1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#include <drawinglayer/processor3d/zbufferprocessor3d.hxx>
#include <basegfx/raster/bpixelraster.hxx>
#include <vcl/bmpacc.hxx>
#include <basegfx/raster/rasterconvert3d.hxx>
#include <basegfx/raster/bzpixelraster.hxx>
#include <drawinglayer/attribute/materialattribute3d.hxx>
#include <drawinglayer/texture/texture.hxx>
#include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
#include <drawinglayer/primitive3d/textureprimitive3d.hxx>
#include <drawinglayer/primitive3d/polygonprimitive3d.hxx>
#include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
#include <drawinglayer/geometry/viewinformation2d.hxx>
#include <basegfx/polygon/b3dpolygontools.hxx>
#include <basegfx/polygon/b3dpolypolygontools.hxx>
#include <drawinglayer/attribute/sdrlightingattribute3d.hxx>
//////////////////////////////////////////////////////////////////////////////
using namespace com::sun::star;
//////////////////////////////////////////////////////////////////////////////
namespace
{
BitmapEx BPixelRasterToBitmapEx(const basegfx::BPixelRaster& rRaster, sal_uInt16 mnAntiAlialize)
{
BitmapEx aRetval;
const sal_uInt32 nWidth(mnAntiAlialize ? rRaster.getWidth()/mnAntiAlialize : rRaster.getWidth());
const sal_uInt32 nHeight(mnAntiAlialize ? rRaster.getHeight()/mnAntiAlialize : rRaster.getHeight());
if(nWidth && nHeight)
{
const Size aDestSize(nWidth, nHeight);
Bitmap aContent(aDestSize, 24);
AlphaMask aAlpha(aDestSize);
BitmapWriteAccess* pContent = aContent.AcquireWriteAccess();
BitmapWriteAccess* pAlpha = aAlpha.AcquireWriteAccess();
if(pContent && pAlpha)
{
if(mnAntiAlialize)
{
const sal_uInt16 nDivisor(mnAntiAlialize * mnAntiAlialize);
for(sal_uInt32 y(0L); y < nHeight; y++)
{
for(sal_uInt32 x(0L); x < nWidth; x++)
{
sal_uInt16 nRed(0);
sal_uInt16 nGreen(0);
sal_uInt16 nBlue(0);
sal_uInt16 nOpacity(0);
sal_uInt32 nIndex(rRaster.getIndexFromXY(x * mnAntiAlialize, y * mnAntiAlialize));
for(sal_uInt32 c(0); c < mnAntiAlialize; c++)
{
for(sal_uInt32 d(0); d < mnAntiAlialize; d++)
{
const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
nRed = nRed + rPixel.getRed();
nGreen = nGreen + rPixel.getGreen();
nBlue = nBlue + rPixel.getBlue();
nOpacity = nOpacity + rPixel.getOpacity();
}
nIndex += rRaster.getWidth() - mnAntiAlialize;
}
nOpacity = nOpacity / nDivisor;
if(nOpacity)
{
pContent->SetPixel(y, x, BitmapColor(
(sal_uInt8)(nRed / nDivisor),
(sal_uInt8)(nGreen / nDivisor),
(sal_uInt8)(nBlue / nDivisor)));
pAlpha->SetPixel(
y, x,
BitmapColor(255 - (sal_uInt8)nOpacity));
}
else
{
pContent->SetPixel(y, x, BitmapColor(0, 0, 0));
pAlpha->SetPixel(y, x, BitmapColor(255));
}
}
}
}
else
{
sal_uInt32 nIndex(0L);
for(sal_uInt32 y(0L); y < nHeight; y++)
{
for(sal_uInt32 x(0L); x < nWidth; x++)
{
const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
pContent->SetPixel(y, x, BitmapColor(rPixel.getRed(), rPixel.getGreen(), rPixel.getBlue()));
pAlpha->SetPixel(y, x, BitmapColor(255 - rPixel.getOpacity()));
}
}
}
aContent.ReleaseAccess(pContent);
aAlpha.ReleaseAccess(pAlpha);
}
aRetval = BitmapEx(aContent, aAlpha);
// #i101811# set PrefMapMode and PrefSize at newly created Bitmap
aRetval.SetPrefMapMode(MAP_100TH_MM);
aRetval.SetPrefSize(Size(nWidth, nHeight));
}
return aRetval;
}
} // end of anonymous namespace
//////////////////////////////////////////////////////////////////////////////
class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
{
private:
const drawinglayer::processor3d::DefaultProcessor3D& mrProcessor;
basegfx::BZPixelRaster& mrBuffer;
// interpolators for a single line span
basegfx::ip_single maIntZ;
basegfx::ip_triple maIntColor;
basegfx::ip_triple maIntNormal;
basegfx::ip_double maIntTexture;
basegfx::ip_triple maIntInvTexture;
// current material to use for ratsreconversion
const drawinglayer::attribute::MaterialAttribute3D* mpCurrentMaterial;
// bitfield
// some boolean flags for line span interpolator usages
unsigned mbModifyColor : 1;
unsigned mbUseTex : 1;
unsigned mbHasTexCoor : 1;
unsigned mbHasInvTexCoor : 1;
unsigned mbUseNrm : 1;
unsigned mbUseCol : 1;
void getTextureCoor(basegfx::B2DPoint& rTarget) const
{
if(mbHasTexCoor)
{
rTarget.setX(maIntTexture.getX().getVal());
rTarget.setY(maIntTexture.getY().getVal());
}
else if(mbHasInvTexCoor)
{
