1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <limits>
// #i37443#
#define FACTOR_FOR_UNSHARPEN (1.6)
#ifdef DBG_UTIL
static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
#endif
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
namespace
{
void ImpSubDivAngle(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
double fAngleBound, // angle bound in [0.0 .. 2PI]
bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions
sal_uInt16 nMaxRecursionDepth) // endless loop protection
{
if(nMaxRecursionDepth)
{
// do angle test
B2DVector aLeft(rfEA - rfPA);
B2DVector aRight(rfEB - rfPB);
// #i72104#
if(aLeft.equalZero())
{
aLeft = rfEB - rfPA;
}
if(aRight.equalZero())
{
aRight = rfEA - rfPB;
}
const double fCurrentAngle(aLeft.angle(aRight));
if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
{
// end recursion
nMaxRecursionDepth = 0;
}
else
{
if(bAllowUnsharpen)
{
// #i37443# unsharpen criteria
#ifdef DBG_UTIL
fAngleBound *= fMultFactUnsharpen;
#else
fAngleBound *= FACTOR_FOR_UNSHARPEN;
#endif
}
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// left recursion
ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
// right recursion
ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
}
else
{
rTarget.append(rfPB);
}
}
void ImpSubDivAngleStart(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
const double& rfAngleBound, // angle bound in [0.0 .. 2PI]
bool bAllowUnsharpen) // #i37443# allow the criteria to get unsharp in recursions
{
sal_uInt16 nMaxRecursionDepth(8);
const B2DVector aLeft(rfEA - rfPA);
const B2DVector aRight(rfEB - rfPB);
bool bLeftEqualZero(aLeft.equalZero());
bool bRightEqualZero(aRight.equalZero());
bool bAllParallel(false);
if(bLeftEqualZero && bRightEqualZero)
{
nMaxRecursionDepth = 0;
}
else
{
const B2DVector aBase(rfPB - rfPA);
const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
if(!bBaseEqualZero)
{
const bool bLeftParallel(bLeftEqualZero ? true : areParallel(aLeft, aBase));
const bool bRightParallel(bRightEqualZero ? true : areParallel(aRight, aBase));
if(bLeftParallel && bRightParallel)
{
bAllParallel = true;
if(!bLeftEqualZero)
{
double fFactor;
if(fabs(aBase.getX()) > fabs(aBase.getY()))
{
fFactor = aLeft.getX() / aBase.getX();
}
else
{
fFactor = aLeft.getY() / aBase.getY();
}
if(fFactor >= 0.0 && fFactor <= 1.0)
{
bLeftEqualZero = true;
}
}
if(!bRightEqualZero)
{
double fFactor;
if(fabs(aBase.getX()) > fabs(aBase.getY()))
{
fFactor = aRight.getX() / -aBase.getX();
}
else
{
fFactor = aRight.getY() / -aBase.getY();
}
if(fFactor >= 0.0 && fFactor <= 1.0)
{
bRightEqualZero = true;
}
}
if(bLeftEqualZero && bRightEqualZero)
{
nMaxRecursionDepth = 0;
}
}
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5 ad test both edges for angle criteria
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// test left
bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
if(!bAngleIsSmallerLeft)
{
const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
const B2DVector aRightLeft(aS2L - aS3C);
const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
}
// test right
bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
if(!bAngleIsSmallerRight)
{
const B2DVector aLeftRight(aS2R - aS3C);
const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
}
if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
{
// no recursion necessary at all
nMaxRecursionDepth = 0;
}
else
{
// left
if(bAngleIsSmallerLeft)
{
rTarget.append(aS3C);
}
else
{
ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
}
// right
if(bAngleIsSmallerRight)
{
rTarget.append(rfPB);
}
else
{
ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, bAllowUnsharpen, nMaxRecursionDepth);
}
}
}
if(!nMaxRecursionDepth)
{
rTarget.append(rfPB);
}
}
void ImpSubDivDistance(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
double fDistanceBound2, // quadratic distance criteria
double fLastDistanceError2, // the last quadratic distance error
sal_uInt16 nMaxRecursionDepth) // endless loop protection
{
if(nMaxRecursionDepth)
{
// decide if another recursion is needed. If not, set
// nMaxRecursionDepth to zero
// Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
// ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
//
// What is calculated here is an upper bound to the distance from
// a line through b_0 and b_3 (rfPA and P4 in our notation) and the
// curve. We can drop 0 and n from the running indices, since the
// argument of max becomes zero for those cases.
const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
const double fDistanceError2(::std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
// stop if error measure does not improve anymore. This is a
// safety guard against floating point inaccuracies.
