The tooth face is aligned so the pitch point is aligned with the
     * X axis, so we can align gears over this reference point.
     *
     * Once we get one face, we mirror it using as the axis one quarter
     * of the pitch angular modulus (half of the tooth width) passing
     * along the origin.
     *
     * Finally, we get the complete set of teeth by rotating them by the
     * pitch angular modulus to get the whole gear */

    evolute ev(nteethBox->value(), /* number of teeth */
               addendumBox->value(), /* addendum */
               dedendumBox->value(), /* dedendum */
               M_PI / 180.0 * pressureBox->value()); /* pressure angle (converted to rad) */

    const double modulus = modulusBox->value();
    const double scale_factor = modulus / ev.c_modulus;
    const int    n1 = n1Box->value();
    const int    n2 = n2Box->value();
    const double rotation = rotateBox->value() * M_PI / 180.0;

    rotate_and_disp = rotate_and_disp
        .translate(center.x(), center.y())
        .rotateRadians(rotation);

    double phi_0 = 0.0;

    /* Build one tooth face */
    if (calcInterferenceBox->isChecked()
        && ev.cos2_p_angle > ev.dedendum_radius)
    {
            const int n3 = n3Box->value();
            double angle_2 = ev.find_common_phi_evo1();

            phi_0 = radius2arg(mod_evolute(angle_2, ev.alpha) / ev.cos_p_angle);

            double phi = 0.0,
                   delta = angle_2 / n3;
            for(int i = 0; i < n3; i++) {
                const QPointF point(scale_factor * ev.evo1(phi));
                first_tooth.push_back(point);
                polyline.push_back(Plug_VertexData(rotate_and_disp.map(point), 0.0));
                phi += delta;
            } /* for */
    } else if (ev.cos_p_angle > ev.dedendum_radius) {

        /* no interference calculation at all.  just draw the point at the
         * intersection of the root circle with the 0 press angle point. */

        QPointF root(scale_factor * ev.dedendum_radius * ev.cos_angle_0,
                     scale_factor * ev.dedendum_radius * ev.sin_angle_0);
        first_tooth.push_back(root);
        polyline.push_back(Plug_VertexData(rotate_and_disp.map(root), 0.0));
    }

    if (phi_0 < ev.phi_at_dedendum) phi_0 = ev.phi_at_dedendum;

    double phi = phi_0;

    /* if the carving has eaten some active part of the tooth dedendum face */
    if (phi < ev.p_angle - ev.angle_0) {
        double delta = (ev.p_angle - ev.angle_0 - phi) / n1;
        for (int i = 0; i < n1; ++i) {
            const QPointF point(scale_factor * ev.evo0(phi));
            first_tooth.push_back(point);
            polyline.push_back(Plug_VertexData(rotate_and_disp.map(point), 0.0));
            phi += delta;
        } /* for */
    }
    double phi_1 = radius2arg(ev.addendum_radius / ev.cos_p_angle);
    if (phi < phi_1) {
        double delta = (phi_1 - phi) / n2;
        for (int i = 0; i <= n2; ++i) {
            const QPointF point(scale_factor * ev.evo0(phi));
            first_tooth.push_back(point);
            polyline.push_back(Plug_VertexData(rotate_and_disp.map(point), 0.0));
            phi += delta;
        }
    }

    /* calculate the symmetric face from the original points */

    /* one half of pitch angular modulus = double of symmetry axis.
     * symmetry on an axis that passes through origin is calculated as follows:
     * x' = cos(2.0*axis_angle) * x + sin(2.0*axis_angle) * y
     * y' = sin(2.0*axis_angle) * x - cos(2.0*axis_angle) * y
     * (note: we don't use iterators as the array is growing as long as we
     * navigate it)
     */
    const double axis_angle_x_2 = M_PI / ev.n_teeth;
    const double axis_angle = axis_angle_x_2 / 2.0;
    const double cos_axis_angle_x_2 = cos(axis_angle_x_2);
    const double sin_axis_angle_x_2 = sin(axis_angle_x_2);

    /* remember size, as we don't want to duplicate next point */
    const double n_to_mirror = first_tooth.size();

    if (drawBothSidesOfToothBox->isChecked()) {
        /* symmetry axis point (at top of tooth) */
        QPointF mirror_point(scale_factor * ev.addendum_radius * cos(axis_angle),
                             scale_factor * ev.addendum_radius * sin(axis_angle));
        first_tooth.push_back(mirror_point);
        polyline.push_back(Plug_VertexData(rotate_and_disp.map(mirror_point), 0.0));

        /* for all points we have to mirror (all but the last one) */
        for (int i = n_to_mirror - 1; i >= 0; --i) {
            const QPointF& orig(first_tooth[i]);

            QPointF target(cos_axis_angle_x_2 * orig.x() + sin_axis_angle_x_2 * orig.y(),
                           sin_axis_angle_x_2 * orig.x() - cos_axis_angle_x_2 * orig.y());
            first_tooth.push_back(target);
            polyline.push_back(Plug_VertexData(rotate_and_disp.map(target), 0.0));
        } /* for */

        if (drawAllTeethBox->isChecked()) {
            /* symmetry axis point (at interteeth) */
            QPointF mirror_point2(scale_factor * ev.dedendum_radius * cos(axis_angle + axis_angle_x_2),
                                  scale_factor * ev.dedendum_radius * sin(axis_angle + axis_angle_x_2));
            first_tooth.push_back(mirror_point2);
            polyline.push_back(Plug_VertexData(rotate_and_disp.map(mirror_point2), 0.0));