const double fZFactor(maIntInvTexture.getZ().getVal());
const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
}
}
void incrementLineSpanInterpolators(double fStep)
{
maIntZ.increment(fStep);
if(mbUseTex)
{
if(mbHasTexCoor)
{
maIntTexture.increment(fStep);
}
else if(mbHasInvTexCoor)
{
maIntInvTexture.increment(fStep);
}
}
if(mbUseNrm)
{
maIntNormal.increment(fStep);
}
if(mbUseCol)
{
maIntColor.increment(fStep);
}
}
double decideColorAndOpacity(basegfx::BColor& rColor)
{
// init values with full opacity and material color
OSL_ENSURE(0 != mpCurrentMaterial, "CurrentMaterial not set (!)");
double fOpacity(1.0);
rColor = mpCurrentMaterial->getColor();
if(mbUseTex)
{
basegfx::B2DPoint aTexCoor(0.0, 0.0);
getTextureCoor(aTexCoor);
if(mrProcessor.getGeoTexSvx().get())
{
// calc color in spot. This may also set to invisible already when
// e.g. bitmap textures have transparent parts
mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
}
if(basegfx::fTools::more(fOpacity, 0.0) && mrProcessor.getTransparenceGeoTexSvx().get())
{
// calc opacity. Object has a 2nd texture, a transparence texture
mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
}
}
if(basegfx::fTools::more(fOpacity, 0.0))
{
if(mrProcessor.getGeoTexSvx().get())
{
if(mbUseNrm)
{
// blend texture with phong
rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
rColor,
mpCurrentMaterial->getSpecular(),
mpCurrentMaterial->getEmission(),
mpCurrentMaterial->getSpecularIntensity());
}
else if(mbUseCol)
{
// blend texture with gouraud
basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
rColor *= aBlendColor;
}
else if(mrProcessor.getModulate())
{
// blend texture with single material color
rColor *= mpCurrentMaterial->getColor();
}
}
else
{
if(mbUseNrm)
{
// modify color with phong
rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
rColor,
mpCurrentMaterial->getSpecular(),
mpCurrentMaterial->getEmission(),
mpCurrentMaterial->getSpecularIntensity());
}
else if(mbUseCol)
{
// modify color with gouraud
rColor.setRed(maIntColor.getX().getVal());
rColor.setGreen(maIntColor.getY().getVal());
rColor.setBlue(maIntColor.getZ().getVal());
}
}
if(mbModifyColor)
{
rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
}
}
return fOpacity;
}
void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
{
// get inverse XDelta
const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));
// prepare Z-interpolator
const double fZA(rA.getZ().getVal());
const double fZB(rB.getZ().getVal());
maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);
// get bools and init other interpolators on demand accordingly
mbModifyColor = mrProcessor.getBColorModifierStack().count();
mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
const bool bTextureActive(mrProcessor.getGeoTexSvx().get() || mrProcessor.getTransparenceGeoTexSvx().get());
mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx().get());
const bool bNeedNrmOrCol(!bUseColorTex || (bUseColorTex && mrProcessor.getModulate()));
mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();
if(mbUseTex)
{
if(mbHasTexCoor)
{
const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
maIntTexture = basegfx::ip_double(
rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
}
else if(mbHasInvTexCoor)
{
const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
maIntInvTexture = basegfx::ip_triple(
rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
}
}
if(mbUseNrm)
{
const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
maIntNormal = basegfx::ip_triple(
rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
}
if(mbUseCol)
{
const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
maIntColor = basegfx::ip_triple(
rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
}
}
virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount);
public:
ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
: basegfx::RasterConverter3D(),
mrProcessor(rProcessor),
mrBuffer(rBuffer),
maIntZ(),
maIntColor(),
maIntNormal(),
maIntTexture(),
maIntInvTexture(),
mpCurrentMaterial(0),
mbModifyColor(false),
mbUseTex(false),
mbHasTexCoor(false),
mbUseNrm(false),
mbUseCol(false)
{}
void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
{
mpCurrentMaterial = &rMaterial;
}
};
void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
{