// stop if distance from line is guaranteed to be bounded by d
const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
if(bFurtherDivision)
{
// remember last error value
fLastDistanceError2 = fDistanceError2;
}
else
{
// stop recustion
nMaxRecursionDepth = 0;
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// left recursion
ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
// right recursion
ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
}
else
{
rTarget.append(rfPB);
}
}
} // end of anonymous namespace
} // end of namespace basegfx
//////////////////////////////////////////////////////////////////////////////
namespace basegfx
{
B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier& rBezier)
: maStartPoint(rBezier.maStartPoint),
maEndPoint(rBezier.maEndPoint),
maControlPointA(rBezier.maControlPointA),
maControlPointB(rBezier.maControlPointB)
{
}
B2DCubicBezier::B2DCubicBezier()
{
}
B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rEnd)
: maStartPoint(rStart),
maEndPoint(rEnd),
maControlPointA(rStart),
maControlPointB(rEnd)
{
}
B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
: maStartPoint(rStart),
maEndPoint(rEnd),
maControlPointA(rControlPointA),
maControlPointB(rControlPointB)
{
}
B2DCubicBezier::~B2DCubicBezier()
{
}
// assignment operator
B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier& rBezier)
{
maStartPoint = rBezier.maStartPoint;
maEndPoint = rBezier.maEndPoint;
maControlPointA = rBezier.maControlPointA;
maControlPointB = rBezier.maControlPointB;
return *this;
}
// compare operators
bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint == rBezier.maStartPoint
&& maEndPoint == rBezier.maEndPoint
&& maControlPointA == rBezier.maControlPointA
&& maControlPointB == rBezier.maControlPointB
);
}
bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint != rBezier.maStartPoint
|| maEndPoint != rBezier.maEndPoint
|| maControlPointA != rBezier.maControlPointA
|| maControlPointB != rBezier.maControlPointB
);
}
bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint.equal(rBezier.maStartPoint)
&& maEndPoint.equal(rBezier.maEndPoint)
&& maControlPointA.equal(rBezier.maControlPointA)
&& maControlPointB.equal(rBezier.maControlPointB)
);
}
// test if vectors are used
bool B2DCubicBezier::isBezier() const
{
if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
{
return true;
}
return false;
}
void B2DCubicBezier::testAndSolveTrivialBezier()
{
if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
{
const B2DVector aEdge(maEndPoint - maStartPoint);
// controls parallel to edge can be trivial. No edge -> not parallel -> control can
// still not be trivial (e.g. ballon loop)
if(!aEdge.equalZero())
{
// get control vectors
const B2DVector aVecA(maControlPointA - maStartPoint);
const B2DVector aVecB(maControlPointB - maEndPoint);
// check if trivial per se
bool bAIsTrivial(aVecA.equalZero());
bool bBIsTrivial(aVecB.equalZero());
// #i102241# prepare inverse edge length to normalize cross values;
// else the small compare value used in fTools::equalZero
// will be length dependent and this detection will work as less
// precise as longer the edge is. In principle, the length of the control
// vector would need to be used too, but to be trivial it is assumed to
// be of roughly equal length to the edge, so edge length can be used
// for both. Only needed when one of both is not trivial per se.
const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
? 1.0
: 1.0 / aEdge.getLength());
// if A is not zero, check if it could be
if(!bAIsTrivial)
{
// #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
// we need here with the precision we need
const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
if(fTools::equalZero(fCross))
{
// get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
? aVecA.getX() / aEdge.getX()
: aVecA.getY() / aEdge.getY());
// relative end point of vector in edge range?