            /* now, we have to rotate the tooth to get all the teeth missing. */
            for (int i = 1; i < ev.n_teeth; i++) {

                const double angle = M_PI * ev.c_modulus * i;
                const double cos_angle = cos(angle);
                const double sin_angle = sin(angle);

                for (std::vector<QPointF>::iterator it = first_tooth.begin();
                        it != first_tooth.end(); ++it)
                {
                    const QPointF& orig = *it;
                    polyline.push_back(Plug_VertexData(rotate_and_disp.map(QPointF(
                                        cos_angle * orig.x() - sin_angle * orig.y(),
                                        sin_angle * orig.x() + cos_angle * orig.y())),
                                                       0.0));
                } /* for */
            } /* for */
        }
    }

    QString lastLayer = doc->getCurrentLayer();

#define LAYER(fmt) do { \
            if (useLayersBox->isChecked()) { \
                char buffer[128]; \
                snprintf(buffer, sizeof buffer, \
                        "gear_M%6.4f_" fmt, modulus); \
                doc->setLayer(buffer); \
            } \
        } while(0)

    LAYER("shapes"); 
    doc->addPolyline(polyline,
            drawAllTeethBox->isChecked()
            && drawBothSidesOfToothBox->isChecked());

    if (drawPitchCircleBox->isChecked()) {
        LAYER("pitch_circles");
        doc->addCircle(&center, scale_factor);
    }

    if (drawAddendumCircleBox->isChecked()) {
        LAYER("addendums");
        doc->addCircle(&center, scale_factor * ev.addendum_radius);
    }

    if (drawRootCircleBox->isChecked()) {
        LAYER("dedendums");
        doc->addCircle(&center, scale_factor * ev.dedendum_radius);
    }

    if (drawBaseCircleBox->isChecked()) {
        LAYER("base_lines");
        doc->addCircle(&center, scale_factor * ev.cos_p_angle);
    }

    if (drawPressureLineBox->isChecked() || drawPressureLimitBox->isChecked()) {
        LAYER("action_lines");
        QPointF p1(scale_factor * cos(ev.p_angle + rotation) * ev.cos_p_angle,
                   scale_factor * sin(ev.p_angle + rotation) * ev.cos_p_angle),
                p2(scale_factor * cos(rotation),
                   scale_factor * sin(rotation));
        p1 += center; p2 += center;
        if (drawPressureLimitBox->isChecked())
            doc->addLine(&center, &p1);
        if (drawPressureLineBox->isChecked())
            doc->addLine(&p1, &p2);
    }

    if (useLayersBox->isChecked())
        doc->setLayer(lastLayer);

    writeSettings();
}

void lc_Geardlg::checkAccept()
{
    accept();
}

lc_Geardlg::~lc_Geardlg()
{
}

void lc_Geardlg::closeEvent(QCloseEvent *event)
{
    QWidget::closeEvent(event);
}

void lc_Geardlg::readSettings()
{

    QPoint pos = settings.value("pos", QPoint(200, 200)).toPoint();
    QSize size = settings.value("size", QSize(430,140)).toSize();

#define R(var,toFunc, defval) do { \
        var ## Box->setValue(settings.value(#var, defval).toFunc()); \
    } while(0)
        
#define RB(var,defval) do { \
        var ## Box->setChecked(settings.value(#var, defval).toBool()); \
    } while (0)
    R(rotate, toDouble,         0.0 );
    R(nteeth, toInt,           20   );
    R(modulus, toDouble,        1.0 );
    R(pressure, toDouble,      20.0 );
    R(addendum, toDouble,       1.0 );
    R(dedendum, toDouble,       1.25);
    R(n1, toInt,               16   );
    R(n2, toInt,               16   );
    RB(drawAllTeeth,         true   );
    RB(drawBothSidesOfTooth, true   );
    RB(useLayers,            true   );
    RB(drawAddendumCircle,  false   );
    RB(drawPitchCircle,      true   );
    RB(drawBaseCircle,       true   );
    RB(drawRootCircle,      false   );
    RB(drawPressureLine,     true   );
    RB(drawPressureLimit,   false   );
    RB(calcInterference,    false   );
    R(n3, toInt,               16   );

    resize(size);
    move(pos);
}

void lc_Geardlg::writeSettings()
{
#define W(var, vfunc) do { \
        settings.setValue(#var, var##Box->vfunc()); \
    } while (0)
#define WN(var) W(var, value)
#define WB(var) W(var, isChecked)
    
    settings.setValue("pos", pos());
    settings.setValue("size", size());
    WN(nteeth);
    WN(modulus);
    WN(pressure);
    WN(addendum);
    WN(dedendum);
    WN(n1);
    WN(n2);
    WB(drawAllTeeth);
    WB(drawBothSidesOfTooth);
    WB(useLayers);
    WB(drawAddendumCircle);
    WB(drawPitchCircle);
    WB(drawBaseCircle);
    WB(drawRootCircle);
    WB(drawPressureLine);
    WB(drawPressureLimit);
    WB(calcInterference);
    WN(n3);
}