if(!(nSpanCount & 0x0001))
{
if(nLine >= 0 && nLine < (sal_Int32)mrBuffer.getHeight())
{
sal_uInt32 nXA(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rA.getX().getVal()))));
const sal_uInt32 nXB(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rB.getX().getVal()))));
if(nXA < nXB)
{
// prepare the span interpolators
setupLineSpanInterpolators(rA, rB);
// bring span interpolators to start condition by incrementing with the possible difference of
// clamped and non-clamped XStart. Interpolators are setup relying on double precision
// X-values, so that difference is the correct value to compensate for possible clampings
incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());
// prepare scanline index
sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
basegfx::BColor aNewColor;
while(nXA < nXB)
{
// early-test Z values if we need to do anything at all
const double fNewZ(::std::max(0.0, ::std::min((double)0xffff, maIntZ.getVal())));
const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));
if(nNewZ > rOldZ)
{
// detect color and opacity for this pixel
const sal_uInt16 nOpacity(::std::max((sal_Int16)0, static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));
if(nOpacity > 0)
{
// avoid color overrun
aNewColor.clamp();
if(nOpacity >= 0x00ff)
{
// full opacity (not transparent), set z and color
rOldZ = nNewZ;
mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
}
else
{
basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);
if(rDest.getOpacity())
{
// mix new color by using
// color' = color * (1 - opacity) + newcolor * opacity
const sal_uInt16 nTransparence(0x0100 - nOpacity);
rDest.setRed((sal_uInt8)(((rDest.getRed() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
rDest.setGreen((sal_uInt8)(((rDest.getGreen() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
rDest.setBlue((sal_uInt8)(((rDest.getBlue() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));
if(0xff != rDest.getOpacity())
{
// both are transparent, mix new opacity by using
// opacity = newopacity * (1 - oldopacity) + oldopacity
rDest.setOpacity(((sal_uInt8)((nOpacity * (0x0100 - rDest.getOpacity())) >> 8)) + rDest.getOpacity());
}
}
else
{
// dest is unused, set color
rDest = basegfx::BPixel(aNewColor, (sal_uInt8)nOpacity);
}
}
}
}
// increments
nScanlineIndex++;
nXA++;
incrementLineSpanInterpolators(1.0);
}
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
// helper class to buffer output for transparent rasterprimitives (filled areas
// and lines) until the end of processing. To ensure correct transparent
// visualisation, ZBuffers require to not set Z and to mix with the transparent
// color. If transparent rasterprimitives overlap, it gets necessary to
// paint transparent rasterprimitives from back to front to ensure that the
// mixing happens from back to front. For that purpose, transparent
// rasterprimitives are held in this class during the processing run, remember
// all data and will be rendered
class RasterPrimitive3D
{
private:
boost::shared_ptr< drawinglayer::texture::GeoTexSvx > mpGeoTexSvx;
boost::shared_ptr< drawinglayer::texture::GeoTexSvx > mpTransparenceGeoTexSvx;
drawinglayer::attribute::MaterialAttribute3D maMaterial;
basegfx::B3DPolyPolygon maPolyPolygon;
double mfCenterZ;
// bitfield
bool mbModulate : 1;
bool mbFilter : 1;
bool mbSimpleTextureActive : 1;
bool mbIsLine : 1;
public:
RasterPrimitive3D(
const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pGeoTexSvx,
const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pTransparenceGeoTexSvx,
const drawinglayer::attribute::MaterialAttribute3D& rMaterial,
const basegfx::B3DPolyPolygon& rPolyPolygon,
bool bModulate,
bool bFilter,
bool bSimpleTextureActive,
bool bIsLine)
: mpGeoTexSvx(pGeoTexSvx),
mpTransparenceGeoTexSvx(pTransparenceGeoTexSvx),
maMaterial(rMaterial),
maPolyPolygon(rPolyPolygon),
mfCenterZ(basegfx::tools::getRange(rPolyPolygon).getCenter().getZ()),
mbModulate(bModulate),
mbFilter(bFilter),
mbSimpleTextureActive(bSimpleTextureActive),
mbIsLine(bIsLine)
{
}
RasterPrimitive3D& operator=(const RasterPrimitive3D& rComp)
{
mpGeoTexSvx = rComp.mpGeoTexSvx;
mpTransparenceGeoTexSvx = rComp.mpTransparenceGeoTexSvx;
maMaterial = rComp.maMaterial;
maPolyPolygon = rComp.maPolyPolygon;
mfCenterZ = rComp.mfCenterZ;
mbModulate = rComp.mbModulate;