if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
{
bAIsTrivial = true;
}
}
}
// if B is not zero, check if it could be, but only if A is already trivial;
// else solve to trivial will not be possible for whole edge
if(bAIsTrivial && !bBIsTrivial)
{
// parallel to edge? Check aVecB, aEdge
const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
if(fTools::equalZero(fCross))
{
// get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
? aVecB.getX() / aEdge.getX()
: aVecB.getY() / aEdge.getY());
// end point of vector in edge range? Caution: controlB is directed AGAINST edge
if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
{
bBIsTrivial = true;
}
}
}
// if both are/can be reduced, do it.
// Not possible if only one is/can be reduced (!)
if(bAIsTrivial && bBIsTrivial)
{
maControlPointA = maStartPoint;
maControlPointB = maEndPoint;
}
}
}
}
namespace {
double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
{
const double fEdgeLength(rEdge.getEdgeLength());
const double fControlPolygonLength(rEdge.getControlPolygonLength());
const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
{
return (fEdgeLength + fControlPolygonLength) * 0.5;
}
else
{
B2DCubicBezier aLeft, aRight;
const double fNewDeviation(fDeviation * 0.5);
const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
rEdge.split(0.5, &aLeft, &aRight);
return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
+ impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
}
}
}
double B2DCubicBezier::getLength(double fDeviation) const
{
if(isBezier())
{
if(fDeviation < 0.00000001)
{
fDeviation = 0.00000001;
}
return impGetLength(*this, fDeviation, 6);
}
else
{
return B2DVector(getEndPoint() - getStartPoint()).getLength();
}
}
double B2DCubicBezier::getEdgeLength() const
{
const B2DVector aEdge(maEndPoint - maStartPoint);
return aEdge.getLength();
}
double B2DCubicBezier::getControlPolygonLength() const
{
const B2DVector aVectorA(maControlPointA - maStartPoint);
const B2DVector aVectorB(maEndPoint - maControlPointB);
if(!aVectorA.equalZero() || !aVectorB.equalZero())
{
const B2DVector aTop(maControlPointB - maControlPointA);
return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
}
else
{
return getEdgeLength();
}
}
void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound, bool bAllowUnsharpen) const
{
if(isBezier())
{
// use support method #i37443# and allow unsharpen the criteria
ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, fAngleBound * F_PI180, bAllowUnsharpen);
}
else
{
rTarget.append(getEndPoint());
}
}
B2DVector B2DCubicBezier::getTangent(double t) const
{
if(fTools::lessOrEqual(t, 0.0))
{
// tangent in start point
B2DVector aTangent(getControlPointA() - getStartPoint());
if(!aTangent.equalZero())
{
return aTangent;
}
// start point and control vector are the same, fallback
// to implicit start vector to control point B
aTangent = (getControlPointB() - getStartPoint()) * 0.3;
if(!aTangent.equalZero())
{
return aTangent;
}
// not a bezier at all, return edge vector
return (getEndPoint() - getStartPoint()) * 0.3;
}
else if(fTools::moreOrEqual(t, 1.0))
{
// tangent in end point
B2DVector aTangent(getEndPoint() - getControlPointB());
if(!aTangent.equalZero())
{
return aTangent;
}
// end point and control vector are the same, fallback
// to implicit start vector from control point A
aTangent = (getEndPoint() - getControlPointA()) * 0.3;
if(!aTangent.equalZero())
{
return aTangent;
}
// not a bezier at all, return edge vector
return (getEndPoint() - getStartPoint()) * 0.3;
}
else
{
// t is in ]0.0 .. 1.0[. Split and extract
B2DCubicBezier aRight;
split(t, 0, &aRight);
return aRight.getControlPointA() - aRight.getStartPoint();
}
}
// #i37443# adaptive subdivide by nCount subdivisions
void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
{
const double fLenFact(1.0 / static_cast< double >(nCount + 1));
for(sal_uInt32 a(1); a <= nCount; a++)
{