mbFilter = rComp.mbFilter;
mbSimpleTextureActive = rComp.mbSimpleTextureActive;
mbIsLine = rComp.mbIsLine;
return *this;
}
bool operator<(const RasterPrimitive3D& rComp) const
{
return mfCenterZ < rComp.mfCenterZ;
}
const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getGeoTexSvx() const { return mpGeoTexSvx; }
const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getTransparenceGeoTexSvx() const { return mpTransparenceGeoTexSvx; }
const drawinglayer::attribute::MaterialAttribute3D& getMaterial() const { return maMaterial; }
const basegfx::B3DPolyPolygon& getPolyPolygon() const { return maPolyPolygon; }
bool getModulate() const { return mbModulate; }
bool getFilter() const { return mbFilter; }
bool getSimpleTextureActive() const { return mbSimpleTextureActive; }
bool getIsLine() const { return mbIsLine; }
};
//////////////////////////////////////////////////////////////////////////////
namespace drawinglayer
{
namespace processor3d
{
void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
{
if(mpBZPixelRaster)
{
if(getTransparenceCounter())
{
// transparent output; record for later sorting and painting from
// back to front
if(!mpRasterPrimitive3Ds)
{
const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
}
mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
getGeoTexSvx(),
getTransparenceGeoTexSvx(),
rMaterial,
basegfx::B3DPolyPolygon(rHairline),
getModulate(),
getFilter(),
getSimpleTextureActive(),
true));
}
else
{
// do rasterconversion
mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
if(mnAntiAlialize > 1)
{
const bool bForceLineSnap(getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete());
if(bForceLineSnap)
{
basegfx::B3DHomMatrix aTransform;
basegfx::B3DPolygon aSnappedHairline(rHairline);
const double fScaleDown(1.0 / mnAntiAlialize);
const double fScaleUp(mnAntiAlialize);
// take oversampling out
aTransform.scale(fScaleDown, fScaleDown, 1.0);
aSnappedHairline.transform(aTransform);
// snap to integer
aSnappedHairline = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);
// add oversampling again
aTransform.identity();
aTransform.scale(fScaleUp, fScaleUp, 1.0);
aSnappedHairline.transform(aTransform);
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
}
else
{
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
}
}
else
{
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), 1);
}
}
}
}
void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
{
if(mpBZPixelRaster)
{
if(getTransparenceCounter())
{
// transparent output; record for later sorting and painting from
// back to front
if(!mpRasterPrimitive3Ds)
{
const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
}
mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
getGeoTexSvx(),
getTransparenceGeoTexSvx(),
rMaterial,
rFill,
getModulate(),
getFilter(),
getSimpleTextureActive(),
false));
}
else
{
mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, 0, mpBZPixelRaster->getHeight());
}
}
}
ZBufferProcessor3D::ZBufferProcessor3D(
const geometry::ViewInformation3D& rViewInformation3D,
const geometry::ViewInformation2D& rViewInformation2D,
const attribute::SdrSceneAttribute& rSdrSceneAttribute,
const attribute::SdrLightingAttribute& rSdrLightingAttribute,
double fSizeX,
double fSizeY,
const basegfx::B2DRange& rVisiblePart,
sal_uInt16 nAntiAlialize)
: DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
mpBZPixelRaster(0),
maInvEyeToView(),
mpZBufferRasterConverter3D(0),
mnAntiAlialize(nAntiAlialize),
mpRasterPrimitive3Ds(0)
{
// generate ViewSizes
const double fFullViewSizeX((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(fSizeX, 0.0)).getLength());
const double fFullViewSizeY((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fSizeY)).getLength());
const double fViewSizeX(fFullViewSizeX * rVisiblePart.getWidth());
const double fViewSizeY(fFullViewSizeY * rVisiblePart.getHeight());
// generate RasterWidth and RasterHeight
const sal_uInt32 nRasterWidth((sal_uInt32)basegfx::fround(fViewSizeX) + 1);
const sal_uInt32 nRasterHeight((sal_uInt32)basegfx::fround(fViewSizeY) + 1);
if(nRasterWidth && nRasterHeight)
{
// create view unit buffer
mpBZPixelRaster = new basegfx::BZPixelRaster(
mnAntiAlialize ? nRasterWidth * mnAntiAlialize : nRasterWidth,
mnAntiAlialize ? nRasterHeight * mnAntiAlialize : nRasterHeight);
OSL_ENSURE(mpBZPixelRaster, "ZBufferProcessor3D: Could not allocate basegfx::BZPixelRaster (!)");
// create DeviceToView for Z-Buffer renderer since Z is handled
// different from standard 3D transformations (Z is mirrored). Also
// the transformation includes the step from unit device coordinates
// to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
basegfx::B3DHomMatrix aDeviceToView;
{
// step one:
//
// bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
// necessary to
// - flip Y due to screen orientation
// - flip Z due to Z-Buffer orientation from back to front
aDeviceToView.scale(0.5, -0.5, -0.5);
aDeviceToView.translate(0.5, 0.5, 0.5);
}
{
// step two:
//
// bring from [0.0 .. 1.0] in X,Y and Z to view cordinates
//
// #i102611#
// also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
// could be used, but a 'unused' value is needed, so '0' is used what reduces
// the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
// (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
// Instead of checking those by basegfx::fTools methods which would cost
// runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
// range, thus resulting in [1.5 .. 65534.5]
const double fMaxZDepth(65533.0);
aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);
if(mnAntiAlialize)
aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
else
aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);
aDeviceToView.translate(0.0, 0.0, 1.5);
}
// update local ViewInformation3D with own DeviceToView
const geometry::ViewInformation3D aNewViewInformation3D(
getViewInformation3D().getObjectTransformation(),
getViewInformation3D().getOrientation(),
getViewInformation3D().getProjection(),
aDeviceToView,
getViewInformation3D().getViewTime(),
getViewInformation3D().getExtendedInformationSequence());
updateViewInformation(aNewViewInformation3D);
// prepare inverse EyeToView transformation. This can be done in constructor
// since changes in object transformations when processing TransformPrimitive3Ds
// do not influence this prepared partial transformation
maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
maInvEyeToView.invert();
// prepare maRasterRange
maRasterRange.reset();
maRasterRange.expand(basegfx::B2DPoint(0.0, 0.0));
maRasterRange.expand(basegfx::B2DPoint(mpBZPixelRaster->getWidth(), mpBZPixelRaster->getHeight()));
// create the raster converter
mpZBufferRasterConverter3D = new ZBufferRasterConverter3D(*mpBZPixelRaster, *this);
}
}
ZBufferProcessor3D::~ZBufferProcessor3D()
{
if(mpBZPixelRaster)
{
delete mpZBufferRasterConverter3D;
delete mpBZPixelRaster;
}
if(mpRasterPrimitive3Ds)
{
OSL_FAIL("ZBufferProcessor3D: destructed, but there are unrendered transparent geometries. Use ZBufferProcessor3D::finish() to render these (!)");
delete mpRasterPrimitive3Ds;
}
}
void ZBufferProcessor3D::finish()
{
if(mpRasterPrimitive3Ds)
{
// there are transparent rasterprimitives
const sal_uInt32 nSize(mpRasterPrimitive3Ds->size());
if(nSize > 1)
{
// sort them from back to front
std::sort(mpRasterPrimitive3Ds->begin(), mpRasterPrimitive3Ds->end());
}
for(sal_uInt32 a(0); a < nSize; a++)
{
// paint each one by setting the remembered data and calling
// the render method
const RasterPrimitive3D& rCandidate = (*mpRasterPrimitive3Ds)[a];
mpGeoTexSvx = rCandidate.getGeoTexSvx();
mpTransparenceGeoTexSvx = rCandidate.getTransparenceGeoTexSvx();
mbModulate = rCandidate.getModulate();
mbFilter = rCandidate.getFilter();
mbSimpleTextureActive = rCandidate.getSimpleTextureActive();
if(rCandidate.getIsLine())
{
rasterconvertB3DPolygon(
rCandidate.getMaterial(),
rCandidate.getPolyPolygon().getB3DPolygon(0));
}
else
{
rasterconvertB3DPolyPolygon(
rCandidate.getMaterial(),
rCandidate.getPolyPolygon());
}
}
// delete them to signal the destructor that all is done and
// to allow asserting there
delete mpRasterPrimitive3Ds;
mpRasterPrimitive3Ds = 0;
}
}
BitmapEx ZBufferProcessor3D::getBitmapEx() const
{
if(mpBZPixelRaster)
{
return BPixelRasterToBitmapEx(*mpBZPixelRaster, mnAntiAlialize);
}
return BitmapEx();
}
} // end of namespace processor3d
} // end of namespace drawinglayer
//////////////////////////////////////////////////////////////////////////////
// eof
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|