const double fPos(static_cast< double >(a) * fLenFact);
rTarget.append(interpolatePoint(fPos));
}
rTarget.append(getEndPoint());
}
// adaptive subdivide by distance
void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
{
if(isBezier())
{
ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
fDistanceBound * fDistanceBound, ::std::numeric_limits<double>::max(), 30);
}
else
{
rTarget.append(getEndPoint());
}
}
B2DPoint B2DCubicBezier::interpolatePoint(double t) const
{
OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
if(isBezier())
{
const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
return interpolate(aS2L, aS2R, t);
}
else
{
return interpolate(maStartPoint, maEndPoint, t);
}
}
double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
{
const sal_uInt32 nInitialDivisions(3L);
B2DPolygon aInitialPolygon;
// as start make a fix division, creates nInitialDivisions + 2L points
aInitialPolygon.append(getStartPoint());
adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
// now look for the closest point
const sal_uInt32 nPointCount(aInitialPolygon.count());
B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0L));
double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
double fNewQuadDist;
sal_uInt32 nSmallestIndex(0L);
for(sal_uInt32 a(1L); a < nPointCount; a++)
{
aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fNewQuadDist < fQuadDist)
{
fQuadDist = fNewQuadDist;
nSmallestIndex = a;
}
}
// look right and left for even smaller distances
double fStepValue(1.0 / (double)((nPointCount - 1L) * 2L)); // half the edge step width
double fPosition((double)nSmallestIndex / (double)(nPointCount - 1L));
bool bDone(false);
while(!bDone)
{
if(!bDone)
{
// test left
double fPosLeft(fPosition - fStepValue);
if(fPosLeft < 0.0)
{
fPosLeft = 0.0;
aVector = B2DVector(rTestPoint - maStartPoint);
}
else
{
aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
}
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fTools::less(fNewQuadDist, fQuadDist))
{
fQuadDist = fNewQuadDist;
fPosition = fPosLeft;
}
else
{
// test right
double fPosRight(fPosition + fStepValue);
if(fPosRight > 1.0)
{
fPosRight = 1.0;
aVector = B2DVector(rTestPoint - maEndPoint);
}
else
{
aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
}
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fTools::less(fNewQuadDist, fQuadDist))
{
fQuadDist = fNewQuadDist;
fPosition = fPosRight;
}
else
{
// not less left or right, done
bDone = true;
}
}
}
if(0.0 == fPosition || 1.0 == fPosition)
{
// if we are completely left or right, we are done
bDone = true;
}
if(!bDone)
{
// prepare next step value
fStepValue /= 2.0;
}
}
rCut = fPosition;
return sqrt(fQuadDist);
}
void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
{
OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
if(!pBezierA && !pBezierB)
{
return;
}
if(isBezier())
{
const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
if(pBezierA)
{
pBezierA->setStartPoint(maStartPoint);
pBezierA->setEndPoint(aS3C);
pBezierA->setControlPointA(aS1L);
pBezierA->setControlPointB(aS2L);
}
if(pBezierB)
{
pBezierB->setStartPoint(aS3C);
pBezierB->setEndPoint(maEndPoint);
pBezierB->setControlPointA(aS2R);
pBezierB->setControlPointB(aS1R);
}
}
else
{
const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
if(pBezierA)
{
pBezierA->setStartPoint(maStartPoint);
pBezierA->setEndPoint(aSplit);
pBezierA->setControlPointA(maStartPoint);
pBezierA->setControlPointB(aSplit);
}
if(pBezierB)
{
pBezierB->setStartPoint(aSplit);
pBezierB->setEndPoint(maEndPoint);
pBezierB->setControlPointA(aSplit);
pBezierB->setControlPointB(maEndPoint);
}
}
}
B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
{
B2DCubicBezier aRetval;
if(fTools::more(fStart, 1.0))
{
fStart = 1.0;
}
else if(fTools::less(fStart, 0.0))
{
fStart = 0.0;
}
if(fTools::more(fEnd, 1.0))
{
fEnd = 1.0;
}
else if(fTools::less(fEnd, 0.0))
{
fEnd = 0.0;
}
if(fEnd <= fStart)
{
// empty or NULL, create single point at center
const double fSplit((fEnd + fStart) * 0.5);
const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
aRetval.setStartPoint(aPoint);
aRetval.setEndPoint(aPoint);
aRetval.setControlPointA(aPoint);
aRetval.setControlPointB(aPoint);
}
else
{
if(isBezier())
{
// copy bezier; cut off right, then cut off left. Do not forget to
// adapt cut value when both cuts happen
const bool bEndIsOne(fTools::equal(fEnd, 1.0));
const bool bStartIsZero(fTools::equalZero(fStart));
aRetval = *this;
if(!bEndIsOne)
{
aRetval.split(fEnd, &aRetval, 0);
if(!bStartIsZero)
{
fStart /= fEnd;
}
}
if(!bStartIsZero)
{
aRetval.split(fStart, 0, &aRetval);
}
}
else
{
// no bezier, create simple edge
const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
aRetval.setStartPoint(aPointA);
aRetval.setEndPoint(aPointB);
aRetval.setControlPointA(aPointA);
aRetval.setControlPointB(aPointB);
}
}
return aRetval;
}
B2DRange B2DCubicBezier::getRange() const
{
B2DRange aRetval(maStartPoint, maEndPoint);
aRetval.expand(maControlPointA);
aRetval.expand(maControlPointB);
return aRetval;
}
bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
{
::std::vector< double > aAllResults;
aAllResults.reserve(4);
getAllExtremumPositions(aAllResults);
const sal_uInt32 nCount(aAllResults.size());
if(!nCount)
{
return false;
}
else if(1 == nCount)
{
rfResult = aAllResults[0];
return true;
}
else
{
rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
return true;
}
}
namespace
{
inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
{
// check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
// by using the equalZero test, NOT ::more or ::less which will use the
// ApproxEqual() which is too exact here
if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
{
if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
{
rResult.push_back(fCandidate);
}
}
}
}
void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
{
rResults.clear();
// calculate the x-extrema parameters by zeroing first x-derivative
// of the cubic bezier's parametric formula, which results in a
// quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
const B2DPoint aControlDiff( maControlPointA - maControlPointB );
double fCX = maControlPointA.getX() - maStartPoint.getX();
const double fBX = fCX + aControlDiff.getX();
const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
if(fTools::equalZero(fCX))
{
// detect fCX equal zero and truncate to real zero value in that case
fCX = 0.0;
}
if( !fTools::equalZero(fAX) )
{
// derivative is polynomial of order 2 => use binomial formula
const double fD = fBX*fBX - fAX*fCX;
if( fD >= 0.0 )
{
const double fS = sqrt(fD);
// calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAX, rResults);
if( !fTools::equalZero(fS) ) // ignore root multiplicity
impCheckExtremumResult(fCX / fQ, rResults);
}
}
else if( !fTools::equalZero(fBX) )
{
// derivative is polynomial of order 1 => one extrema
impCheckExtremumResult(fCX / (2 * fBX), rResults);
}
// calculate the y-extrema parameters by zeroing first y-derivative
double fCY = maControlPointA.getY() - maStartPoint.getY();
const double fBY = fCY + aControlDiff.getY();
const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
if(fTools::equalZero(fCY))
{
// detect fCY equal zero and truncate to real zero value in that case
fCY = 0.0;
}
if( !fTools::equalZero(fAY) )
{
// derivative is polynomial of order 2 => use binomial formula
const double fD = fBY*fBY - fAY*fCY;
if( fD >= 0.0 )
{
const double fS = sqrt(fD);
// calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAY, rResults);
if( !fTools::equalZero(fS) ) // ignore root multiplicity
impCheckExtremumResult(fCY / fQ, rResults);
}
}
else if( !fTools::equalZero(fBY) )
{
// derivative is polynomial of order 1 => one extrema
impCheckExtremumResult(fCY / (2 * fBY), rResults);
}
}
} // end of namespace basegfx
// eof
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|